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Abstract. We classify the conserved currents for the Maxwellian field. There are
four families: (1) the classical currents derived using Noether’s theorem from
conformal invariance (2) certain Noetherian currents based on translations in
field space, (3,4) two more kinds not equivalent to any Noetherian form.

1. Introduction

E. Noether first discovered that symmetries for a field theory gave rise to conserved
currents (see [2]). The two concepts are not coextensive. We show below that certain
well-known conserved currents (the rows of the symmetrized energy-momentum
tensor) are not the result, so to speak, of any symmetries of the Maxwellian
(electromagnetic) field.

This paper consists of two parts. (1) We enumerate the conserved currents: they
fall into four classes. Two of them are the Noetherian forms already known, being
those due to the conformal invariance, and the translational invariance in field-
space (i.e. the transformation of the general field by adding a specific field). The third
kind includes the parts added to the current of the first kind when one symmetrizes
the energy-momentum tensor. The fourth kind cannot be described in a few words.
(2) We prove that the third and fourth kind can never be equivalent to any
Noetherian form except in degenerate cases.

As a corollary we obtain a description of all symmetries of the Maxwell system:
They are just those already mentioned.

2. Main Theorem on Dynamic Currents

We take R* as our model for space—time M and use t',t2,¢3,t* for the Cartesian
coordinates there. We use u,,u,,u;,u, as the Cartesian Coordinates in the space
Q(=R*), where the field (the 4-vector potential) has its values.

A first order jet from M to Q is a linear map j from some tangent vector space
TY(M, a) of M to some T(Q, b) of Q. A function U from M to Q defines a jet j at each
ain M with b= U(a). It has coordinates ¢'(j) = t'(a), u;(j) = u;(U(a)). It also has 16
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further coordinates

ou,(U)
ot

pij(j) =

Thus we obtain a 24-dimensional space with coordinates t',u;, p; ;: the first order
jet bundle J*(M, Q). See [6].
Let U,,...,U, be a solution of Maxwell’s equations:

*U; U, )\ 4,
=0. 2.1
(aﬂat* at'at")g @1
This defines a 4-dimensional submanifold s of J!(M, Q) with the equations
oU;
u;=U,p;= Eh

These submanifolds shall be called motions.
A differential form ¢ of degree 3 is called dynamic if its restriction to each motion s
is exact. If ¢ is of the type

=JYdt* Al Al — T2t AU AU A+ T3dE A AP A drt
— J4dt AU AL, 22)
then its being dynamic is equivalent to J*!,J?,J3 J* being a conserved current. We
will then say that ¢ is a dynamic current. The results of our study are as follows

(observing the usual conventions on summing and on raising and lowering of
indices):

2.3 (Theorem). Let (2.2) be a dynamic current for the Maxwell field. Then
Ji=®'+ ¥V + T+ W+ N, where

; 047 AP ) ) . .
= ( a4t P )(p"‘ — ) + 347 (0% — PY), (2.31)
Pi = (firi _fi,j)uj +fj(pij — pi), (2.32)
=g, (2.33)
. 6S 08
i Ji _ piJ
W= ( 5 o Pk,>(p pY), (2.34)
Ni 6 0 em‘ a, nij ab ni jk 2 35
P + P o (0™ + 0™ paj+ L™ Py Dyi)- (2.35)

The variables appearing here A',f,,g'(i=1,2,3,4),5,0™ " ,®("*(n,i,a,j,b,k =
1,2,3,4) depend only on t*,...,t*,u,,...,u,. More specifically,

the A* depend only on the t's and are the components
of a conformal vector field in space time; (2.36)

J
f,....f* depend only on t and are a solution of (2.1), f¥' = f ;0 (237)

i
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the 0,n,( are alternating in ni, nij, nijk (2.38)
respectively, and { is alternating in a,b;
g',...,g* depend only on t and 0g'/0t' =0 (2.39)
Let &4 be defined by (2.2) when J' is replaced by @'; let &, be defined by (2.2) with
Jireplaced by ¥, and so forth. Then ¢ = ¢4 + -+ + &y.
2.4. (Theorem). ¢, and ¢, are Noetherian forms.
&g is based on the infinitesimal conformal transformation (241)
0 0
Al A
ot ot
&y is based on the infinitesimal translation in field-space : (2.42)
0 0
-f u, —/. Gu,’
If 0S/ou' =0(i = 1,2, 3,4) then ¢, is Noetherian, being (2.43)
based on the gauge transformation

0S 0 oS 0

or* du, ot ou,
If 8S/0u’ is not O for some i, then (2.44)
e +ey ey
is not equivalent to any Noetherian form.
If ¢, + ¢y is equivalent to a Noetherian form w, (2.45)
then w is equivalent to 0.
g, is exact, and hence equivalent to 0. (2.46)

The details of the definition of Noetherian forms are these. The Maxwell field has
an action form!

o= —3p,;(p7 — p)d'?** + du [ (p — p')d** — + -], 2.3

whose extremals are the motions.

Suppose U is a vector field in the space J'(M, Q) such that the Lie derivative £,
[3,p. 172]is exact :£ o = dy, where  is some 3-form. Then Noether’s theorem says
[2,5] that

NU)=Ula— ¥ (2.6)

is dynamic as defined above. Here U |« is the contraction of the vector U with the 4-

1 From this point on, we omit the wedges ( A ) in writing differential forms Moreover dt'dt?dt3dt* will be
abbreviated to d'23* 4?34 means dt?dt*dt* Finally, whenever C!,C?,C3,C* are any four quantities, then
Cld234 -4 — Stands for C1d234 _ C2d134 + C3d124 - C4d123
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form a. (If £ya is exact then U is called Hamiltonic [5] and sometimes the term
Noetherian is applied only when £,a =0.)

We declare a 3-form ¢ to be equivalent to another, i, if ¢ — i is expressible as a
sum B + p, where g is exact and y is a form whose restriction to each motion is 0. The
1-forms

X, = du, — p,;dt’ @.7)

and the 2-forms
dX;= —dp;dv (2.8)
have this latter property of vanishing on all motions and so therefore do the 3-forms
E'X,+ Qdx;, 29

where E' is any 2-form and @', any 1-form.

The converses of Theorems 2.3 and 2.4 are also true (and very easy to show).
Thus if we select a function S of u and ¢ such that §S/du; # 0 for at least one i, then
(2.34) gives us a dynamic form which is not Noetherian, nor even equivalent to a
Noetherian form.

The rows (or columns) of the symmetric energy-momentum tensor [4, 7] form
conserved currents of this kind. As shown in more detail (sect. 8 below) these well-
known dynamic forms are not equivalent to any Noetherian form.

The currents (2.31) (see also (2.41) constitute the very model of, or paradigm for,
all Noetherian currents considered since 1921.

3. Characteristic Properties of Dynamic Forms

3.1 (Lemma). The 3-form (2.2) is dynamic if and only if

oJ: oJ: oJ¢
ot "ou,  op
whenever (see (2.1))
(A — Aj)g* =0 and Ay = Ay, (3.3)

Proof. Suppose (2.2) is dynamic, and suppose that (3.12) holds. Let ¢ =da',u; = b;,
p;; = ¢;; be a generic point of J(M,Q).
For simplicity, suppose a' = 0. Let

U;=b;+ ¢t/ + 34, 5 U't*. (34)
This is a solution of (2.1) if (3.3) hold; and then

py=cCy+ At u =b, + cti + 34,0t (3.5)

Therefore, by hypotheses, if we express the u;and p;;in J by the expressions given by
(3.5), then the divergence 9J°/dt' should be 0. Using the chain rule, we obtain (3.2).

For the converse we must show that if (3.3) implies (3.2), then ¢ is dynamic. This is
obvious.
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Lemma. The differential form (2.2) is dynamic if and only if there exist variables
L¥J and M' such that
oJ oJ oJt -
i tPiz—t A —= Lku(Aki‘ —A
ot You;  Mopy ]
is an identity in the A’s.
In view of (3.1) this is an elementary proposition about polynomials of the first
degree.
We may take all 4, , = 0 in the identity (3.6). Therefore, if (2.2) is dynamic then
oJ! + oJ' _
or T Pit Ou; B
By taking A,,;=A4,; =1, and 4, =0 for all other sets of indices, we obtain
another relation: If (2.2) is dynamic then there exist four variables M' such that

o
0p; 0Py

)+ Migjk(Aijk — Aju) (3.6)

kji

0. (3.7

= — Mighi 4 2M*gii — Migh (3.8)

for A=1,2, 3,.4.
Conversely, (3.7) and (3.8) together imply that (2.2) is dynamic. We begin by
studying (3.8) by itself.

4. The Implications of (3.8)

The M' appearing in (3.8) will in general depend on all the coordinates in the jet
bundle, but in (3.8) we are concerned only with the form of their dependence on the
p;j- Any variables arising which depend only on the £'s and «’s shall be called semi-
constant in the following statement.

Theorem. The general solution to (3.8) is

Mi=R'+ S, p" — A, p*, 4.1)
Ji=d +°uip, + R(p" — p¥) + 3 A'pu(p™ — p¥) — AIp (P — p™)
+ S i (P — PY) + PPy Poic + PUTTD 4 DokD o @2

Here these coefficients are semi-constant. All indices range from I to 4. The u’s are
alternating in the indices ijkm (to the extent that they have them) and similarly,
alternating in the a,b,c. Indices are raised and lowered in the usual way.

The terms in (4.2) have been written in the order of their degree. Later the
arrangement given by Theorem 2.3 will emerge as more natural.

We begin the proof by establishing (4.1).

Let us abbreviate )

oM/

0D

by juk.
Clearly (3.4) makes
*J! 0*J:

+ = — gH(juk) + 29" (Auk) — g*I(iuk). 4.3)
ap,,k ap}.j apuk opy;
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We permute to ijk cyclically, twice, and add the three equations. The right hand side
must then be symmetric in 1 and y, giving the equation
294k — pak) + 297 (i — pdi) + 26" (A — i)
— g¥(juk + kuj) — g*ki + ipk) — g*(ipj + jpi)
+ g*i(jak + kAj) + gtk Ai + iAk) + g**(iAj + jAi) = 0.

Let us agree that the metric g*/ shall be diagonal.
We now establish a sequence of propositions (4.4-4.8).

211 =0, g*1(212 + 221) = g?%(111), 213 + 321 =0. 4.9
To prove this, we take i,j=1=4,u=2. Then
291 (12k — 21k) + 2g*%(121 — 211) + 2g*1(121 — 211) — g'*(12k + k21)
— g (k21 + 12k) — g*¥(121 + 121) + g?*(111 + 111) =0.

We let k = 1, and after some cancelling obtain 211 =0. For k = 2,3 we obtain the
other two relations.

123 =0. 4.5)

For this we let i, j, k = 1. The resulting equation, when divided by 6, says g'*(Aul

— pAl)— gAt(1ul) + g* (1A1) = 0. With A =2, u =3, this says 231 = 321 which by

(4.4) = — 213. So M/* is alternating in jk and symmetric in ij when i, , k are distinct.
S0 123 =213 = —231= —321=312= — 123, and (4.5) holds.

iij

?is the same for all i # j, and so may be called — A’. (4.6)

To prove this, we take A=j=1, i=pu=2, k=3, obtaining — ¢g**(322 + 223)
+¢?*(113 + 311) = 0. From (4.4) we deduce 322 and 311 are 0, whence

223 113
g
This establishes (4.6).
iji
7— is the same for all i # j and so may be called S’. 4.7)

Forthisweleti=j=1,k=pu=2,A=3.Then2g'!(322 — 232) + g**(131 + 131)
=0. Observing that 322 =0 (4.3), we get

131 232
PR
and (4.7) is established.
We now assert that
Mt = giish — git 4, 438)

Proof. From (4.4) we have g??(111) = g'1(212 + 221). This is exactly (4.8) for i = j
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=A=1.Fori=1,j=2in(4.6)weget 4.8)fori=A=1,j=2.Fori=j=1,A=2,
(4.8) reduces to (4.6). For M'22,(4.8) says 122 = 0. We also know M*23 = 0. All other

cases are equivalent to one of these five.
Now differentiate (4.8) with respect to p,, :
M 08P L 04d
— gl_]_—__ i -
0p3jObuw ~ 0P 0P

The right hand side therefore also equals

os* . 9A*

ik — Aiu .
op, j ap}.j
Let j,k,u be any indices. We can select A distinct from these. Let i=41. So
—g"0A’/dp,, =0.Thus 4’is a semi-constant. The same can be seen for S%. Thus we
have (4.1) where R' also is a semi-constant.

5. The Proof of (4.2)

Proposition. Let
L* = pp(p™ = P™)S" + 5 PP = P A* + (P™ — P")(Ryy — PrnA")-

Then L* satisfies (3.8) with the M* as in (4.1), that is 0L'/dp, ; + 0L//dp,; = right hand
side of (3.8).

This is easily verified, and we omit the proof.

The hypothesis of (4.2) is that the J' are given. From (3.4) we get the M’s and from
(4.1), the A, R, and S. Thus the J* lead to the L and to the Z' = J' — L.
Obviously

o0Z: + 0Z7 _
Ops; 0Py

These equations say that for each A, the Z* are the components of an infinitesimal
metric-preserving, (thus in our case Poincaré) vector field in an R* in which
Diis--->D,4 are the cartesian coordinates. Thus Z' has the form

0. (5.1)

Ay + 1P (no sum on 4), (5.2)

where a;) and pu(j, = — uf;, are independent of p;y, ..., 5. ‘ 4

Let us take A = | and then Z' =a{;, + ul%, p,,. It is easily seen that a{;, and u§,
(for a fixed k) again satisfy(5.1)for 4 = 2, 3, or 4; and thus have the form (5.2). Making
two more applications of this idea one obtains

Zi — ai + a#ijpaj + ab#ijkpajpbk + abc:uijkmpajpbkpcm‘
Here the p are certainly alternating in the i, j, k, m. There is also summation over the
a, b, c but if the construction is performed in the natural order we have a <b <c in
the last term and a < b in the previous one. Let us define “u/* for a > b by requiring

it to be alternating in the indices a, b, and similarly for the last term. After absorbing
the factorials, we have Z'in the form above with alternation in the a, b, ¢, as well. The
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a' and the y’s are semi-constants (i.e. independent of the p;;.) Thus J' has the very
form displayed in (4.2), and the theorem is proved.

We next examine what further restrictions are imposed on the coefficients in (4.2)
by the other necessary condition, (3.7).

6. The Consequences of (3.7), and Proof of Theorem 2.3

When we insert (4.2) into (3.7), we get a polynomial of the fourth degree in the p’s,
which has to vanish. Let J" = “u"*p_.p, .p., + lower degree. Write (3.7) in the form
oJr oJ"
+—Ppu =0. 6.1
ot 6ump""' (©1)

Then the fourth degree terms must satisfy

aabc ni jk
a—umpaipbjpckpmn =0.
Denote this coefficient by [mabc ;nijk]. Let ¢ be any permutation on four letters. Let
a(mabc) be the image of mabc under ¢. Then Z [o(mabc) ;o (nijk)] = 0. We know His

alternating in nijk so, summing over 24 permutatlons 0, X sgn (o) [o(mabc), nijk] = 0.
Fix nijk and denote “**y"* by “*u. Since u is alternating in abc we obtain
mabc” _ ambcu + bmac“ _ cmabu — 0,
or
aabc# ambc# N amac# amab'u
ou ou Ou, ou

This says that the (tensor valued) 3-form

a

abc

udu,du,du,

is closed, whence exact, so that

3 abcﬂ aacﬁ LB aabﬁ
T T T

abc

Here “°# has components “g"*, This system is alternating in ab, and alternating
nijk. Let us write

ab
C"‘”ﬁfor a ﬁ

C
and let us write

ac/abﬁnijk
om

Now we look at the cubic terms of equation (3.7), mentally first replacing the i
and j there by n and r. For J" we consult (4.2). Then (3.7) produces

c/abﬁ;ijkfor

(a/bCﬂ:l,lk _ b/acﬁ:uk + C/abﬁ:”k)paipbjpck + p"'a—-[%A pjk(pﬂ‘ _ pkl)

= APy (P*" = P™) + 8" Py (7" — p) + U py;pud = 0. (6.2)
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The three terms containing the § can be written as

ab, ijk

0
prk a Y pzupbja
where

ab uk 3aan11k
Therefore
0 . i,
PmaTEabY”"Paipbj + ab#””l’ail’bj +--1=0,

where the dots represent the 4 and S terms in (6.2).
Let y + u be denoted by ¢. Then the entire equation is

PGP Py iPetc + A PonP P — D) — A7 DDy (0" — ™)
+ 8 p,upy; (™" — p") = 0. (6.3)
Here the second index on A and S indicates the derivative with respect to u,. In this
equation let p,; = y; when j = 1, and let p;; =0 when j # 1. Then the o terms vanish
and in fact the equation simplifies to

A"y, (=3pYy; + 0t —3y;p") =0.
This implies that dA"/0u,, =0 for all m and n.
Now we go back to (6.3), erase the A terms, and let p,; = x;, p,; = y; and all other
p’s =0. Again the ¢ terms vanish, and the equation reduces to (S'? — S?!)x;y,, X
(p™ — p™™) = 0. Therefore there is a function S of ¢ and u such that $* = 9S/du,.

The fact that S* =S™ makes the S terms disappear in (6.3), leaving only
g1 p iPy;Pe = 0. From this we deduce that

Y abgijk 4 ibco.ijk + icao.ijk =0,
ou ou u,
using the fact that ¢ is alternating in ijk.
This shows that (for each ijk) ¢ = *°c**du,du, is exact, whence there is a form
7 ="*du, such that ¢ = dt. In coordinate form.

c a

uk (b ljk) (a Uk)_ab 11k+3abﬁnuk
b

We mentally insert the formula which this provides for u into (4.2) and write
down the second degree terms of Eq. (3.3). The result is

(a/b”lf'jk - b/arli:jk)pajpbk + b/a#ijpbil’a j
+ S Pum(P™ = P™) — A PP = P™)
+ R Py(P™ = P™) + 3 AP P™ — ™) = 0.
There is no § here because the sum “g;* is zero. Here S} = 0S"/ot, where S"
=08/0u,; A? = 0A"/0t"; but RY = dR,/0u,. The R and S terms can be combined into
(87 = RY)P,m(P™ — p'™). Let S? — R be abbreviated to D”. Let p,, = x,, when n= 1,
and 0 otherwise. The # and u terms vanish with such a choice of the p’s, and the
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equation reduces to
Dix,p" — Dix,p'"™ — Aix,p" + A]x,p'! + 34{(x,p"" — x,p'") =0.

Examining the coefficient of x, x, we find that A} — D} = 0. The coefficient of x,x,
tells us that D} = — A2 +$A. This relation implies eleven others which force
A} = A% = A3 = A}, which value we may call 4, and D} =D2=D}=D}=D. It
follows at once that D = A.
From A} =D} and A} = D} we deduce that 4] = D}, which says that
0A’ + oR, 0*S
orf " du; ot'ou;
This suggests letting
oS oA’

. =——R; —U..
Ji ot ! at'u’

(6.4)
Then

of; S 0OR, o4l _

ou; oo, Ou; of

Examining the coefficient of x,x; we find that d42/dt, + dA>/dt, = 0. Since
A} =---=A; = A we can assert that 0A4’/0t; + 0A’/ot, = 2¢”/ A for all i and j (Recall
that we chose g to be diagonal) We have shown [1] that this is a necessary and
sufficient condition for the vector field A’ to be conformal in space time in the
appropriate Minkowski sense, so that there are constants a’, m"( = — m’"), A, b' such
that

Al=3a'tit) — tait/ + mt;+ At + b
A routine calculation shows that this formula, together with the S/ — Ri = A}

makes all the S, A, and Tterms disappear from our quadratic equation, leaving us
just the problem of studying the equation

(ni =i + Yp) poy o = 0,
Just as earlier, this says that a certain tensor valued differential form in du is exact.
This time it is a 1-form, and the result is that for each j and m
06
o

= — 2 + (6.5)
This 0 is alternating in jm.

Now we come to the linear terms in Eq. (3.7) or rather (6.1). Looking at (4.2) and
taking (6.5) into account, we have

d i 00" OR;, . .. oa"
( =2 + )pa,- +m (P = P") + Py —=0.

ar" ou, o
We note "/ =0, and take the coefficient of p,,,
0% OR; 4 o i . 00
ny igingm — g = 0.
auh+at,,(gg g"g )+6u,,
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From (6.4) we obtain

@ _ 5f 0247
o o 6t”at' T aror
and so
0 ot of*
. enk k Z 4+ 7 90
au,,( n )= oty * o,
Therefore P
nk k__ |~
0y +a = <8tk 6th>u" +g*, (6.6)

where g* depends only on ¢.
We arrive at the 0™ degree terms (in p) of (6.1), which say no more than
0a™/ot™ = 0. Combining this with (6.6) yields

ot of
nk
O = 0t"<6tk 6th)u *oE

Therefore dg*/ot* =0 (as in (2.39)) and

a* k i" -0
at" o, o) 7
which is precisely (2.37).

Let us put all our findings into (4.2). The result is

i i hi__ fih ni ;007
Ji=g'+ (" =", — 07+ — 2%, ou Paj

<w —Jfi= Fﬁuk>(p" —p) + 5A4Tp(p™ ~ pM)
— Ajpkj(pki - Pik) + Skpkj(pﬁ —pY)

(= 3ebpgridk _ albyiik | bla U")palp,,k

" (a/bcﬁijkm _ b/acﬁi]km + ‘/“bﬁ”k"')Paijkpcm'

The reader can pick out here precisely the terms given in (2.31), (2.32), (2.33), and
(2.34). The remainder gives (2.35) when we replace — 8 by 6, — 2y byn,and — 38 by (.
After this change of notation, (2.3) has been established.

7. Noetherian Forms. Proof of (2.44) and (2.45)

To use definition (2.6), one must find a U such that ¢« is exact. To prove (2.41) for
example, we have to find such a U; but we don’t mean to assert that

0 0

Al — A*— 7.1

T (7.1)
can be taken as U. We proceed to explain what we mean by “based on the
infinitesimal conformal transformation (7.1)", in statement (2.41).

As explained by Noether and Bessel-Hagen [2], one must use (7.1) to produce a

vector field U in the jet bundle. Knowing the field involved, one must note how the
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field components u; and their derivatives change when the coordinates change
(infinitesimally). The discussion by Jauch [7, p. 218] is exemplary, except that he
discusses only Lorentz transformations.

Quite abstractly, let (7.1) induce the infinitesimal transformation éu, = B, for the
field. Then this will induce the transformation
0B, 0B, 0A’

6tk + P,‘k o % Paj (7.2)

Opu =

for the derivatives.
In the Maxwellian context, one has

0A!

P

(Please keep in mind that u,,. . .,u, is the covector potential, and the A’s are just the
components of (7.1). Thus

B,=—

*A 0A’ oA’
0P = = oo™ pr P gk P

The desired vector field is

=C e

.0 0 0
U=A4'—+B +C
of " Trou, - Mop,
The next question is whether ¢« is exact. This is the point of [2]: Zya =0.
Knowing this, we can assert that N(U) = U J« is a dynamic form (and the C,, having
served their purpose, may be forgotten.) Computation shows that

UJa = ¢1d234 _ ¢2d134 + ¢3d124 — ¢4d123 + 7

where the @' are as in (2.31), and y is a form like (2.9). That is what we mean by “based
on,” so (2.41) is proved.
The computation is best done as follows. Compute U |, and then replace du; by
p;;dt’. Then the result is 'd*** — + — . The y term comes from this replacement.
We now address ourselves to (2.42). Here we have already committed ourselves
to two sets of components: 6¢' =0, du, = — f,; and so, by (7.2),

d
0pu=— 6{" = —fu

(7.21)

This makes
0 0

~U=f,— —_— 7.22

U1zt ng- (122

Referring to (2.5) we deduce [3, p. 172] that
—fya= _%[fij(pij -+ P,-j(fij — fi)]d1234
+ df;[(l)il _ pli)d234 -+ _] +dui[(f“ _fli)d234 -+ _]
= — [fij(pij — pﬁ)]du“
+f“(pi1 _ pli)d1234 +fi2(Pi2 __p2i)d1234 4o
+du[(f" =~ + ~ ]
= d“,-[(f“ _fli)d234 -4 — ]
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Let —y =u[(f" —f*)d*** — + —1]. Then
—dy = du[(f* = 143 = + =T+ u[(f1 = f1),d123
+ (fiz _f2i)2d1234 + .- ] — —/v“,
because the subsequent terms vanish, on account of Maxwell’s equations (2.1) for the

f*. Thus a Noetherian current is in sight. We need

U o= — ; (pil _pli)d234_ + _],
and so N(U) is / S
Ula—¢ =[u(f" =) = fip" — p)1d*** — + —
— l//l d234 -+ —

where ' is as in (2.32). Thus (2.42) is proved.

We now consider (2.43). If 0S/0u = 0, then (2.34) is a special case of (2.32) because
§7i = §J. Hence our proof of (2.42) provides a proof of (2.43). Incidentally, £}« is 0.

The dynamic form e, to wit g'd?3* — + — is exact because

dep=gld'? 4 =gld'?* =0 (2.39),

so g is equivalent to the 0 form. Hence it remains to show that ¢, + &y cannot be
equivalent to a Noether form if 6S/du # 0.

Lemma. Suppose ¢ is equivalent to a Noetherian form. Then there is a vector field U
and a form { which is 0 on all motions such that

de + U |da+dl =0 (7.3)

Proof. If ¢ is equivalent to a Noether form N(U) then ¢ = N(U) — { + df. Here
N(U) = U Ja — ¢, where £ a =dy. So
de =d(U Ja) — dy — d¢
=dU Jo) — £ya—d
=d(U Ja) - d(U]a)— Ulda — d¢,

which proves (7.3). Here we used [3,p. 172].
We need appropriate formulas for the ingredients of (7.3).

Lemma. Let ¢ = J'd?3* — + — be dynamic. Then

a']l 234
de=d,J'd>* — + — + X;| ——d>*—+ — ).
p J au]
For the proof of the lemma,

i 1
d8=a—‘].'d1234 +dpJ1d234_ + — +aidujd234_ + -,
ot ou;
where d, means take d but regard only the p’s as variable. By (2.7),
i Ji aJl
de=d,J'd>*— + — + (ai +p a—)d”34 + Xj(—a—d234 -+ - )

- i
ot ou; u;
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Reference to (3.7) shows that the desired result holds.
We deduce from (2.5) that
do = _(pij _ pji)dpijd1234 _ dui[(dp“ —dp')d?* — 4+ 1.

We take an arbitrary vector field
0 0

0
A —+B—+C,;—
U= ot + ‘ou, Y 6pl i
and contract it with do:
U Jdo = (A*py ~ B)[(dp’ — dp'})d*** — + —]
+ Xi[(cil — Cli)(d234 -+ _)
_(d il __ dpli)(AZd:M _A3d24 + A4d23)
+ (dpiZ _ dp2i)(A1d34 _ A3d14 + A4d13)
_ (dpi3 — dp3i)(Ald24 _ + )
+@dpt—dpth(AtdB— 4+ )]
Here we replaced du; by use of (2.7).
In view of (2.9), we write { = — X,E’ + dp;;dt'a*'dp,,, where
E' = F*™dp. dp,, + Gii*dp,dt™ + Hi dt'dt*
+I'*X X, + KJdt*X , + L*™dp, X,,.
In mentally forming dE one should keep in mind the rule (for any function of the
P, u,t)

oF oF ;
dF =—dp..+ —X. + (D, F)dt,
op;; p”+5“i i+ F)
where
0 d
D. =
ok p" Ou;
Lemma.
Guk D a‘ik + -yllék _ »yﬁ‘ (74)

Proof. We look at the pptt terms in the sum (7.3). By this we mean terms with
dp;dp,;dt™dt" when the dp,, dt', X, are chosen as a basis. Now de has no such terms,
nor has U |da, but

d{ = —dXE'+ X dE' + dp,;dt'da™*dp,,, = X,dE' + dp,;dt/(E' + da*"dp,,)

does, namely ) ;
rirkdp, dt'dp,,dt™, (1.5)
where I'™ = G™ 4+ D_a™*. Thus(7.5) can be equated to 0. Let us take the coefficient
of d3* here: I''™dp,,dp,, — I'™dp,,dp,, = 0. Contract this with /dp,,,. This gives
_ [imidp. + [imidp., = 0. Clearly ['™i 0 if j k.
Now we go back and contract with 9/0p,,,,:

=r i"l4dpi3 +I l;sm‘tdpi«t -r gmkdpnk =0.
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Now contract this with 6/0p;;:
—Iim™—rp=0, or I'i=—-r%3,

This is therefore true for other indices, so I'f* = — '3 = + I'#*2, One concludes
that '/*™ = y/k 5™ Insertion into (7.5) (equated to 0) shows that y"f = — % Thus (7.4)
is proved.

Lemma

0J? 0J?
2H!, =—— 2H3, =—. 7.6
34 6p1 . 34 6p31 ( )
Proof. We look at the pttt terms in (7.3). There de provides d,J'd*3* — + —, U Jda
provides (4*p,, — B,)(dp‘* — dp'")d*3* — 4+ —, d{ provides dp, ;A Hj,di*de’. Select
out the dp,,d*** terms:
0J?
51)11

Next, select out the dp;;d*3* terms. The U ]da hasnone. So — 6J2/dp5, + 2H3, =0.
End of proof.

We now prove (2.44). We may assume J:= N’ + W', Let us look at the X;pd>*
terms in (7.3). The de has none, U Jda provides.

— (dp* — dp')A? + (dp'* — dp*)A*, and d{ provides

+2H3,=0.

. O0H! -
X,(D,Gidt"dp , dt™ + —ap—"m—dpjkdt'"dt") +dp, dUKimdt" X,
Jjk
Hi
= X,(D,Gi* + aa + Kok )dp,demde".

Dik
We have to take the d3* term. The resulting equation is
(dpiZ _ dp2i)A1 _( il __ dpli)AZ
. 0H .
=<D3G”" D,Gi* +2—=*> 0p13 + Kiigk — K:gé';)dpjk
J
6H

Jk

=(D3v”'5’2—D4v“5’; +Kish — K:’.fa’;)dp,-k, (7.7)

using (7.4).
First let us take i = 1 and select the coefficient of dp?! which is a constant times
dp,,. We obtain
oHY, &
op*t ap*topy,’

—Al=—

using (7.6). Recall J> = N? + W2,
Now, because N satisfies (5.1),
d ON* o 2N' 0 6N1__ o ON'
op*opy,  0p*'opy,  0py,dp*t Op'?apy
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From (2.34) we have
Fwr oS
op*'op,,  ouy’
Thus A' = 0S/du,.
Now we go back to (7.7) and take i = 3, and look for the coefficients of dp32. We
obtain

oHY, O

Al=—2 = .
op*? op*?ops,

By (5.1), -

—=0.
0ps,
From (2.34), we get
ow? _
0p320p3;

Thus A! =0 and so 8S/du! =0 as (2.44) asserts.

We begin the proof of (2.45). Presumably (7.3) holds, but Ji consists only of N, in
other words, S = 0. We have just learned that A’ =0. Let us examine the dp,,d***
terms of (7.3). There de has ON'/dp,, which is 0 because N satisfies (5.1), and U |da
has — B,. What d{ has must come from dp,, dt' H},d*, so it provides nothing. So
B, =0, and all B;=0.

Now we examine the X ;d*3* terms of (7.3). There d¢ provides 0N* /ou?,and U |do
has C3! — C!3, Those which d{ provides must come from X ;dE3. The only ¢ttt terms
in dE? lie in (D, H%)dt"d*, and so d{ provides

2D,H3, +2D,H3, + 2D, H3,. (7.8)
Hence N /ou® + C3' — C'3 +(7.8) is 0.
In the same way as we proved (7.6) we can show
aJ! aJ!

2Hg3 = —6p34 and 2H22= —@

Using these, and (7.6), we obtain

ON! 0N ON? ON!
C31—C13=————(—D +D —D >,
Ouy 451’34 261’31 361’33
ON!? ON* ON? ON?3
= - —-D —D -D .
Ou 451731 261’31 331’31

We know from (3.7) that D;N' = 0. Taking 9/dp5, of this equation, we get a new
equation that says C3! — C'3 =0. Thus C = C#, in general.

That certainly implies that U |da = 0. It also makes U Ja =0 (see(2.5)). Thus it
makes /o0 = d(U Jo) + U Jda [3,p. 172] Hence ¢, = d(d6), where 8 is some 2-form,
so N(U)=0—d6, and N(U) is equivalent to the 0-form, as we were to prove for
(2.45).



Conserved Currents 543
79. Corollary. Let U be a vector field in J'(M,Q) such that £ 0.=0. Then U =
U;+U,+ Us;, where U, is as in (7.2]), U, is as in (7.22) and
.0
Uy =C—o,
L P opy
where CY = C/'.

Proof. Lete =U Ja. Then ¢ is Noetherian, and afortiori, dynamic. It is perhaps not a
current. It might have du; terms. If so, we can replace du; by X,+ p,dt/ (2.7),
obtaining an g, = ¢ + {, where { vanishes on all motions, and ¢, is a current. We
apply (2.3), and deduce that

e=¢ptept+e +eytey+{+n,

where {;, =0 on all motions, and 7 is exact. By (2.44), we know &, is Noetherian and
may be combined with &y, and &, = U, |a — diy. Here ¢, is of the form U, Ja, and ¢,

is exact. Thus
U-U,-U,)Ja=ey+ +ny,

wheren, is again exact. This is the situation at the start of the proof of (2.45). We then
deduced that U — U, — U, = C"9/0p,; with C¥ = C/",

Remark. Calculation of £, with U as above shows that the f;involved in U, satisfy
of /ot = of /o', so that U, is a gauge transformation.

8. The Energy-Momentum Tensor is Dynamic but not Noetherian
Let A9 = g™ in (2.31). Then for each m, the
O™ = p;g"" (0™ — PM) + 39" D (0" — DY)
are the components of a Noetherian form, based on the translation d/dt,, in
space—time.
Now take S = g™y, Then (from (2.34))
W =g p, (0" — p;j) = — g™ pu (0™ — DY)
are the components of a dynamic current which we now know is not equivalent to
any Noetherian form. The sum

T = 39" pu (™ — PY) — g (@™ — P*) (™ — p™)
gives the components of the energy-momentum tensor (cf. [4]) for the case of an
electromagnetic field. Each row (and each column) of Tis a dynamic form which is
not equivalent to a Noetherian form.

The dynamic currents of type (2.34) resemble Noetherian forms in that they have
the form (2.6): &y, = U Ja, where U = D,S9/du;.
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