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Abstract. Following the work of Collet, Eckmann, and Lanford on the
Feigenbaum conjecture, we study the structure of the renormalization transfor-
mation introduced in [12] upon maps of the circle with critical points of the
form x\x\ε.

1. Introduction

There appears to be a remarkable relationship between the seemingly universal
features of certain bifurcations which destroy invariant tori of dissipative systems
with particular incommensurate frequencies and the scaling properties of certain
families of analytic mappings of the circle T1 = IR/Z An explanation of this in
terms of a renormalization transformation y is proposed in [12] and [4]. The
evidence for this is numerical. Following the work of Collet et al. on the
Feigenbaum conjecture [3] we study the action of 5" on a space of analytic
functions of x|x|ε, where ε^O is small. The physically interesting case is ε = 2.

/./. Motivation

A cubic critical map is any analytic homeomorphism of the circle which has a
single critical point which is cubic. We will be interested here in the behaviour of
(analytic) diffeomorphisms and critical maps related to the rotation number

Similar results hold for any rotation number with a periodic (or eventually
periodic) continued fraction, but to ease the exposition we stuck to the simplest
case here. The rational approximants to σ are the numbers qn/qn+ί, where

, = 1/1,
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Fig. 1

i.e. q0 = 1, ql = 1 and qn+1=qn + qn-1 Two results about diffeomorphisms (which
are elementary consequences of results of [5]) and cubic critical maps (from
numerical experiments [12, 13]) are these:

1. Let k be the lift to IR of an analytic circle diffeomorphism or cubic critical
map whose rotation number ρ(fc) is σ. Let a(n)= - l/(kqn + l(ty-kqn(ty-qn_2), and
let kn be the function on [0, 1] given by

Then α(fc)= lim α(n+1)/α(n), and £(£) = hm kn exist, and (i) α(fc)

= — σ - 1~ — 1.6180... and C(fc)(x)Ξχ + σ if fc is a diffeomorphism, while
(ii) α(fc)~ — 1.2886 ... and ζ(k) is a nontrivial function of x3 if fe is a cubic critical
map, and ζ is independent of k.

2. Let kμ be a 1 -parameter family of (lifts of) diffeomorphisms or a 1 -parameter
family of cubic critical maps such that ρ(fe0) = σ. Then if fe^ is transverse to the
manifold ρ = σ and if numbers μn are chosen so that k*n

n

+1(Q) = qn, there exists a

(5<0 such that lim δn exists and is non-zero. For diffeomorphisms δ=— σ~2

n-> oo

= —2.6180..., but numerical experiments reveal that for cubic critical maps
δ ~ — 2.8336 .... Note that the objects δ, α, and ζ are essentially independent of the
system being studied.

Consider for example the 2-parameter family

fc(ω? fl)(x) = x + ω - (α/2π) sin 2πx ,

where O^ω, α^l. The equation ρ(k(ω fl)) = σ defines a smooth curve / which is
approximated by the "tongues" In on which Q(k(ω>a)) = qn/qn+1 [1,5,6]. For
0^α<l, the tongues accumulate on ρ = σ at a rate (— σ2)"^( — 0.382)". For a=l
this rate is approximately ( — 0.353)".

1.2. Renormalίzation Analysis

We now discuss briefly and heuristically how one can understand these results in
terms of a renormalization transformation 2Γ.
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Fig. 2

Let φ be a cubic critical map or diffeomorphism of the circle whose rotation
number is approximately σ, and represent φ as a map of the interval [b, c]
= [fc(0)-l,fc(0)] as in Fig. 2. Note that ρ(φ)^σ implies that [b,0] gets mapped
into [0, c]. Now we construct a new map φ of the circle in the following way (see
Fig. 3). Let φ:lb,φ(b)']^[b,ψ(b)'] be defined by φ = φ2 on [b,0] and φ = φ on
[0,φ(bJ]. Now take φ(x)=Ξ<xφ(x/αt), where α= - ί/(φ(b) — b). Note that α is chosen
to be negative since this is necessary if we are to hope for such a process to coverge
upon iteration.

It is easy to check that ρ(φ) = ρ(φ)~ 1 - 1 thus ρ is invariant under this process
if and only if ρ(φ) = σ and a map with rotation number is sent to one with

The problem is how to set this up as a renormalization scheme so that the
scaling properties, etc. can be deduced from the structure of the dynamics near a
fixed point. We note that even though φ was analytic, the map φ is not it has
discontinuities in its derivatives at 0 and at the end-points of the interval. A
convenient way to deal with this problem is to enlarge the space and work with
pairs (ξ, η) of analytic homeomorphisms of the line which when glued together
define a map of the circle.

In fact, one considers the set 1 Jf of pairs (ξ, η) such that
(a)
(b)

(d) if ξ'(x)£0 or η'(x)£0 for some xefo(0),f(0)), then χ = 0 and ξ'(0)=η'(0)
= ξ"(0) = η"(Q) = Q and ξ'"(0) and η'"(Q) are non-zero.

We let yKcrit denote the subset consisting of those (ξ, η) such that ξ'(0) = η'(0) = 0.
Let J/Q consist of those pairs (ξ, η) in Jf such that

(e) £7(0) >0.

1 For a precise definition suitable to our purposes see Sect. 2.1
2 This condition is introduced to ensure that the fixed points of &~ are hyperbolic. It is automatically
satisfied by those (ξ, η) coming from analytic circle maps because then ξ and η commute. In fact, it
would be quite natural to restrict to the class of commuting pairs, but so far as the results of this paper
are concerned this is unnecessary
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To each (ξ,ή)eJV we can associate a mapping φ = φ(ξ,η) of the circle by
defining φ to be £ on [?/(0),0] and η on [0, £(0)]. In this way we can define the
rotation number ρ(ξ, η) = ρ(φ(ξ, η)) of (ξ, η).

We now consider the mapping ZΓ : jY*Q-*Jf corresponding to φ-+φ. It is given
by F(ξ, η) = (ocηoc~\ aηξoc-1), where α = - l/(ξη(0) - η(0)).

If fe :R~>IR is the lift of φ chosen so that 0 < fc(0) < 1, then (ξ, η) = (k,k- 1), and
when defined [e.g. when ρ(/c) = σ],

where kn = kqn — qn_v One fixed point of SΓ is ξ0(x) = x + σ, f/0(x) = x — σ2.
The main claim made in [12], based upon numerical studies, is that there is

only one other fixed point (ξ1? ηj of 2Γ in Jf and that this point has the following
properties :

(a) ξί and η1 are analytic functions of x3;
(b) limα<"+ 1>/α<" ) = αι =^(0)7(^(0)- 1)^-1.2886...

(c) ( f p T / j ) is hyperbolic with a 2-dimensional unstable manifold and a stable
manifold consisting of those (ξ, η) in yΓcrit with ρ(ξ, η) = σ;

(d) one of the unstable eigendirections is tangent to J^crit and has eigenvalue
δ~ —2.8336 ..., the other has eigenvalue α2 and describes the effect of adding a
small linear term to the fixed point. That is, it describes the cross-over from
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behaviour associated with critical maps to that associated with diffeomorphisms.
The scaling structure of a 2-parameter family of analytic cricle mappings which is
transverse to the stable manifold of (ξ1,η1) can now be related to that of the
universal family given by the 2-dimensional unstable manifold oί(ξ1,η1).

Clearly one would like to give a proof of these facts. The first step would be to
study the action of ZΓ on analytic functions of x3, but this is a hard problem which
is probably best addressed with the assistance of a computer as in Lanford's work
[10]. In this paper we follow the approach of [3] and study 2Γ on analytic
functions of x\x\ε for small ε. By means of perturbation methods we show that for
sufficiently small ε, 3Γ has a hyperbolic fixed point on the space of analytic
functions of x|x|ε. Since we have a fixed point for ε = 05 our proofs are much
simpler than those in [3]. Of course the case ε = 2 is not covered by our results.
Nevertheless the results provide strong evidence that the conjecture and numerical
results of [12] are correct.

2. Preliminaries and Statement of Results

We are going to consider functions (ξ,η) = (ξ(f),η(g))eΛr of the form

where x(ε) = x|x|ε, and / and g are functions analytic in certain domains of the
complex plane.

2.1. Definition and Properties of the Function Space

Choose numbers c15 c2, c3, and c4 with the following properties: c4e(σ, 1);

c3e| 1 -- c4,0 c1eί -- c^-σcλ and c2e -σc3, -- c 3 j . Then if /1=(c1,c2)

and /2 = (c3,c4), -σϊ1Cl2, ~σ^2^^ι anc^ -σI2 + σC(0,c4)C/2. Let Ω1 and Ω2

be, respectively, the open disks in C on the diameters 7\ and I2. Since χ-> — σx and
x— > — σx + σ are similarities we have

-σΩ1CΩ2; (la)

-σΩ2CΩ1; (Ib)

and

, (Ic)

where IR_ is the negative real axis. For ί = l,2 let ^i be the Banach space of
functions analytic in ί2 , continuous on Ω. and taking real values on /.. Let
J = ̂  x j/2. If for /e ̂  and gε^2

 we ^et 11/11 an^ l l ^ l l denote the sup norms of
/ and g on Ω^ and Ω2 respectively, then we take the norm ||(/0)|| = ||/|| + \\g\\
on J*.

Let /0(z) — z + σ and gQ(z) = z — σ2, and let ^U be the neighbourhood of (/0, gf0) in
J* defined in Sect. 2.3.
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We are especially interested in those pairs (f,g)e^ which for a given small ε
satisfy the following conditions analogous to (a)-(e) in Sect. 1.2:

(a')
(b')
(c') #'(/(0)(ε))l/(0)|ε/'(0) =
(d') /'>0 on /! and g'>0 on I2.
In particular, condition (d') is the ε-analogue of(d). A straightforward

calculation using the Implicit Function Theorem shows that the conditions define
a submanifold Jt* of 3%. These calculations will be outlined in Sect. 3.2.

In Sect. 3.2 we shall also define an open subset Jί^ of ̂ ε containing (/0, gQ)
and satisfying the following condition arising from (e) :

(e') /(#(0)(ε))>0.
For small |ε|, let JV*& (respectively, Jf^) denote the set of (£, η) of the form ξ(χ)

= f ( x ( ε } ) and η(x) = g(x(ε)), where ( f , g ) e J ί £ (respectively, Jί^). By identifying J\fε

with <MZ and Jf^ with Jί^ one may regard Jf* and yF0

ε as Banach manifolds. We
define Λf = Jf*.

2.2. Definition of SΓ^ ana Statement of Results

The mapping ZΓ^Jf^Jf* is defined by ^ε(ξ9η)==((xη<x,~1,(xηξoι~1), where
*=-l/(ηξ(0)-η(0)).

Theorem 1. The mapping ^ is C°°.

The rotation (ξQ9 η0) = (/0, 00), where /0(z) - z + σ and g0(z) = z - σ2, is obviously
a fixed point for ^"0. Below we analyse its hyperbolic structure and its dependence
upon ε. Then we can deduce this :

Theorem 2. For |ε| sufficiently small, ̂ ε has a fixed point (ξε, ηε) in JV^, where ξε(z)
-/ε(z(ε)) and ηε(z) = gε(z(ε)) and ( f ε , g ε ) ε J ί ε

0 . The function fε(z) (respectively, gε(z)) is
jointly C00 in ε and z for |ε| sufficiently small and zeΩ^ (respectively, Ω2). The linear
operator d^~ε(ξε,ηε) is compact. Its spectrum consists of countably many distinct
eigenvalues of finite multiplicity. One of these is δε = (— l/σ2) + O(ε); this eigenvalue
is simple. The remainder of the spectrum is contained in a disk of the form \z\ ̂  σε

= σ + 0(ε). In fact δε and σε are C°° functions of ε.

Numerical evidence indicates that <5ε = (— l/σ2) + 0(ε2). However we have not

been able to prove this. An expression for the derivative —(fε,gε) at ε = 0 is easier
dc>

to obtain and is given at the end of proof of Theorem 2. Kadanoff in [8] also
addresses this question and presents a formal first order perturbation theory
calculation concerning the existence of the ε-derivative of (/ε, gε).

To describe some of the relevant local and global dynamics of 2Γ = &~# we need
to recall the following definitions which are complicated a little by the fact that 3~
is not invertible (cf. [3]). For example, there do not necessarily exist global stable
and unstable manifolds.

1. A stable manifold of Cε = (ξε, ηε) is a smooth submanifold Ws of «yK0

ε such that
(a)
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(b) if ζ = (ξ, η)e W\ then lim 3~jζ = ζε, and
j^co

(c) for any ζe Ws, the range of d3Γ(ζ) is not contained in the tangent space to
Ws at f(ζ).

2. An unstable manifold of ζε is a smooth submanifold Wu of JY*E such that
(a) ^(PTn^DFT,
(b) if ζe Wu there is a sequence ζj converging to ζε such that ζ = <&~Jζj9 and
(c) if ζe J/PnJ^, the tangential derivative of 2Γ along FT" at C is non-zero.

Theorem 3. For |ε| sufficiently small (ξε, ηε) has a stable manifold Wε of codimension
one and a one- dimensional unstable manifold W%. If (ξ,η)eWε then ρ(ξ,η) = σ. For
some neighbourhood i^0 of (ξε, ηε)

For \ε\ sufficiently small, W^ is C1 -close to the curve λ^>(ξε-{-λ,

Remark. Using Herman's theorem on the existence of an analytic conjugacy [5],
one can assert the following stronger result for analytic diffeomorphisms (the case
ε = 0) : // ε = 0 and (ζ, η) = (/, g) = (f(φ\ g(φ)\ where φ is an analytic diffeomorphism
of the circle, then the following conditions are equivalent :

(i) ρ(ξ,η) = σ,
(ii) 3Γn(ξ,η) is well-defined for all n, and for sufficiently large n, ^~n(ξ,η)ei^0

and ^n(ξ,η)^(ξ0,η0) as n->oo.
Let 0*(p/q, ε) denote the set of (ξ, η)e^E such that φ = φ(ξ, η) has 0 as a periodic

point with rotation number p/geQ.

Theorem 4. For |ε| sufficiently small and n sufficiently large, ^(qn/qn+1, ε) meets Wε

in a single point and the intersection is transversal

The next theorem states that the expanding eigenvalue (5ε of d&~ε(fε, gε) appears
as a universal invariant in one-parameter families of circle mappings with
ε-singularities.

Theorem 5. For |ε| sufficiently small there is a neighbourhood i^ of (ξε, ηε) with the
following properties :

(a) Suppose y(μ) = (ξ(μ),η(μ))e'f" is a continuously differentiable curve which
crosses Wε transversally at y(μao) Then for sufficiently large n, γ(μ) meets
^(qn/qn+ί,ε) at a unique point y(μn), and

exists and is non-zero.
(b) Let αε = ξε(0)/(ξε(0) - 1), and suppose that φ = φ(ξ, η) for some (ξ, η)ε f", and

that k :R-*R is the lift of φ with fc(0)e(0, 1). Then ρ(ξ9η) = σ implies that

exists and is non-zero.

Theorem 6. // ε is sufficiently small, (ξ,η)eWε and φ = φ(ξ,η)9 then φ is
C°-conjugate to the rotation Rσ.
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Proof. Recall from the classical theory of homeomorphisms that φ is
C°-conjugate to Rσ if and only if there does not exist an interval ICT1 such that
φ"/n/ = 0 for all n^O. Call such an interval a Denjoy interval.

Suppose (ξ,η)e W'r^i^ and let φ = φ(ξ,η). By Theorem 5 (b), φqn(Q) accumula-
tes on 0 from both sides, and so 0 is not contained in a Denjoy interval.
Consequently, </>(0) and </>2(0) are not in Denjoy intervals. Let l(ξ, η) denote the
length of a largest Denjoy interval. By the above, any Denjoy interval / of this
length must be contained in (η(Q),ηξ(0)) or (ηξ(0),η(0)). By choosing ε and i^
sufficiently small we may assume that (ξ,η) is so near (£ 0 >f/o) and
α = - l/(ηξ(ΰ) - ξ(0)) so near - 1/σ that on [ηξ(Q)9 £(0)], \φ'\ > δ/\<ή for some δ > 1. It
follows that if all Denjoy intervals / of length l(ξ,η) are contained in (ηξ(Q),ξ(Oj),
then φ(I) is a Denjoy interval of length ^ <5/|α| l(ξ, η) contained in (?y(0), ηξ(G)). Then
aφ(I) is a Denjoy interval of length *zδl(ξ,η) for &~(ξ,η). Thus in any case

where δί>ί is independent of (ξ,η). Applying £Γ 'a number of times leads to a
contradiction.

The result now extends to all (ξ, η)ε W*, because if φ(ξ, η) has a Denjoy interval
then so does φ(^n(ξ, η)\ and for sufficiently large n,^n(ξ, η)e Wε

sn^. Π

2.3. Proof of Theorem i

If Ω is a relatively compact region in C, then we denote by <stf(Ω) the Banach space
of functions analytic on Ω and continuous on Ω with the sup norm. The disks ί2 ,
i=l,2, and the spaces ĵ . were defined in Sect. 2.1. The following remark allows
one to check quite easily that ^(Ω) is indeed a Banach space and also plays an
important role in the following.

Remark. For any re(0, 1) and for i= 1, 2, we let Ω.(r) be the disk concentric with Ωί

and with diameter equal to r diam(Ω.). We let || \\r denote the sup norm on the
appropriate Banach space corresponding to Ωv(r) and Ω2(r). A simple application
of the Cauchy integral formula gives the following bound on the derivatives of

(2)

A similar inequality holds when g maps Ω2 into the Banach space of bounded
linear functional Lin(E,C), where E is a Banach space and where z-+g(z)(x) is
analytic for each xeE:

\ \ g ( n ) l r ί K ( n , r ) \ \ g \ \ , (3)

where || ||r denotes the sup norm on the space of functions Ώ2(r)— >Lin(E, C).
To prove Theorem 1 we use the following facts :
1. Assume that the neighbourhood fyt of ( f 0 , g 0 ) is chosen so that iί(f,g)ε%

/(0)ε(0,c4) (4)
and ll^'-i?OIL(«2W,<i, (5)
where r is chosen so that Ω2(r) contains [0, σ]. Then, a = g(f(0)(ε}) — g((0)>0 if
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2. (ε,/,#H/(0)(ε) = /(0)1+ε is a C°° map of Rx^ into R+, since /->/(0) is a
bounded linear map and (ε,z)-+z1+ε is C°° on IRx((C\IR_).

3. If_0<r<l, 7=1 or 2 and neN, then the map .̂-̂ (Ω r̂)) given by
Λ->/ι(w) |Ωy(r) is C°°. This is because it is linear and bounded by the estimate (3).

4. Let Ω3, Ω4, and Ω5 be relatively compact open regions in C such that
Ω3 C Ω4. Suppose that

(a) h and k are C°° mappings of an open subset y of a Banach space <f into

eβ/(Ω4) and £/(Ω5) respectively, and
(b) fc(x)(Ω5)CΩ3 for every xeTT. Then x-+h(x)°k(x) is a C°° mapping of -jT into

j/(Ω5). This fact is a consequence of (2) and (3).
5. Combining 2 and 4 we see that (ε,/#)-»0(/(0)(ε)) is C°° and hence that

6. We can choose Φ so that there exist ε0>0 and δ>0 such that if
(ε,/,#)e(-ε0,ε0)x^, then

α>(S (6)

and

-α^ΌjCOaίr) (7)

for some r<l. This is because α = σ when (ε9f>g) = (Q,f0,g0), a is continuous, and
σΩ 1CΩ 2.

7. By6,F(z)=-i f lf(-α1 + βz)e^1.

8. Since α>(5, when (ε,/,^)e(-ε0,ε0) x^, α 1 + ε i s C°° on this set. But then [11,
Proposition 14, p. 9] (ε, f,g)-+-a1+εz is a C°° mapping (-ε0,ε0)x
Therefore using (7) and 4 it follows that

i

(ε,f9g)-+F is C°° on (-ε0,ε0)

9. Since a is continuous we can choose ε0 and ̂  so that for some r < 1 we have
both (7) and

-aί+εΩ2CΩί(r), (8)

whenever (ε, /, g)e( — ε0, ε0)x^. Then by repeating the argument of 8 with g,
(8) and j/2 in place of/, (7) and ts/ί we prove that on ( —ε0,ε0)x^,

10. In particular, from 9 we may assume that ||/(— α1+εz) — /0( — σz)|| <<515

where 2δx is the distance between —σΩ2 + σ and the disk with diameter [0,1].
Therefore, for all (ε,/g)e( — ε0,ε0) x^, /( —α1 + εz)1 + ε is well defined, and by 4 the
mapping (ε,/^)->/(-α1+εz)1+ε is C°° on (-ε0,ε0) x^->j/2.

11. In particular, we may assume that for (ε,/,g)e( — ε0,ε0)x^, we have

||/(-α1+εz)1+ε-/0(-σz)||<(52, (9)

where 2<S2 is the distance between — σΩ2 + σ and the boundary of Ω2. That is, if we
let r = (w — <52)/w, where w = diam(ί22), we have by (Ic) of Sect. 2.1 that for
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(ε,/#)e(-ε0,ε0)x^, (f(-a1+εΩ2))1+εCΩ2(r). This allows us to use 4 once more
to conclude that the mapping ( — ε0, ε0)x^-> j/2 given by
0, f, g)^g((f(-ai + εz))1 +ε) is C00. Combining this with 5 and (10) we deduce that if

is a C°° mapping of ( —ε0,ε0)x^ into

12. Putting these facts together one proves this:

Proposition 2.1. Suppose that /0, #0, F, G, and ̂  are as defined above. Then there is
a neighbourhood ( — ε0,ε0) x °tt of (0,/0,00) m Rx J* defined by conditions (4) to (9)
afoo^ on w/πc/z ί/ie mapping ZΓ :( — ε0,ε0) x^->IRx J1 gwen fej; ̂ (ε, / #) = (ε, F, G)
is well-defined and C°°.

In Sect. 3.2 we shall identify Jί&, and thus also Λ^ε, with the intersection of
{ε} x ̂  with a C°° submanifold Jί invariant under 2Γ. Theorem 1 follows when
this observation is combined with Proposition 2.1.

3. Structure of the Fixed Point (£0,ί/0)
=(/o?#o) and the Proof of Theorem 2

Consider ^"0: Jί^JίQ and let /0(z) = z + σ and g0(z) = z-σ2 as above. Then
3ro(fo>9o) = (fo>9o)' Our main aim in trιis section is to describe the hyperbolic
structure of (/0, g0) under 3~0.

The tangent space to ̂ ° at (/0, gf0) is the linear subspace J*Γ of J* consisting of
those (X, Y) E J* which satisfy

(a")X(0)=y(0),

These are the infinitesimal conditions corresponding to (a'), (b'), and (c') of
Sect. 2.1.

Let T be the derivative d^~0(f0,g0) of βΓQ at (f0,g0). A simple calculation
proves that T:3$-^& is given by

T(X, Y) = I -X(0) + 7(0) - Y(σ) -~Y(- σz), σX(0) + σ Y(σ) - σ 7(0)

--X(-σz)--Y(-
σ σ

Lemma 1. d&~ε(f,g) is compact.

Proof. We give the proof for T = d&~0(fQ9 g0). To give the general proof we would
have to compute dέ7~ε first. The proof would then be similar to that given below for
ε = 0. In any case, when we apply this lemma to prove the uniqueness of the
expanding eigenvalue we only need to know that d^Q is compact.

Choose r<l so that -σΩ1cΩ2(r), -σΩ2CΩl(r) and -σΩ 2 + σCΩ2(r). Let
(Xi9 Yj)e& be a sequence such that \\{X{, Y^\\ ^1. For (X, Y)e&, let (X, Ϋ) denote
T(ΛΓ, 7). Using (5) and (7) we have
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\\XJ(z)-X ;(w)|| = i ||^(-σz)- Y£-σw)\\ <(|| lΠlδ2(r)) |z- w|

Here || || jj2(r) denotes the sup norm on Ω2(r). Also

\\YJiz)- Ϋj(w)\\ ^ - \\X{-σz)-X{-σw)\\ + - || Y^-σz + σ)- Y^-σw + σ)]]
σ σ

Therefore (ί , TJ) is an equicontinuous family, and moreover since \\(Xt, YJ)| | ^1,
(Xt, ty is a bounded sequence. Therefore, by Ascoli's theorem, the sequence (jf , ΪJ)
has a Cauchy subsequence. Π

3./. The Structure of the Fixed Point (ξ0,η0)

The spectrum of a compact linear map is a countable set of eigenvalues with no
accumulation point different from zero (see Kato [9, Theorem III, 6.26]). We will
compute the spectrum explicitly for the mapping T. In addition we need the
following result about the effect of perturbations on the spectrum of T. Let Tε,
86 ( — ε0,ε0) be a continuous family of bounded linear maps of a Banach space ̂
into itself, and suppose T0 = T is compact.

Proposition 3.1. For every given eigenvalue λ1 Φ 0 of T there are numbers δ1 >0 and
εί >0 such that if |ε| <ε1 then the disk of radius δ1 about λ1 contains a finite number
of eigenvalues of Tε whose total multiplicity equals the multiplicity of λί for T.
Moreover, if D is an open disk centered at 0 and if D1? . . ., Dm are disjoint open disks
about the finite number of eigenvalues λieDi of T not contained in D, then ε1 may be
chosen so small that \ε\ <ε1 implies that every D , i= 1, ..., w, contains eigenvalues of
Tε to a total multiplicity of λt for T, while the rest of the spectrum of Tε lies in D.

Proof. See Kato [9, Sect. IV, Chap. 3.5].

To calculate the spectrum of T explicitly we let ̂  C ̂  denote the space of pairs
(X, Y)e&, where X and Y are polynomials. Let ^C^ be the finite dimensional
space of pairs (X, Y) with deg(X) and deg(7)^π. Then 9= (J 0>n and & = &

n ^ O

Clearly T(0>n)C0*n for any n. It is also clear that the pairs (1, - σ) and (1, 1) together
with the pairs (σz",z") and (z", — σzn) for n=l,2, 3, ... constitute a basis for 0>n. A
simple calculation shows that

T(σz",z")= -(-α)"-2(σz",z

T(z", -σz") = (-σ)"(z", -σz") (mod^.J.
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We will now deduce that the spectrum of T on ̂  consists of the eigenvalues 0,

-- 2, — , —1, ±σ, ±σ2, ±σ3, ..., that these are all simple with the possible
σ σ

exception of 0, and that the elements of the basis listed above constitute the
leading terms of the corresponding eigenvectors. For suppose λ is in the spectrum
of T but not in the above set. Since T is compact, λ is an eigenvalue. Let E be the
projection onto the generalized eigenspace of λ and I — E the complementary
projection. All the polynomial eigenvectors must lie in (I — E)έ%. Therefore
&C(I — E)3i. But that contradicts the fact that ^ is dense in Ά. A similar argu-
ment proves that every non-zero eigenvalue is simple.

Note that the eigenvectors

= ((2σ - 1) + 2<τz + σz2, (2σ - 1) - 2σz + z2) ,

are complementary to the subspace &TC&. In fact bί9 b2, and fo3 violate (a"), (b"),
and (c"), respectively. Thus &τ is the closure of the space generated by the
remaining eigenvectors of T, and the spectrum of T\0$τ is equal to

0, --^,±σ, ±σ2, ±σ3,...
I σ }

Let $σ

τ be the linear subspace of &T consisting of those (X, Y)e&τ such that

0 σ

J X(t)dt+ $Y(t)dt = 0.
-σ2 0

This subspace is invariant under T as can be seen by direct calculation or from the
following lemma.

Lemma 3.1. 3βσ

Ύ is the tangent space to ρ = σ at (f09g0).

Proof (cf. [2, 5]). If f = f0+X and g = g0+ Y, then let k be the unique homeomor-
phism of R satisfying fc(x+l) = fc(x)+l, k|[-σ2,0)-/ and fc|[0,σ) = 0+l. Let
Z : [ - σ2, σ] ->R be such that Z =X on [ - σ2,0) and Z = Y on [0, σ). Also let fc0(x)
= x + σ. Then for sufficiently small ||Z||, | |ZURICHZ| | because of (3), where \\Z\\^
denotes the sup norm of the first derivative of Z. As in [5, p. 284] we combine

1 n-i
- Σ Z°/c0(x)- J Z(x)ώc

and

where δ is an upper bound on the quantities \\kl — kl

0\\9 i=l,2, ...9n. For a given
ε>0 and for \\Z\\ sufficiently small, this gives the following inequality, first for a
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specific n = n0 and thus for all sufficiently large n:

-Vzotfω- r
n i=o X r

That is,

n-l

I lim -
it

This completes the proof, as

(lim - £ ίZ°fc'| = JZ(x)dx.
ί = 0 U-»°o W ; = o J I"

ρ(φ)= lim i*Σ (σ + Z)ofc ί = σ + lim - Σ Zofc*. D
n-+ao n ι=Q H-» OO Π ί = o

Clearly the eigenvector (X", Y) = (l, 1) is complementary to J ,̂ so we have the
following theorem.

Theorem 3.1. T leaves invariant the decomposition

The spectral radius of T\$σ

τ is σ.

3.2. Proof of Theorem 2

We saw in Sect. 3.1 that the eigenvectors b1 5 b2 and b3 are complementary to the
subspace &TC&. We let 38 L denote the space spanned by b 1 5b 2, b3, so that

Define A : ( - ε0, ε0) x °U C ( - ε0, ε0) x $Ύ x *± -^IR3 as follows :A = (A19A29 A3)9

where ^15 ^42, and A3 are given by conditions (a'), (b')5 (c7) of Sect. 2.1,

z = 0

A calculation similar to that in Sect. 2.3 shows that A is C°°.
We seek to solve A(ε, u -f /0 -f δu, v + g0 + δv) = 0 for (ε, u, v) on some neighbour-

hood of (0,0,0) in ( —ε0,ε0)x^Γ and with (δu9δv) = (δu(ε,u,v)9δv(ε9u9v))e&λ, so
that (5w(0) = δv(Q) = 0. In fact the existence of the functions δu and δu and δv follows
directly from the Implicit Function Theorem if

is surjective, and this is the case because

1,0,0),
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It also follows that for some εί >0 and for some neighbourhood Hf of (0,0) in &τ,

A : (ε, M, u)->(ε, u + /0 + <5w(ε, u, v\ v + g0 + δv(ε, u, ύ))

is a diffeomorphism of ( — ε^εJx'W onto the C°° submanifold
^ = ^4~1(0)n((-ε1,ε1) xi^x^). Clearly there exists a neighbourhood ̂  of 0 in
^ and ε2>0 such that if Jf0 = A(( — ε29ε2)x'W0)9 then ^(Jt^cJt and (/,#)
satisfies (e') for all (s,f,g)eJ?0. Henceforth we consider J?0 as the domain of ~̂,
and we let J%Q = A({ε} x if0). We will use Jf^ to denote the corresponding subset
of^ε.

Let ^:(-ε2,ε2)x iT0^(-ε2,ε2)x 7Γ be defined by ̂  = A^-A~l, and let
y^Hr^nr be defined by ^(ε, M, ϋ) = (ε, ̂ ε(u, v)). Then ε̂ represents ̂  in this
coordinate system.

Now, by Theorem 3.1, (0, 0) is a hyperbolic fixed point of^0. Therefore, for
small |ε|, ̂  has a unique hyperbolic fixed point (uε,vε) near (0,0) and this has C°°
dependence on ε. Moreover, d^ε(uε, vε) is a C°° function of ε. Using Proposition 3.1
and the Implicit Function Theorem, each non-zero eigenvalue has C°° dependence
upon small ε.

Remark. Numerical studies by Siggia [12] clearly indicate that δε = δ0 + O(ε2), but
we have not been able to prove this. However, we can obtain an expression for

(A9B)= ^-(fe,gJ at ε = 0: By differentiating ξε(z)= -(l/aε)ηε(-aεz) and ηe(z)

= -(i/aε)ηε(ξε(-aεz)l where ae = ηε(ξJ(Q))-ηβ(0)9 one gets

A(z) = - B(σ) - - B( - σz) + U(z) ,
σ

B(z) = σB(σ)--A(-σz)--B(-
σ σ

where
U(z)= — σlogσ + zlogσ,

and

That is, (A,B) = (U, V)+ T(A,B\ where the spectrum of T is equal to

>,-ΛA-l,+σ,±σ 2,...}.σ σ }

Therefore T-I is invertible on 3S9 and we get (A9B) = (f-I)~1(U9 V). If we let Un

and Vn be the polynomial expansions of U and V up to degree n, we get

(A,B)=lim(T-lΓ1(Un,Vn).
«-* oo

Since T—/ maps ^n to itself isomorphically, this gives an approximation of

~τ(fε>9ε)\ε = o by polynomials. Presumably, this expression is related to that

obtained formally by Kadanoff in [4] and [8].
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4. Stable and Unstable Manifolds and the Proofs of Theorems 3-5

We gave the definition of stable and unstable manifolds in Sect. 2.2. We assume
that ε is sufficiently small for Theorem 2 to hold. Thus &*ε, the local coordinate
representation of ^~ε, is defined on a neighbourhood H^Q of 0 in ^τ, and has a
unique fixed point (uε,vε) = lε in i^Q. The derivative d&*ε(lε) has a simple eigenvalue
outside the unit circle with the rest of its spectrum inside.

The existence and properties of stable and unstable manifolds, complicated
somewhat by the non-invertibility of &*ε, follows from Sect. 5 in [7]. From this
work we obtain the following facts : For ε and i^0 sufficiently small the set

i = 0

is a smooth connected submanifold of ̂  of codimension one. The tangent space
to Wε at lε is the spectral subspace of d^ε(lε) corresponding to that part of the
spectrum which is contained inside the unit circle. Also, ^εWεCWε and

Π *?»?={/.}.
j^o

Similarly, a smooth local unstable manifold is defined as follows : Inductively
define if.+ 1= (^^n ,̂ j = 0, 1, 2, . . . . Then

7 = 0

is a smooth connected one-dimensional submanifold of i^0 tangent at lε to the
eigenspace of dίfε(lε) corresponding to the eigenvalue of largest modulus. It
satisfies ^P^D W%, and for any IE W^ and any j= 1, 2, ..., there is a unique I.E W?
such that &flj = I Moreover, this sequence (lj) converges to the fixed point lε. Thus
we see that Wε and W% are respectively stable and unstable manifolds in the sense
of Sect. 2.2. Furthermore, Wε is unique (for each value of ε) in the sense that if Ws is
another stable manifold of &ε at /ε, then the connected component of lε in FPn^0

is contained in Wε. The W^ is unique in the same sense. Finally, the manifolds Wε

and W^ depend continuously on ε in the <7-sense, for any r.
Using the coordinate map A, we now obtain local stable and unstable

manifolds of Fε at ζε = (ξε,ηε) in Λ^. We shall also refer to them as Wε

s and W?.
Though the mapping ̂  is not globally defined on Jf, it is clearly well-defined

along the line

We claim that W4 is a global unstable manifold for ^"0. To prove this we only need
00

to show that Wu= \J ^ζ(W^\ From the uniqueness of W^ it follows that

. The equality Wu= (J ^J(W^) follows immediately from the fact that
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4.1. Proof of Theorem 3

The only part of Theorem 3 that is not yet obvious is the identification of W* with
the set of pairs (£, η) with ρ(ξ, η) — σ.

There is a group action Rθ : &T->&T, θeIR, which at a function pair (u, v)e^τ is
given by Re(u,v) = (u + θ9v + θ). When ε = 0 the orbit {Λ(0, RΘ(Q, 0)) :0eIR}
= {Rθ(fo>9o):Θe^} equals the line Wu(fQ,gQ). When εφO the curve in Jίε

corresponding to an orbit {Rθ(u, v) :θeR, (u,v)ei^0}, is given by Λ(ε,Rθ(u,v)),
θ varying over an open real interval. Whenever the value of ε is fixed by the
context we shall use ρ(u, υ) to refer to the rotation number ρ(/, g\ where (ε, /, g)
= Λ(ε,u,v). It is clear that for ε = 0, ρ(Rθ(Q,Q)) is a monotonically increasing
function of θ. We claim corresponding results for ε φ 0.

Proposition 4.1.1. For (ε,jRθ(w,ι;))e( — ε0,ε0) x i^0 the rotation number ρ(Rθ(u,v)) is
an increasing function of θ.

Proposition 4.1.2. // for a given εe( — ε0,ε0) and a given (u,v)ei^0 the rotation
number ρ(u, v) is irrational, then ρ(Rθ(u, v)) is strictly increasing at θ — 0.

We let φθ be the circle mapping corresponding to Rθ(u, v) (for the fixed value
of ε) and we let kθ be the lift of φθ to R We will assume Θ^Q throughout this
section. Both propositions follow from the inequality

(10)

which we will establish below. Here C is a positive constant.

Proof of Proposition 4.1.1 (cf. Ill, 1.3 in [5]). Inequality (10) implies

ρ(kθ) = lim ̂ ^ ̂  lim ̂ ^ = ρ(k0) . D
n->oo n «->oo n

Proof of Proposition 4.1.2. We have from Proposition IΠ.4.1.1 in [5] that
then ρ(k0 + Cθ) > ρ(fc0). Therefore, using (10) again,

ρ(kθ) = lim ^ lim o = + cfl) > g

n-+ao n Π-+CG n

It remains to prove (10). For convenience we will write Rθ(u, v) = (Rθu, Rθv).
Since the functions δu(ε,u,v) and δv(ε,u9v) defined by Λ(ε, u, v) = (ε, u + /0 + δu,
v + g0 + δv) are C°° in (ε, u, v), therefore the mapping ( — ε0, ε0) x i^Q x Ω1 ->(C given
by ((ε, M, υ\ z)-*[d(δu)(ε, u, v) (Q, 1, l)](z) is continuous. Now _[d(δu)(Q, 0, 0)
•(0, 1, l)](z) = 0 for all zeί2r A similar result holds for d(δυ). Since Ω1 and Ω2 are
compact, it follows that for every δ1>0 there is a neighbourhood ( — ε0,ε0) x if0

(perhaps smaller than the original) of (0, 0, 0) on which

and

\\d(δυ)(ε,u9v) (0,1, 1)|| <^. (11)
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Now suppose that for a certain θ e IR we have (ε, Rtu, Rtv) e ( — ε0, ε0) x ̂  for all
ί between 0 and θ. Then for zeΩ1nR we have by (11):

Rθu(z) + <Sw(ε, Rθu, Rθv)(z) ^ w(z) + δu(ε, u, v) + (l- δjθ . (12)

Thus, if Λ(ε, Rθu, Rθv) = (ε, /0, #θ), then

δ1)θ. (13)

^ (14)

If as usual we let ξθ(z) = fθ(z\z\ε) and ηθ(z) = gθ(z\z\ε), then the same inequalities also
hold for ξθ and ηθ.

Unfortunately it does not follow that kθ ̂  fe0 + (1 — δ)θ. However, keeping in
mind that k = k(f9 g) is given by

fen

 if

W if

we define for small

-w + w if
, n=

(x-n)-hn if

It is easy to see that then

\k(x) - kρ(x)\ £ \ξ'(η(0)) - η'(ξ(Q))\ -

Since the mapping (s9u,v)^ξ'(η(0)) — η'(ξ(0)) is continuous and has the value 0 at
(0,0,0), therefore for every <52>0 there exists a neighbourhood ( — ε0,ε0)x i^0 of
(0,0,0) (again smaller than the original in general), such that for
(fi,w,t;)e(-ε0,60)xτro, |^(0))-^(ξ(0))|<δ2. But then

. (15)

We let ρ = ηθ(Q)-η0(0) now. Then (13) and (14) imply that k^k
Combining this with (15) we get

Inequality (10) follows immediately.

Proof of Theorem 3. First suppose (u,v)eW*r\'WQ ana suppose <x = ρ(u,v). Then
0<ρ(#'B

n(u,υ))<l for all π^O. But ρ(&ε

n(u, υ)) = τ"(α), where τ(α) = α~1-l.
Consequently, α = 1/(1 + 1/(1 H- . . . = σ.

To prove the converse we suppose (u,v)eit/"0 and ρ(u,v) = σ. Let (u,v) be the
point on W* that lies on the same leaf of the ^-foliation as does (u,v). By
Proposition 4.1.2, we have (u,v) = (u9v). This completes the proof of Theorem 3.

4.2. Proof of Theorem 4

As usual, iΐ(f9g)ξJ%Q for some ε, we let ξ9 η and φ denote the following functions:
ξ(z) = f(z\z\ε), η(u) = g(z\z\ε) and φ = φ(ξ,η). Suppose (f9g)eJf^ is such that 0 is
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periodic under the associated map φ = φ(ξ9 ή) on the circle. Say φn(ϋ) = 0. As always
we identify the circle with the pair of intervals [/?(()), 0] u[0, |(0)] with ή(0) and |(0)
identified. For (f,g)eJ^Q we now define this set of functions φk, fc = l,2, ...,n,
depending on / and g: For k>2 we let φk = ξ if ^k~1(0)e[/y(0),0] and φk = η if
φk~\0)e[0,|(0)]. We choose φ1=φ2 = ξ.

Since for any k the composition φ^°φk_ί°...°φ1(G)is continuous in (/,#), there
is an open neighbourhood ̂  of (f9g) in ̂  such that for any (f,g)ei^'i the
composition φn°φn_l°...°φ^(ϋ) is well-defined. Let (ε, f9 g) = Λ(ε9 u9 v), where

and where Λ. is the coordinate map defined in Sect. 3.2. Also let
vθ = v + θ, (ε9fθ9jgθ) = Λ(ε9uθ9vθ)9 ξθ(z) = fθ(z\z\ε)9 ηθ(z) = gθ(z\z\ε\ and

φif θ = ξθoΐ ηθ according as φ. = ξ or ήθ. Finally let φθ = φ(ξθ9 ηθ). Then for (/, g)ε^
and for θ sufficiently small, φ^(Q) = φn θ°φn_ί θ°...°φί θ(0).

We want to prove that there is a neighbourhood ( —ε3,ε3)x^/

2

/ of (0,0,0) in
Rx3t τ such that if i^2=A({ε} x^), εe(-ε3,ε3), then the set {0n(0) = 0} meets
i^2 in a C°° manifold transverse to the ^-foliation (fθ9 gθ). To do this we assume

(f,g)eirιcir'2 and (f9g)eiri9 and prove that ^«0)|θ.0>0. But
au

Thus it suffices to show that if ε3 and i^2 are sufficiently small, then — ξθ(z)\θ = 0 >0
dθ

and — ηθ(z)\θ = 0 > 0. But when (ε, /, gf) = (0, /0, gf0), — ξθ(z) -1 and — ηθ(z) = 1. Since

fθ(z\z\ε) and ^θ(z|z|ε) are continuous in (0, ε, f, g, z\ it follows that ε3 and W2 may be
chosen with the required properties. This proves that for sufficiently large n the set
{(f,g)εJΐo : φqn + ί(0) = Q, Q(Φ) = qn/qn+1} meets W2 in a C°° manifold. Therefore, by
identification, (ξε,ηε) has a neighbourhood f^2 which meets ^(qn/qn+1,ε) in a C^
submanifold of JV^.

To prove that &(qn/qn+1? ε) is transverse to V^1, we note that by standard stable
manifold theory, for some ε3>0 and δ>Q there exists a C°° mapping C :( —ε3,ε3)
x ( —(5,<5)->^0, such that C(ε, •) is an embedding of ( —<5,<5) into ̂  whose image

is an unstable manifold of (fε9gε) and such that C(Q9λ) = (fQ + λ9g0 + λ). Now

— ξ(C(09λ))=ί and — ?/(C(0,/l))=l. Therefore, by continuity, if |ε| is sufficiently
dλ dλ

small, then 4f(C(0,A))> 1 -δ and 4 η ( C ( 0 9 λ ) ) > l - δ for some (5>0. Using these
dλ dλ

facts and a calculation similar to that used above, one can show that
d

-—φqn+i(Q)>0 at a point of &(qJqn+vZ)r\W%. This proves that 0>(qjqn+1,ε) is
α/ί
transverse to the unstable manifold of (ξ£9 ηε). Π
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4.4. Proof of Theorem 5

The proof of this theorem is an almost immediate corollary of the following
linearization result of Collet et al. (see [3, Theorem 6.3]). Let ̂  denote the open
unit ball in 3Sσ

τ and assume |ε|<ε2.

Proposition 4.4. There exists a C1 diffeomorphism of ^l x ( — 1, 1) onto an open
neighbourhood i^C^Q of (ξε,ηε) = ζε such that in this coordinate system

(i) (0, 0) represents ζε

(ii) #Ί x {0} represents
(iii) {0} x (- 1, 1) represents
(iv) ^(Y, Ύ) = (M(X, Ύ\ δε Ύ\ where M(0, Y) = 0 and \\ dxM(X, Y) \\ ̂  τ < 1 for all

(*, 7)6^x1- 1,1);
(v) For some meN and for some yme(0, 1) the set {y = ym} represents

Since ρ(r(ξ9η)) = ( l / ρ ( ξ , η ) ) - l 9 we have
Thus, for every n^m the intersection of 0*(qn_ 1/qn,ε) with ̂  is given in the above
coordinate system by the equation y = δ~ (n ~ m}ym. In particular, if the C1 curve γ(μ)
= (ξ(μ),η(μ))ei^ crosses Wε transversely at μ = μao, then for \μ~μ^\ sufficiently
small and n sufficiently large, the intersection (ζ(μn),η(μn)) oϊ ^>(qn_ί/qn,ε) and y is
uniquely defined. By the mean value theorem on the function y(ξ(μ\ η(μ)\ we have

-̂ -̂  = —(#„),

where θn-+μ^. Thus,

mil dy>cc-/0= "/(-^

Therefore,

To prove the last assertion of the theorem we note that by Theorem 3,

where βn is the geometric mean of the first n scale changes α0, . . . ,α π _ 1 ?

^•^-l/feU0)-^0)). where (£Λ>^) = ^"(&*7) Since ηn and ξn converge un-

iformly we get lim α^α^ where ocε= - l/(ηεξε(0)-ηε(ty) = ξε(0)/(ξε(0)-1). From
«-*• oo

this it follows immediately that lim (βn

n/an

ε) = 1. Π
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