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The Conserved Currents for the Maxwellian Field
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Abstract. We classify the conserved currents for the Maxwellian field. There are
four families: (1) the classical currents derived using Noether's theorem from
conformal invariance (2) certain Noetherian currents based on translations in
field space, (3,4) two more kinds not equivalent to any Noetherian form.

1. Introduction

E. Noether first discovered that symmetries for a field theory gave rise to conserved
currents (see [2]). The two concepts are not coextensive. We show below that certain
well-known conserved currents (the rows of the symmetrized energy-momentum
tensor) are not the result, so to speak, of any symmetries of the Maxwellian
(electromagnetic) field.

This paper consists of two parts. (1) We enumerate the conserved currents: they
fall into four classes. Two of them are the Noetherian forms already known, being
those due to the conformal invariance, and the translational invariance in field-
space (i.e. the transformation of the general field by adding a specific field). The third
kind includes the parts added to the current of the first kind when one symmetrizes
the energy-momentum tensor. The fourth kind cannot be described in a few words.
(2) We prove that the third and fourth kind can never be equivalent to any
Noetherian form except in degenerate cases.

As a corollary we obtain a description of all symmetries of the Maxwell system:
They are just those already mentioned.

2. Main Theorem on Dynamic Currents

We take !R4 as our model for space-time M and use ίV2,ί3,ί4 for the Cartesian
coordinates there. We use ul,u2,u3,u4 as the Cartesian Coordinates in the space
Q( = [R>4)? where the field (the 4-vector potential) has its values.

A first order jet from M to Q is a linear map j from some tangent vector space
T1(M, a) of M to some Tl(Q, b) of Q. A function U from M to Q defines a jet 7 at each
a in M with b = U(a). It has coordinates tl(j) = tl(a), ut(j) = Mf(l/(α)). It also has 16
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further coordinates

Thus we obtain a 24-dimensional space with coordinates tl , ut , ptj : the first order
jet bundle J^M.Q). See [6].

Let U19 . . . , 1/4 be a solution of Maxwell's equations:

-*
This defines a 4-dimensional submanifold s of J1(M9 Q) with the equations

ui = Ui>PiJ=^Γ

These submanifolds shall be called motions.
A differential formε of degree 3 is called dynamic if its restriction to each motion 5

is exact. If ε is of the type

ε = J1 A2 Λ dt3 Λ dt4 - J2dti Λ tfί3 Λ dt4 Λ '+ J W Λ tfί2 Λ dt4

- J4dtl Λ dt2 Λ tfί3, (2.2)

then its being dynamic is equivalent to J1, J2, J3, J4 being a conserved current. We
will then say that ε is a dynamic current. The results of our study are as follows
(observing the usual conventions on summing and on raising and lowering of
indices):

2.3 (Theorem). Let (2.2) be a dynamic current for the Maxwell field. Then
J' = φ' -f- ψi + Γ + Wl + M where

(131)( fiAJ \
^Γ«, + pkjA j(pίk - p") + μ Vp* -

ψi = (/;,. _fij)u. +fj(pίj _ pjil (2j2)

Γ' = g', (2.33)

Ni = + P m w "
variables appearing here AίJi9g\i = \92,3,4\S9θ

ni

9

aηnij^ζnijk(n,i9aJ,b9k =
1,2,3,4) depend only on ί1,...,ί4,M1,...,M4. More specifically,

the A1 depend only on the ί's and are the components
of a conformal vector field in space time; (2.36)

Sfj
f1,... ,/4 depend only on t and are a solution of(2.1),fj'l= — (2.37)
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the θ,η,ζ are alternating in ni,nij, nijk (2.38)

respectively, and ζ is alternating in a,b;

01, . . . , #4 depend only on t and dg^dt* = 0 (2.39)

Let εφ be defined by (2.2) when J' is replaced by Φ f; let εψ be defined by (2.2) with
Jl replaced by Ψ\ and so forth. Then ε = εφ + ---- h εN.

2.4. (Theorem). εφ and εψ are Noetherian forms.

sφ is based on the infinitesimal conformal transformation (2.41)

εψ is based on the infinitesimal translation in field-space : (2.42)

1 du± du4'

If dS/du1 = 0(ϊ = 1,2,3,4) then εw is Noetherian, being (2.43)

based on the gauge transformation

uS d uS d

IfdS/du1 is not Qfor some i, then (2.44)

εr + εw + %

is not equivalent to any Noetherian form.

If εr + εN is equivalent to a Noetherian form ω, (2.45)

then ω is equivalent to 0.

εr is exact, and hence equivalent to 0. (2.46)

The details of the definition of Noetherian forms are these. The Maxwell field has
an action form1

whose extremals are the motions.
Suppose U is a vector field in the space JX(M, β) such that the Lie derivative £υ&

[3, p. 172] is exact /^α = dψ, where ψ is some 3-form. Then Noether's theorem says
[2,5] that

:[/]α-(^ (2.6)

is dynamic as defined above. Here 17 Jα is the contraction of the vector U with the 4-

1 From this point on, we omit the wedges ( Λ ) in writing differential forms Moreover dtl dt2dt*dt* will be
abbreviated to d1 2 3 4 d234 means dt2dt3dt4 Finally, whenever CX,C2,C3,C4 are any four quantities, then
Cld234- + -stands for C1^234- C2d134 4- C3d124- C4d123
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form α. (If /^α is exact then U is called Hamiltonic [5] and sometimes the term
Noetherian is applied only when /^α = 0.)

We declare a 3-form φ to be equivalent to another, ψ, if φ — ψ is expressible as a
sum β + γ, where β is exact and γ is a form whose restriction to each motion is 0. The
1 -forms

X^dut-ptjdt* (2.7)

and the 2-forms

dXt = - dpijdt* (2.8)

have this latter property of vanishing on all motions and so therefore do the 3-forms

tfXt + Q'dxt, (2.9)

where El is any 2-form and Q\ any 1-form.
The converses of Theorems 2.3 and 2.4 are also true (and very easy to show).

Thus if we select a function S of u and ί such that dS/du{ =£ 0 for at least one i, then
(2.34) gives us a dynamic form which is not Noetherian, nor even equivalent to a
Noetherian form.

The rows (or columns) of the symmetric energy- momentum tensor [4, 7] form
conserved currents of this kind. As shown in more detail (sect. 8 below) these well-
known dynamic forms are not equivalent to any Noetherian form.

The currents (2.31) (see also (2.41) constitute the very model of, or paradigm for,
all Noetherian currents considered since 1921.

3. Characteristic Properties of Dynamic Forms

3.1 (Lemma). The 3-form (2.2) is dynamic if and only if

a/' dJ* A dJl

 Λw+p^+A^k=° (3 2)

whenever (see (2.7))

(Aijk - Ajik)g* = 0 and Aijk = Aikj. (3.3)

Proof. Suppose (2.2) is dynamic, and suppose that (3.12) holds. Let f = α',w = bt,
p.. = c.. be a generic point of J1(M,Q).
For simplicity, suppose a1 = 0. Let

*tV. (3.4)

This is a solution of (2.1) if (3.3) hold; and then

Pij = cy + Atjkt, ii, = b{ + cijtJ + K.tί¥. (3.5)

Therefore, by hypotheses, if we express the ut and ptj in Jl by the expressions given by
(3.5), then the divergence dJl/dtl should be 0. Using the chain rule, we obtain (3.2).

For the converse we must show that if (3.3) implies (3.2), then ε is dynamic. This is
obvious.
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Lemma. The differential form (2.2) is dynamic if and only if there exist variables
Lkij and M' such that

w + p^ + A^k

 = Lkίi(A^ ~ A^ + Migjk(Aijk ~ Ajik) (3 6)

is an identity in the /Γs.
In view of (3.1) this is an elementary proposition about polynomials of the first

degree.
We may take all Aljk = 0 in the identity (3.6). Therefore, if (2.2) is dynamic then

^+p4ί=° (3 7)

By taking Aλij = Aλji = 1, and Aμkm = 0 for all other sets of indices, we obtain
another relation: // (2.2) is dynamic then there exist four variables Mi such that

-^- + -̂  = - Mlgλj + 2Mλgij - Mjgλi (3.8)
dPλj sPλi

for λ= 1,2, 3, 4.
Conversely, (3.7) and (3.8) together imply that (2.2) is dynamic. We begin by

studying (3.8) by itself.

4. The Implications of (3.8)

The Ml appearing in (3.8) will in general depend on all the coordinates in the jet
bundle, but in (3.8) we are concerned only with the form of their dependence on the
Ptj. Any variables arising which depend only on the ί's and u's shall be called semi-
constant in the following statement.

Theorem. The general solution to (3.8) is

Mi = Λ1' + Skp
k ' - Akp

ik, (4.1)

- pki) - AJpkj(pki - p*)
abμijkpajpbk + ""Y^

Here these coefficients are semi-constant. All indices range from 1 to 4. The μs are
alternating in the indices ijkm (to the extent that they have them) and similarly,
alternating in the a,b,c. Indices are raised and lowered in the usual way.

The terms in (4.2) have been written in the order of their degree. Later the
arrangement given by Theorem 2.3 will emerge as more natural.

We begin the proof by establishing (4.1).
Let us abbreviate

J .
by juk.

Clearly (3.4) makes

- 9λi(iμk). (4.3)
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We permute to ijk cyclically, twice, and add the three equations. The right hand side
must then be symmetric in λ and μ, giving the equation

2gV(λμk - μλk) + 2g^k(λμi - μλi) + 2gki(λμj - μλj)

- 9λi(Jμk + kμj) - gλj(kμi + iμk) - gλk(iμj + jμi)

+ gμi(jλk + kλj) + gμi(kλi + iλk) + gμk(iλj + jλi) = 0.

Let us agree that the metric gij shall be diagonal.
We now establish a sequence of propositions (4.4-4.8).

211 = 0,0U(212 + 221) = 022(111),213 + 321 =0. (4.4)

To prove this, we take ij = 1 = λ, μ = 2. Then

0u(121 -2\\) + 2gkl(\2\ -211)- gn(\2k + k2\)

\2k)-gίk(\2\ + 121) + 02*(111 + 111) = 0.

We let k = 1, and after some cancelling obtain 211 =0. For k = 2, 3 we obtain the
other two relations.

123 = 0. (4.5)

For this we let ij, k = 1. The resulting equation, when divided by 6, says g1 l(λμl
-μλl)-gλ1(lμl) + gμl(Ul) = Q. With Λ = 2, μ = 3, this says 231 =321 which by
(4.4) = — 21 3. So Mijk is alternating injk and symmetric in ij when ij, k are distinct.
So 123 =213 =-231 = -321=312= -123, and (4.5) holds.

—is the same for all i ±L and so may be called — Aj. (4.6)
9"

To prove this, we take λ =j = 1, i = μ = 2, k = 3, obtaining - 0U(322 + 223)
+ 022(1 13 + 31 1) = 0. From (4.4) we deduce 322 and 31 1 are 0, whence

223 113

This establishes (4.6).

Mijί

— TΓ- is the same for all i J=j and so may be called SJ. (4.7)

For this we let i =; = 1, k =μ = 2, λ = 3. Then 2011(322 - 232) + #22(131 + 131)
= 0. Observing that 322 = 0 (4.3), we get

131 _ 232

71"?1'

and (4.7) is established.
We now assert that

Miλj = gijSλ-giλAj. (4.8)

Proof. From (4.4) we have 022(1 1 1) = g11(2\2 + 221). This is exactly (4.8) for / =j
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= λ=l. For i = 1,7 = 2 in (4.6) we get (4.8) for i = λ = \J = 2. For i =7 = 1, λ = 2,
(4.8) reduces to (4.6). For M122, (4.8) says 122 = 0. We also know M123 = 0. All other
cases are equivalent to one of these five.

Now differentiate (4.8) with respect to pμk:

d2Ml ..dSλ .λdAj

- = glj -- glλ - .
dpλjdpμk dpμk dpμk

The right hand side therefore also equals

as- M
3pλJ dpλj

Let 7, /c, μ be any indices. We can select A distinct from these. Let i — λ. So
— g"dAj/dpμk = 0. Thus Aj is a semi-constant. The same can be seen for Sλ. Thus we
have (4.1) where Rl also is a semi-constant.

5. The Proof of (4.2)

Proposition. Let

Lk = Pmn(Pnk ~ Pkm)S" + ΊPmn(Pmn - Pnm}Ak + (Pmk - Pkm)(Rm - PmnA»).

Then Lk satisfies (3.8) with the M1 as in (4.1), that is dL?/dpλj + dLj/dpλi = right hand
side of (3.8).

This is easily verified, and we omit the proof.
The hypothesis of (4.2) is that the Jl are given. From (3.4) we get the M's and from

(4.1), the A, R, and 5. Thus the Jl lead to the L and to the Z* = J1' - L.
Obviously

These equations say that for each λ, the Zl are the components of an infinitesimal
metric-preserving, (thus in our case Poincare) vector field in an 1R4 in which
Pλn ->Pλ4 are tne cartesian coordinates. Thus Z1 has the form

n° SUm °n

where αjλ) and μfa = — μj

((} are independent of pλ l, . . . , pλ4.
Let us take λ = 1 and then Zl = αj 1 } + μ*} plk. It is easily seen that αjυ and μίk

l}

(for a fixed fe) again satisfy (5. 1 ) for A = 2, 3, or 4 and thus have the form (5.2). Making
two more applications of this idea one obtains

2' = a'' + •„% + abμίjkpajpbk + abcμijkmpajpbkpcm.

Here the μ are certainly alternating in the ij, fe, m. There is also summation over the
a, b, c but if the construction is performed in the natural order we have a < b< c in
the last term and α < b in the previous one. Let us define abμijk for α ̂  6 by requiring
it to be alternating in the indices α, fc, and similarly for the last term. After absorbing
the factorials, we have Z1 in the form above with alternation in the α, />, c, as well. The
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a1 and the μ's are semi-constants (i.e. independent of the ptj.) Thus J1 has the very
form displayed in (4.2), and the theorem is proved.

We next examine what further restrictions are imposed on the coefficients in (4.2)
by the other necessary condition, (3.7).

6. The Consequences of (3.7), and Proof of Theorem 23

When we insert (4.2) into (3.7), we get a polynomial of the fourth degree in the p's,
which has to vanish. Let Jn = abcμnijkpaipbjpck + lower degree. Write (3.7) in the form

dJn dJn

— + /?mπ=0. (6.1)

Then the fourth degree terms must satisfy

dabcμnijk

— PaίPbjPckPmn = °

Denote this coefficient by [mabc rayfc]. Let σ be any permutation on four letters. Let
σ(mabc) be the image of mabc under σ. Then £ [σ(mabc) ;σ(m)7c)] = 0. We know μ is

σ

alternating in nijk so, summing over 24 permutations σ, Σ sgn (σ) [σ(mabc\ nijk] = 0.
Fix nijk and denote abcμniJk by abcμ. Since μ is alternating in abc we obtain

mabc ambc.. \ bmac cmab Λ

or

dum dua dub duc

This says that the (tensor valued) 3-form
abcμduadubduc

is closed, whence exact, so that

_

Bua dub duc '

Here abβ has components abβniJk. This system is alternating in ab, and alternating
nijk. Let us write

and let us write

flc/abonijk
φbβnJ.Jkfor~^

Now we look at the cubic terms of equation (3.7), mentally first replacing the
and j there by n and r. For J" we consult (4.2). Then (3.7) produces

Skpkj(p» - p J) + abμaikpajpbk] = 0. (6.2)
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The three terms containing the β can be written as

Prk-j^abyijkpaipbp
where

ab ijk _ yabonijk

Therefore

Prn^y^PaiPbj + ̂ ^"PaiPbj + • " ] = < > ,

where the dots represent the A and 5 terms in (6.2).
Let y -f μ be denoted by σ. Then the entire equation is

φbσijkpaiPbjPc

Here the second index on A and S indicates the derivative with respect to ur. In this
equation let Pij = y, when j = 1, and let ptj = 0 when j ± 1. Then the σ terms vanish
and in fact the equation simplifies to

This implies that dAn/dum = 0 for all m and n.
Now we go back to (6.3), erase the A terms, and let pu = xi9 p2i = yt and all other

p's = 0. Again the σ terms vanish, and the equation reduces to (S12 — 521)xfj;m x
(pmi — pim) = 0. Therefore there is a function S of ί and u such that Sk = dS/duk.

The fact that Skr = Srk makes the S terms disappear in (6.3), leaving only
c/abσijkpaipbjpck = 0. From this we deduce that

A- V* + A<V'* + — «V* = 0,
duc dua dub

using the fact that σ is alternating in ijk.
This shows that (for each ijk) σ = abσίjkduadub is exact, whence there is a form

τ = a^Jkdua such that σ = dτ. In coordinate form.

abσijk = —(bηiJk) - A(y fc) = abμijk + ybβnijk

dua dub

We mentally insert the formula which this provides for μ into (4.2) and write
down the second degree terms of Eq. (3.3). The result is

n(pmί - pίm)

mn(pmn - P"m) = 0.

There is no β here because the sum abβ"^k is zero. Here S" = dS"/dt\ where S"
= dS/dun ;A1 = dA'Ίdt1 but R"t = dRJdun. The R and S terms can be combined into

(SJf - Λ?)pnm(pmi - Pίm). Let S? - R? be abbreviated to DJf. Let pπm = xm when n = 1,
and 0 otherwise. The η and μ terms vanish with such a choice of the p's, and the
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equation reduces to

Γ) v n — 7") Y n >ί" v n I >d" v fi I — A ^( Ύ n v n ^ — O* X i Λ» j^/ AX < Λ|_jf/ j f l / Ai~y i^ ,/T. ι ^>n^f l ^ 2 ̂ i\"^fir^ ~~ \ r ) —

Examining the coefficient of x xx 2 we find that A2 ~ ̂ 2 = 0. The coefficient of x2x2

tells us that D\ = - A\+\A\. This relation implies eleven others which force
A\=Al = A\ = A\, which value we may call A, and D\ = D\ = D\ = D* = D. It
follows at once that D =A.

From A\ — D\ and >!} = D{ we deduce that ̂  = D/, which says that

dAj dRt_ d2S

dtl dUj dtldUj
This suggests letting

_8S__ dAj

Then

3/t _ g25 gj^f g^J' _

Examining the coefficient of x2x3 we find that dA2/dt3 + dA3/dt2 = 0. Since
,4 J = - - - = A\ = A we can assert that dAi/dtj + dAJ/dtt = 2gijA for all i and 7 (Recall
that we chose g to be diagonal.) We have shown [1] that this is a necessary and
sufficient condition for the vector field A1 to be conformal in space time in the
appropriate Minkowski sense, so that there are constants a\ mij( = - mji\ λ, bl such
that

A1 = ̂ altjtj - tlajtj + mίjtj + λtl + bl.

A routine calculation shows that this formula, together with the S{ — R{ = A{
makes all the 5, A, and Tterms disappear from our quadratic equation, leaving us
just the problem of studying the equation

Just as earlier, this says that a certain tensor valued differential form in du is exact.
This time it is a 1-form, and the result is that for each j and m

jm

(6.5).
dua

This θ is alternating in jm.
Now we come to the linear terms in Eq. (3.7) or rather (6.1). Looking at (4.2) and

taking (6.5) into account, we have

We note fy|JJ j ί = 0, and take the coefficient of phk,
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From (6.4) we obtain

dtn dt" ,

and so

Therefore

where gk depends only on ί.
We arrive at the 0th degree terms (in p) of (6.1), which say no more than

dam/dtm = 0. Combining this with (6.6) yields

Therefore dgk/dtk = 0 (as in (2.39)) and

^/<r_<r
dt«\dtk dt"

which is precisely (2.37).
Let us put all our findings into (4.2). The result is

w -fj - wUk(pji - pij) + "Aip*(pjk - pkj)

The reader can pick out here precisely the terms given in (2.31), (2.32), (2.33), and
(2.34). The remainder gives (2.35) when we replace - θ by 0, - 2η by η, and - 3β by ζ.
After this change of notation, (2.3) has been established.

7. Noetherian Forms. Proof of (2.44) and (2.45)

To use definition (2.6), one must find a U such that ^α is exact. To prove (2.41) for
example, we have to find such a 17; but we don't mean to assert that

can be taken as U. We proceed to explain what we mean by "based on the
infinitesimal conformal transformation (7.1)", in statement (2.41).

As explained by Noether and Bessel-Hagen [2], one must use (7.1) to produce a
vector field U in the jet bundle. Knowing the field involved, one must note how the
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field components ut and their derivatives change when the coordinates change
(infmitesimally). The discussion by Jauch [?,/?. 218] is exemplary, except that he
discusses only Lorentz transformations.

Quite abstractly, let (7. 1 ) induce the infinitesimal transformation δuλ = Bλfor the
field. Then this will induce the transformation

dBλ dBλ dAj

»*-aF+*ΐf+-W»' (7'2)

for the derivatives.
In the Maxwellian context, one has

dAl

B*=-wu>
(Please keep in mind that u l v . .,u4 is the covector potential, and the A's are just the
components of (7.1). Thus

d2Al dAj dAj _
Ui - pjk - Pλj = Cλk"

The desired vector field is

The next question is whether tυu. is exact. This is the point of [2] : tυu. = 0.
Knowing this, we can assert that N(U) = U J α is a dynamic form (and the C^ having
served their purpose, may be forgotten.) Computation shows that

C/Jα = Φ1^234 - Φ2d134 + Φ3d124 - Φ4d123 + 7,

where the Φl are as in (2.3 1), and γ is a form like (2.9). That is what we mean by "based
on," so (2.41) is proved.

The computation is best done as follows. Compute U ] α, and then replace άu{ by
Pijdtj. Then the result is Φ1^234 — | — . The γ term comes from this replacement.

We now address ourselves to (2.42). Here we have already committed ourselves
to two sets of components: δtl = 0, δuλ = — fλ; and so, by (7.2),

<Sn V*- f°Pλk= -~^k = -JΛ
This makes δt

-u=f'ί+f"ί <7 22)

Referring to (2.5) we deduce [3, p. 172] that

- ^α = -H/yίp" - P") + Po (/'V' -

+ ̂ [(Pu - P1 V234 - + -

+/a(PU - P1 V
1234
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Let - φ = !!,[(/" -fll)d234 - + - ]. Then

-dφ = dujCt/ " -f^d234 - + - ] + «,[(/" -/J V1234

because the subsequent terms vanish, on account of Maxwell's equations (2.1) for the
/*. Thus a Noetherian current is in sight. We need

U]a=
and so N(U) is

where ̂  is as in (2.32). Thus (2.42) is proved.
We now consider (2.43). If dS/du = 0, then (2.34) is a special case of (2.32) because

£•>'' = SίJ. Hence our proof of (2.42) provides a proof of (2.43). Incidentally, ̂ α is 0.
The dynamic form εr, to wit g1d234 — I — is exact because

dsr = gld1234 + --=gid1234 = 0 (2.39),

so εr is equivalent to the 0 form. Hence it remains to show that εw + εN cannot be
equivalent to a Noether form if dS/du £ 0.

Lemma. Suppose ε is equivalent to a Noetherian form. Then there is a vector field U
and a form ζ which is 0 on all motions such that

dε + U]da + dζ = Q (7.3)

Proof. If ε is equivalent to a Noether form N(U) then ε = N(U) - ζ + dθ. Here
N(U)=U]oί- ψ, where ^α = dψ. So

= d(U](ή - d(C7] α) - (7] da - dζ,

which proves (7.3). Here we used [3, p. 172].
We need appropriate formulas for the ingredients of (7.3).

Lemma. Let ε = J1d234 — I — be dynamic. Then

For the proof of the lemma,

dε=— Λ1234 + V1^234- + - +^<V234- + -,
dtl p dUj

where d means take d but regard only the p's as variable. By (2.7),
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Reference to (3.7) shows that the desired result holds.
We deduce from (2.5) that

doL = - (pij - pji)dpud
1234 - du^dp11 - dpll)d234 - + -

We take an arbitrary vector field

v'A'i+B'ί:

+c"^
and contract it with <fα:

l/Jdα = (Ak

Pίk - BJKdp'1 - dpu)d234 - + - ]

+ AΓί[(Cil-Clί)(<ί234- + -)

- (dp11 - dplί)(A2d34 - A3d24 + A4d23)

+ (dp12 - dpV^d34 - A3dί4 + A4d13)

-(dpft-dp^^d24- + )

+ (dpi4-dp4i)(A1d23- + )].

Here we replaced duί by use of (2.7).
In view of (2.9), we write ζ = - Xfi + dp^a^dp^, where

+ ?*XjXk + Kί/dfXj + L^mdpjkXm.

In mentally forming dE one should keep in mind the rule (for any function of the
p,u,t)

dF dF
dF = -r—dpι. + —X t + (D. F)dt\

dp^ J dut

where

Lemma.

G^ = Dmj* + y"δk

m, yy = - yΛ (7.4)

Proof. We look at the pptt terms in the sum (7.3). By this we mean terms with
dpjkdpMdFdf1 when the dpjk, dt\ Xm are chosen as a basis. Now ds has no such terms,
nor has l/Jdα, but

dζ = - dXft + X^E1 + dpijάl'da^dpu = XJE1 + dpijdV(Ei + damdpkh)

does, namely
Γ?dptJdt>dpΛdr, (7.5)

where Γ*"* = Gjf + Dmaίnk. Thus (7.5) can be equated to 0. Let us take the coefficient
of d34 here: Γ^dp^dp^ - Γ^dp^dpak = 0. Contract this with d/dpml. This gives
- r?ldpa + Γ^dpu. = 0. Clearly Γ^ = 0 if j + k.

Now we go back and contract with d/dpm4 :

= 0.
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Now contract this with d/dpj3:

Γ^3 = 0, or Γjk4=-Γkj3.

This is therefore true for other indices, so Γj£4 = — Γ^3 = + Γjk2. One concludes
that Γjkm = yjkδ™. Insertion into (7.5) (equated to 0) shows that γkj = - yjk. Thus (7.4)
is proved.

Lemma

Proof. We look at the pttt terms in (7.3). There dε provides dp J
1 d234 - + -,U]da

provides (Akpik- B^dp^ - dpu)d234 - + -, dζ provides dp^H^dfdf. Select
out the dpίld

134 terms:

*„ --°
Next, select out the dp31d

134 terms. The U]da has none. So - dJ2/dp3i + 2H\^ = 0.
End of proof.

We now prove (2.44). We may assume J1 = N1 + Wl. Let us look at the X{pd34

terms in (7.3). The dε has none, ί/Jdα provides.

- (dpt* - dp11)A2 + (dpi2 - dp2i)Al, and dζ provides

Xi(DnGmkdtndp kdtm + —dp^d^dt") + dpijdtjKi

n

mdtnXmJ dPjk

We have to take the d34 term. The resulting equation is

(dp12 - dp2i)Al - (dp11 - dpίl)A2

= (^D3G^k-D4

>Λ, (7 7)

using (7.4).
First let us take ί = 1 and select the coefficient of dp21 which is a constant times

dp7 1. We obtain
3HJ4 d2J2

-Al = - 2—|p - —TI ,

using (7.6). Recall J2 = N2 + W2.
Now, because N satisfies (5.1),

d dN2 _ d 2N1 _ d dNl _ d dNl _ Q

dp21 dp11 dp21 dp 12 ^Pi2^P21 dp12dp2i
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From (2.34) we have

d2W2 dS

dp21dp 11 Su1'

Thus A1 = dS/du1.
Now we go back to (7.7) and take i = 3, and look for the coefficients of dp32. We

obtain

^dp32~ dp32dp31

By (5.1),

From (2.34), we get

= 0.

Thus A1 = 0 and so dS/du1 =0 as (2.44) asserts.
We begin the proof of (2.45). Presumably (7.3) holds, but J* consists only of Nl, in

other words, 5 = 0. We have just learned that A1 = 0. Let us examine the dp21d
234

terms of (7.3). There d^ has dN1/dp21 which is 0 because N satisfies (5.1), and U]da
has — B2. What dζ has must come from dp21dtίHi

jkd
jk, so it provides nothing. So

B2 = 0, and all Bt = 0.
Now we examine the X3d

234 terms of (7.3). There dε provides dN1/du3, and U\da
has C31 — C13. Those which dζ provides must come from X3dE3. The only tit terms
in dE3 lie in (DmH3

jk)dtmdjk, and so dζ provides

Hence dN^du3 + C31 - C13 + (7.8) is 0.
In the same way as we proved (7.6) we can show

Using these, and (7.6), we obtain

6N1 dN4 δN2 δN3

— 5 4la 2"^ 3^ 'du3 dp31 φ31 άp31

We know from (3.7) that DtN* = 0. Taking d/δp31 of this equation, we get a new
equation that says C31 - C13 =0. Thus Cij = Cji, in general.

That certainly implies that U]doc = 0. It also makes ί/Jα = 0 (see(2.5)). Thus it
makes ^α = d(U J α) + U J rfα [3, p. 1 72] Hence £v(x, = d(dθ\ where θ is some 2-form,
so JV(ί7) = Q-dθ, and N(U) is equivalent to the 0-form, as we were to prove for
(2.45).
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7.9. Corollary. Let U be a vector field in Jl(M,Q) such that ^α^O. Then U =
U1 + U2 + ί/3, where U1 is as in (7.21), U2 is as in (7.22) and

where Cίj = Cji.

Proof. Let ε = U J α. Then ε is Noetherian, and afortiori, dynamic. It is perhaps not a
current. It might have άui terms. If so, we can replace dui by X. + ptjdtj (2.7),
obtaining an εl = ε 4- C, where ζ vanishes on all motions, and ε± is a current. We
apply (2.3), and deduce that

— c —I— p _L_ p _1_ p —L- p _J_ f —L- γ\
— Oφ \^ GU/ \^ Or i ^ W ^^ N ^^ ' 1 ^̂  / '

where ̂  = 0 on all motions, and η is exact. By (2.44), we know εw is Noetherian and
may be combined with ε^, and εψ = U2 Jα — dψ. Here εφ is of the form U1 Jα, and εr

is exact. Thus

where 77 j is again exact. This is the situation at the start of the proof of (2.45). We then
deduced that U~U1-U2 = Cijd/dpu with Cίj = Cji.

Remark. Calculation of /^α with U as above shows that the /. involved in U2 satisfy
d f j d t j = dfj/dt1, so that U2 is a gauge transformation.

8. The Energy-Momentum Tensor is Dynamic but not Noetherian

Let Aj = gjm in (2.31). Then for each m, the

Φim = Pkjg
jm(pik - Pki) + WmPjk(pjk ~ Pkj)

are the components of a Noetherian form, based on the translation d/dtm in
space-time.

Now take S=gmiu^ Then (from (2.34))

are the components of a dynamic current which we now know is not equivalent to
any Noetherian form. The sum

τίm = ymPjk(Pjk - Pkj) - gkn(pίk - Pki)(pmn - Pnm)
gives the components of the energy-momentum tensor (cf. [4] ) for the case of an
electromagnetic field. Each row (and each column) of Tis a dynamic form which is
not equivalent to a Noetherian form.

The dynamic currents of type (2.34) resemble Noetherian forms in that they have
the form (2.6): εw = U]a9 where 17 = D^Sd/du^
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