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Abstract. We derive semiclassical upper bounds for the number of bound
states and the sum of negative eigenvalues of the one-particle Hamil-
tonians h =f( — zV) + V(x\ acting on L2([RΠ). These bounds are then used

N

to derive a lower bound on the kinetic energy £ (Ψ,f( — ϊVj)ψy for an

ΛΓ-fermion wavefunction ψ. We discuss two examples in more detail:
f(p) = \P\ and f(p) = (p2 + m2)1/2 - m, both in three dimensions.

1. Introduction

In this paper we present upper bounds for the number of bound states N(V)9

and the absolute value S(V) of the sum of negative eigenvalues for the single
particle Hamiltonians /(— iV)+K(x), acting on L2(Un). These bounds are
then used to derive a lower bound for the kinetic energy, associated with

/( — z'V), of a system of N fermions.
In the case where f(p) = p2, these bounds are well-known. One has (see e.g. [1],

XIII.3 for a review)

, (rig 3) (1.1)

S(V) ^ C'n f Λc| V(x)\l +"/2, (ng 1). (1.2)

A bound of type (1.2) was first obtained in [2]; later several different and
independent proofs for (1.1) were given [3-5]. The best value for the constant C3

was obtained in [4].
Using a technique given in [2, 6], one can derive from (1.2) the following lower

bound on the kinetic energy of an ΛΓ-fermion-system:
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(1.3)

where q is the number of possible spin states for the fermions, and where

9

pψ(x) = N £ J|ι/φc, x2,...,xN'σl,...,σN)\2dx2...dxN,

Bounds of type (1.3) are important for the proof of the stability of matter [2, 6].
One immediately sees from (1.3) that in order to make the kinetic energy small, the
one-particle density p^ has to be "spread out." In this sense (1.3) can be regarded as a
mathematical formulation of the physical "uncertainty principle." The derivation of
(1.3) uses explicitly the fermion character of the particles (i.e. the asymmetry of ψ),
which is the reason why (1.3) is actually a more constraining inequality than the
familiar "uncertainty principle inequality" <$,( — A)φy ^>(l/4)$d3x\φ(x)\2\x\~2.
Unlike (1.3), this last inequality would not be sufficient to establish the stability of
matter. (For a detailed discussion, see [6] ).

We derive here inequalities analogous to (1.3), but for "generalized" kinetic
energy, i.e. for /( — /V), where f(p) need not be p2. Our motivation arose again from a
stability problem. As an approximation to the study of stability of matter in a
relativistic framework, the operator

was studied elsewhere [7]. The problems arising for the case N = 1 were solved in
[7] for the general problem it seems useful to have a precise bound of the type (1.3)
for the kinetic energy operator (-A+ w2)1/2 — m, and the closely related, simpler
operator ( — A)1/2 (obtained by setting m = 0). A simple transcription of the /?2-proof
for stability of matter will not work for this case, however, due to the behavior of the
lower bound in the kinetic energy in Jp4/3 (see Sect. 3, and [7]). Nevertheless, we
hope that the bounds presented here will be useful for solving at least part of the
problem.

The paper is organized as follows. In Sect. 2, we use the technique of [4]
to derive bounds on N(V), S(V) for kinetic energy operators /( — iV). For our
derivation we require that /(/?) should be a positive, strictly increasing
function of |p| only, with /(O) =0, lim f(p)= oo, and such that f( — iV)

p-> oo

generates a positivity preserving semigroup. This includes the functions
|p|α(α^2), and (p2 + m2)112 - m. The restriction α^2 on \p\Ά arises from the
condition that /( — iV) should generate a positivity preserving semigroup. For the
special case |p|α this condition can be dropped, if the desired bounds are derived by
the method of [5], which leads however to much larger constants Cn9 C'n (see Remark
3 at the end of Sect. 2).

In Sect. 3 we apply the bounds on S(V) to derive uncertainty inequalities of type
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(1.3) for generalized kinetic energies/(— I'V). We calculate explicitly the constants
for the case n = 3, f(p) = \p\ or (p2 + w2)1/2 — m.

2. Semiclassical Bounds for Hamiltonians with Generalized
Kinetic Energy

We derive in this section semiclassical bounds on the number of negative
eigenvalues, and the sum of these eigenvalues, for operators of the form H =/( — z'V)
+ V(x\ acting on L2(Un).

The semiclassical approximations for these quantities are given by respectively
the volume of phase space where H(p, x) =f(p) + V(x) is negative divided by (2π)n (in
units where h = 1, a "cell" of volume (2π)πin 2n-dimensional phase space is supposed
to correspond to one quantum state), and by the integral of H over this volume.

= (2πΓ"f <Pxf ί p0[ -f(p) - V(x)l

where we use the notation Θ(t) = 1 if t ̂  0, 0(ί) = 0 if t < 0.
We shall assume throughout this section that V is negative: the bounds we shall

obtain for V^ 0 can easily be translated into bounds for general V by replacing — V
in our formulae by max (0, — V). Moreover, we shall always assume f(p) to be a
positive, strictly increasing and differentiable function of |p|, with inverse function
(from (R+ to (R + ) denoted by /"*. For later use, we also assume /(0)=0, and
lim f(p) = oo.

p-* oo

Under these assumptions, the expressions for [Λf(F)]s c and [S(F)]S c can be
rewritten as

[ATOSC = knlfx[f-l(W(x))T, (2.1)

W(x)

LS(V)lc=kn$d»x I du\_f~\u)γ, (2.2)
0

where W= - V, and fcn = [w2"~
Our aim here is to show that, provided / satisfies some technical conditions, the

real N(V) and S(V) are bounded by these semiclassical approximations, multiplied
by a suitable constant (depending on / and on n, but not on V).

Our proof proceeds along the same lines as E. Lieb's proof [4] for the case

) = p2-
Defining the analogue of the Birman-Sch winger kernel as

we have the usual property that

Nγ(V) = number of bound states of /( - z'V) + V(x) of energy less than - γ

= number of eigenvalues of Kγ > 1. (2.3)

(we assume YeC™ for the time being, which ensures that Fis relatively compact with
respect to/( — /V), since lim f(p) = oo we shall later consider larger classes for V).
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Bounds on N(V)9 S(V) follow from combining the above property of Ky with
"Lieb's formula" [4]:

/ t \
Tr[F(KJ] = f dtt-1e-tUnx$dμxx.t(ω)φ( $ds\V(ω(s))\ , (2.4)

o \o /

where φ is a positive, lower semicontinuous function on [0, oo), where F is defined by
00

F(x)= J dyy~le~yφ(xy), and μxy.t is the measure generated by the semigroup
o

exp[ — tf(— JV)], starting at x at time 0, and pinned at y at time ί.
E. Lieb's proof of (2.4) (constructed for the case f(p) = p2, where the asso-

ciated measure is a Wiener measure) still works for the general case (the
special properties of the Wiener measure were not used), provided /(— iV)
generates a positivity preserving semigroup (this is needed in order to cons-
truct μxy.t as a positive measure; the normalization of this measure, i.e.

χ'y;'t = l, then follows from /(O) = 0).
This will therefore be one of our "technical conditions" on /.
Combining (2.3) and (2.4), and using the monotonicity of F, we obtain

(2.5)
o \ o /

Setting y = 0, this yields a bound on N(V) a bound on S(V) is obtained by using S(V)

0

As in [4], we specialize now to the case where φ is convex. By Jensen's in-

equality we have φ I J W(ω(s)) \ds = t " 1 J φ(t W(ω(s))) ds. After inserting
\o / o

this into (2.5), we can define ω(s) = ώ(s) + x the measure on the paths ώ is then μ0 0;ί .
For each s, we translate the x-variable by ώ(s), after which the s- and μ-integrals
become trivial, yielding

Ny(V) =
0

Using exp [ - ί/( - iV)](0,0) = (2π)~" jdV~//(J'), this finally leads to

N(F)^/c;ίΛ3l(ίF(x),</.),

SO/^Kx^H/M^X
where

fc, = p - ! + »/2Γ(n/2)(2π)»/2] - ! = nfcn, (2.7)

and

0/»; </.) = [f(i)] - 1 f Λt ̂  J ΦP" - ̂
0 0

The inequalities (2.6) have to be compared with (2.1), (2.2).
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We shall restrict ourselves from now on to a one-parameter family of φ — s:

u- a u^

with associated Fa = F(φa; 1) = ae~a J dyy(y + \)~le~ay.
o

We denote the associated gj(W,φa) by g^W.ά), and we show below that

and
w

g2(W,a) g C2(α) J W~ W, (2.8)

which then implies that N(V), S(V) are bounded by K 1 [ N ( V ) ' ] S C 9

[̂•SWl.c. respectively.
It is obvious that gι(Q,a)=g2(Q9a) = Q. Since φ'a(u) = Q for u<a, and

φ'a(u) = 1 for u > a, we have (it can be checked that the g. are differentiable provided
the integrals below converge)

a/W 0

oo
2 ί dtt-J+1e-'. (2.9)

0 fl/(p)/W

For 7 = 1 this leads to

0ι(Hίβ) =
0

or

0 0

Substituting w = af(p)/β and inverting the order of the integrals, this reduces to

0

For j = 2, (2.9) leads directly to

Define ψf(y) = sup [/ 1(xy)/f 1(x)]. Replacing / 1(Wu/ά) by

f~l(W)\l/f(u/a) obviously leads to upper bounds of the type (2.8) for the gj9 which
then in turn imply

,, S(V)^K2ίS(V)lc, (2.10)
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with

Kj= inf (a'VJ ]due-auu-3+j[ψf(u)γ}\ ] due-
auu(u+ I)'1} ) (2.11)

«>o V l o J t o J /

Inequality (2.10) bounds N(K), S(K) by their semiclassical approxima-
tions, which was our aim. We have taken V in CJ, and assumed the following pro-
perties for /: f(p) is a differentiable, positive function only depending
on |pI, strictly increasing in |p|, with /(0) = 0, lim/(p)=oo; moreover

p-* oo

/(— ίV) generates a positivity preserving semigroup, and ψj(y) —
sup [/ ~ ί(xy)/f ~1 (*)] should be such that the integral in (2.11) converges for at least
x>0

some α.

Remarks

1. Of the conditions on /, the restriction that / has to generate a positivity
preserving semigroup seems the least easy to verify. Actually, there exist
several criteria to verify this property: see e.g. [1], p. 209-222. Also,
once a positive function / is given which generates a positivity preserving
semigroup, the composition F<>/ of any positive C°°-function F on IR+, satis-
fying (—l)"+1F(ll)(x)^0, n = l , 2,..., with /, will again generate a positivity
preserving semigroup (see [8]; one can check this easily by verifying that the
condition on F implies that e~F is completely monotone, and then applying
Bernstein's theorem to e~F). In particular, since etΔ is positively pre-
serving for all n, the functions fa(p) = |p|α, αe[0,2] and k(p) = [p2 + w2]1/2 - m
generate positivity preserving semigroups, for all n.

2. For these functions /α, fc, one has ψfΛ(y) = yllΛ

9 ψk(y) = max(yll2,y)
(for /α, this is trivial; for k it follows from an easy calculation). Hence K2

is finite for both /α and k in all dimensions n; K! is finite for k only if n ̂  3,
and for /α if n > α, i.e. for all α if n ̂  3, for α < 2 if n = 2, and for α < 1 if n = 1.
Since all the other conditions hold for /α and fc, the bounds (2.10) hold for
these functions.

3. The restriction that /α has to generate a positivity preserving semi-
group prevents us from going beyond α = 2 for the /α-functions. Actually this
restriction only arises because our method of proving (2.10) uses a path
integral; with other methods one can show that a nontrivial (i.e. with finite
constant KJ bound of type (2.10) holds for N(V) for /α(p) as long as α < n, with-
out any other restriction on α. (The fact that for α = n such a bound does not
exist is the generalization of the familiar nonexistence of this bound for
p2 + V(x) in 2 dimensions. In n dimensions also, the Hamiltonian pn + V(x),
where F is a square well, always has bound states, however shallow the well.)
One such proof is provided by CwikePs estimate [5]: any A =f(x)g( — ί'V),
with /eLp, 0eL£, with 2 < p < oo, is a bounded operator with singular values μk(A)
obeying

wk-V>9 (2.12)



Uncertainty Principle for Fermions with Generalized Kinetic Energy 517

where D/?/l = 2 + ((2π)~w2p[l _2~(p~2)]~1)1/2. This allows one to give an upper
bound on the number of eigenvalues of |K|1 / 2 |p|~α |F|1 / 2 which are larger than 1,
hence a bound on N(V):

N(V) g [D2π/α> J
2rt/α(2π)" [JV(F)]S c> (2.13)

For α :g 2 we can compare this constant with (2.11) for the special case /=/α:

due~u(u-
α > 0

|.
J

For rc = 3, α = 2, ^(α) is a much better constant than the one in (2.13) (E. Lieb's
proof was constructed to treat this case; the bound he obtained is still the best bound
at present); from numerical calculations for some other values of (rc,α) it seems that
this will be generally true for α ̂  2.

It turns out that a suitable modification of CwikePs proof for (2.12) can
also handle the case k(p) = (p2 + w2)1/2 — m. The bound for N(V) obtained in
this way is of the following type JV(F) ̂  CjΛcG(| K(x)|), where G(α) - α",

«->OO

G(α) ~ C'α"/2. This is also what we obtain by our method. Again however, the
α-»0

constant C obtained in this way seems to be at least two orders of magnitude larger
than with the path integral method.

4. The method leading to the bounds (2.10) on N(V)9 S(V) can also be used
to derive bounds on other momenta of the eigenvalues, i.e. Σle,!5, with s^O
or 1. Explicitly, one obtains

)9 (2.14)

with

Cs = Γ(s) [2" - V/2Γ(n/2)] ~ 1 inf [Y f dt(t -
e > 0 | _ \ α

ψf(t/a) \ Π

Λr'iΓ' J duun-1φf(u)s~1 I
o /J

where we have introduced another auxiliary function: φf{y) = sup[f(xy)/f(x)'].
x>0

In the case f(p) = \p\*9 (2.14) reduces to bounds of the type Σ\ej\s =
C'Sta$dnx\W(x)\s+nla.

5. We have restricted ourselves, in the derivation of the bounds (2.10), to CQ
potentials. Of course (2.10) will generally be valid for larger classes of potentials, and
ideally, we would like it to be true for all potentials for which the semiclassical
approximations (2.1) and (2.2) converge. For f(p) = |p|α, one can indeed show this is
the case. Inequalities (2.10) or (2.13) can then be written as

K^O ΛΓ(F) ̂  Kf^ dnx\V(x)\n/a. (2.15)

For any nonpositive V in LΠ/α, one can then find Vm in C% such that || Vm - V \\ n/Λ -> 0
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and |KJ<;|F| a.e.. One can then check that |/?|α+ Vm-+\p\Λ+ V in the norm
resolvent sense, which implies traceclass convergence of the spectral pro-
jections of these operators on (oo,E] for any E<0, which in turn then implies
(2.15) for V (with the same constant K'Λ). An analogous argument shows that for
k(p) = (p2 + m2)1/2 - m, the bound N(V) ^ Kj Λc[| V(x)\(\ V(x)\ + 2m)]π/2

is valid for all nonpositive V in Lw/2nL". Analogously one proves that the
bound on S(V) in (2.10) holds for all VeL1+n/Λ if /(p) = |Plβ» for all

6. As we pointed out in the introduction, the cases of most interest to us
are n = 3, f(p) = \p\ or /(/?) = (p2 + w2)1/2 - m. We have therefore calculated the
constants Kl9 K2 numerically for these two cases. The results are:

for/(p) = |p|, w = 3: £^6.08; £3^ g 0.103

K2 ^ 6.44; k3K2 ^ .109,

for /(p) = (p2 + m2)1/2-w, n = 3: X^ 14.14;

(where /c3 =(6π2)"1). Note that one can easily prove that sup([5(K)]/
[S(K)]S c ) is always smaller than sup([JV(K)]/[N(K)]s c )(any bound on N(V) gives
a bound on S(V) by simple integration). This shows that the upper bound on K2 for
f(p) — \P\ above is not very good, since it is larger than the corresponding K^ in
practical applications, we shall therefore use the above value for K^ for bounds on
S(V).

3. Bounds on the Kinetic Energy for Fermions

Once an upper bound of type (2.10) is known for S(K), the sum of the negative
eigenvalues of/(- ίV) 4- V(x\ it is easy to derive from this a lower bound on the
fermionic kinetic energy associated with /(— iV). This is done by means of a
technique which can be found in [2].

Let ^(x1,...,xjv;σ1,...,σjv) be a normalized wave function for N fermions.
Consider, for suitable negative functions V on R" (V is "suitable" essen-

N

tially if [5(K)]S c is finite), the N-particle Hamiltonian HN = £ hp

j = ι
with hj =f( - iVj) + V(Xj). Assuming the fermions have q possible spin
states, we have that the ground state E0 of HN satisfies E0 ^ q^kek(h), where
ek(h) are the negative eigenvalues of the single particle Hamiltonian h. If
h has K levels, and N^Kq, we surely have £0 = ̂ Σefc» ^ N>Kq, we fill the
available Kq levels, and place the excess particles far away, with arbitrary small
energy, which again ensures E0 ^q^ek.

Hence, using (2.10) and (2.2),

\
) - f Λc| V(x)\p(x) ^ £0 ̂  - qK2kn$d"xF(\ V(x



Uncertainty Principle for Fermions with Generalized Kinetic Energy 519

where

<l

ρ(x) = N Σ $\ψ(x,x29...,xN;σί,...,σN)\2dx2...dxN

σί = l

s

and F(s) = J dt[f ~ 1(t)γ. This implies that a lower bound on the kinetic energy Tψ is
o

given by

Tφ = ( ψ, Σ f( ~ WjW ) ^ \dnx&(CF)(p(x)\ (3.1)
\ j I

where C = qK2kn, and where & denotes the Legendre transform

( s 1
&(CF)(t) = sup 4 st - Cfdutf-^u)]" >.

s o )

The maximum in s is reached for s = /[(ί/C)lyh]. Using partial integration, this leads
to

t/c
&(CF)(t) = C j duf(u1/n).

Hence (3.1) becomes

p(x)IC

c J duffr1'*). (3.2)
o

For the special case f(p) = \p\", (3.2) can be written more explicitly. We have

(V Σ \Pj\*ψ} ^ Cβ§ jΛcCpίx)]1^'", (3.3)

where

with k = [n2"~^πnl2Γ(n/2}~}-1 and

Γ /°° \~Π
K2(n,α) = Γ(n/α)inf α~n/α ί dn e~ u(u - a)u~ 1

a>0\_ \ a / J

For the special case n = 3, α = 1, (3.3) becomes

N \
Σ 1^1^ ) ̂  l.βSg-^J^xpίx)4'3. (3.4)

j = l /

We can also work out (3.2) for the case n = 3, /(p) = (p2 + w2)1/2 — m. It turns out
that

, Σ C^2 + m')1/2 ~ m

j = ι

where G(p) = (3/8)m4Q[(p/C)1/3m-1] - mp with

g(t) = t(l + ί2)^2(l + 2ί2) - In [t + (1 + ί2)1/2]
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and C = .163g. It can be checked that G is convex (as it should be); the asymptotic
behavior of G for small, respectively large p is given by

G(p) ~ (3/10m)C-2/3p5/3, G(p)

The p4/3 behavior of G for large p (i.e. small x) reflects the fact that for
large |p|, [/?2 + m2]1/2-w behaves like \p\ (we saw in (3.4) that the bound
for Tψ is in p4'3 for f(p) = \p\). On the other hand G behaves like m~V 5 / 3 if P
is small (i.e. for large x), which is due to the fact that for small |p|,
Q?2 + m2]1/2-m~/?2/2m.
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