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Abstract. We study a continuum version of a classical anisotropic spin model in
three dimensions with three component spins. We prove the existence of
topological defects, called hedgehogs, which are analogous to the vortices in the
two-dimensional xy-model and have a logarithmically divergent action. Bounds
for the interaction energy of a hedgehog and an antihedgehog are derived.

1. Introduction

It has been known for some time now that topological defects can play an important
role in the statistical mechanics of materials as well as in field theories. In this paper
we study defects that arise in a classical continuum spin system (nonlinear σ-model)
whose energy (action) is given by the anisotropic functional

A(S) = ${(dβ)2 + (AS)2}d*x. (1.1)

Here S is a three component spin vector of unit length, x,y,z are Cartesian
coordinates in (R3 and A is the Laplacian in the xy-plane.

The action (1.1) comes up in the study of the Lifshitz point problem in magnetic
systems [1]. The Lifshitz point is also of interest for phase transitions in liquid
crystals and other systems, see [2, 3] and references therein. The case of two
component spins has been analyzed in detail by Grinstein, Pelcovits, Nelson and
Toner [3-6].

When the spin has three components we shall see that there exist pointlike
topological defects that might strongly influence the thermodynamic behaviour of
the system. This is the prime motivation for studying (1.1). The action of the defects is
logarithmically divergent. The aim of this paper is to prove that there exist such
defects and to estimate their interaction energy.

One could add a term proportional to (VS)4 to the functional (1.1), where V is the
gradient in the xy-plane, without substantially changing our results. We choose to
study (1.1) for the sake of simplicity. However, a term proportional to (VS)2 would
cause a linear divergence in the action of the defects, see [7].
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Let Σ be a topological sphere in [R3 enclosing the origin. Let

>52 (1.2)

be a continuous spin configuration. The mapping S\Σ:Σ-^S2 is classified by its
winding number πeZ. The number n cannot change if Σ is smoothly deformed, as
long as the deformation does not go through the origin. We see thus that the
topologically stable spin singularities are pointlike objects characterized by an
integer winding number or topological charge. In the sequel the winding number
will be referred to as charge. We adopt the name hedgehogs for the spin
configurations that extremize the action A ana have charge concentrated at one
point. This terminology is suggested by the name given by Polyakov [7] to similar
configurations in field theory.

In so far as the influence on thermodynamics is concerned we expect our
hedgehogs to be similar to the vortices in the two-dimensional xy-model. The action
of a single vortex in the 2d cy-model is proportional to ln(V/α), where V is the
volume of the system and α is the lattice spacing. A simple energy-entropy argument
therefore shows that the vortices give an important contribution to the partition
function at high temperature and in fact cause a phase transition [8-1 0]. In contrast
to the 2d xy-model, where the existence of vortices is trivial, the existence of
hedgehogs requires solving a system of nonlinear partial differential equations.
Likewise the interaction of hedgehogs is more complex than the interaction of xy-
vortices and cannot be calculated exactly.

The plan of the paper is as follows. In Sect. 2 we reduce the action (1.1) to a
functional of a function of one variable by exploiting the anisotropic scale in variance
of A. In Sect. 3 we use the results of Sect. 2 and functional analytic techniques to
prove the existence of hedgehog configurations. Similar methods have been used to
prove the existence of merons and monopoles in gauge theories [1 1, 12]. Section 4
contains a proof of a lower bound for the action of an arbitrary spin configuration
with a specified charge at one point. This section makes precise our statement about
the logarithmic divergence of the action. In Sect. 5 we study the interaction of two
equally and oppositely charged hedgehogs and derive upper and lower bounds for
the interaction energy. These bounds suggest that the he dgehog-anti hedgehog
interaction is an anisotropic logarithmic function of the distance separating the two.
This indicates that the hedgehogs can be regarded as a three-dimensional
logarithmic gas, at least when they are dilute, in analogy with the vortices in the 2d
xy-model.

We would like to stress that it is doubtful whether the hedgehogs can cause a
phase transition. Grest and Sak [13] have shown by a renormalization group
argument that a system with the Hamiltonian (1.1) has a finite correlation length at
all temperatures. The anisotropic logarithmic gas does not have a phase transition
either, due to screening [3]. How the hedgehogs influence the thermodynamics will
be the subject of a future investigation.

2. A Cylindrically Symmetric Ansatz

We begin by writing the action (1.1) in terms of unconstrained variables, the Euler
angles of the spin vector:
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S = (S1, S2, S3) = (cos φ sin θ, sin φ sin θ, cos θ). (2.1)

After some algebra one finds

A(S) = J{(3Z0)2 + sin2 θ(dzφ)2 + (V0)4

+ (Aθ)2 + sin2 θ[_(Aφ)2 + (Vφ)4 + 2(Vφ)2(V0)2J

+ 2 sin θ cos θ [2zl φ(VΘ Vφ) - AΘ(Vφ)2] } d3x. (2.2)

We observe that the action (1.1) is invariant under the anisotropic scale
transformation

Tλ:(x,y9z)-+(λx,λy,λ2z)9 - (2.3)

where λ is a constant; i.e. if we define Sλ(x,y,z) = S(λx,λy,λ2z)9 then A(Sλ) = A(S).
Thus, if S describes a hedgehog at the origin, it is natural to assume that S only
depends on the scale invariant quantities

u = yx 1.

Now assume cylindrical symmetry, i.e.

φ(x9y9z) = arc tan M, (2.5)

and suppose Θ is only a function of t. Then the action, which we now write as a
functional of θ, reduces to

A(θ) = l{(dβ}2 + (V0)4 + (Aθ)2 - sm(2θ)Aθr~2

+ sin20[r~4+2r~2(V#)2]}d3r. (2.6)

Integrating over the polar angle in the xy-plane, (2.6) becomes

oo

2πJ drr~1B(θ)7 (2.7)
o

where

B(θ) =
— oo

/ ^ I
ί— 0 + sin2#[l

Γ / d\ 2 Ί2

')4 + U ί- θ
L \ βί/ J

The logarithmic divergence of the r-integral is manifest. We are reduced to studying
the functional B.

For a hedgehog with charge n the appropriate boundary conditions for θ are

(2.9)
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The boundary values (2.9) (modulo π) are forced by the cylindrical symmetry if we
want to avoid a singularity along the z-axis.

3. Existence of Hedgehogs

In this section we prove that the functional J5, subject to the boundary conditions
(2.9), has a minimum on a suitable set of functions. The minimizing function is a
solution of the variational equation of B. We begin by introducing some notation.

Let C*(1R) denote the space of all infinitely different!able real-valued functions
on R that have compact support. Denote the Z/-norm by \\-\\p and let L be the
differential operator (x(d/dx))2. Let X be the real Banach space obtained by
completing C*(IR) in the norm

l|θ||=l|0Ίl2 + llίβΊl4 + ll(^-i)βll2. (3.1)

For each neZ we choose a C°°-function θn with the following property: θn(x) = 0 if
x < - 1, θ(x) = nπ if x > 1. We define a functional Bn on C$(R) by Bn(θ) = B(θ + ΘΛ).
Below we prove that Bn extends to a well-defined, weakly lower semicontinuous
(w.l.s.c.) and coercive functional on X. The main result of this section is the following.

Theorem 3.1. For any neZ, the functional Bn has a minimum on X.

We now establish a few preliminary Lemmas. Limits of integration are omitted
when they are ±00.

Lemma 3.2. Let θεX. Then θ and xθ' are bounded continuous functions and there are
constants kί and k2 such that

ll0|loo^M0||, (3 2)

\\χθ'\\m^k2\\θ\\. (3.3)

Proof. Since C^([R) is dense in X, we can assume 0eC*(lR). By Holder's inequality

J θ'dt
Γoo Π3/4

?ΊU jr^Λ -
L i J

(3.4)

which proves (3.2). Similarly,

(xθ')2 = 2 } \_t(θ')2 + t2θ'θ"]dt

= 2 J θ'(L-£)l
— oo

which implies the desired result.

Lemma 3.3. I f θ e X , then θeLp(U) for any p>2 and there is a positive constant
Cp such that

II, ^C,||θ ||. (3-6)
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In other words: There is a continuous imbedding ip\X -»LP([R) for any p>2.

Proof. Let p>2.It suffices to verify the inequality (3.6) for θeC$(M). We have

$\θ\pdx= -pjxfl 'sgnθlθl*- 1*/*, (3.7)

which implies

2 | 2 / 2

We now claim that

i0||2g||(L-i)θ||2, (3.9)

and the lemma then follows from (3.8) and (3.2). Integration by parts and Schwarz'
inequality prove (3.9).

Lemma 3.4. The imbedding ip:X->LP(M) is compact for any p>2.

Proof. We only give the proof for p = 4, since that is the only case we shall use. The
proof for other values of p is similar.

Let V be the ball of radius p in X. Then V is precompact in L4(R) if and only if for
all ε > 0 there exists δ > 0 and a bounded subset Ω c= [R, such that for any θe V and | h \

(3.10)

and

ί Θ4dx<ε, (3.11)
OS \Ω

see e.g. [14] p. 31. We begin by verifying (3.10). By the mean value theorem and
Lemma 3.2 we have, assuming \h\ rg^-,

<2(2hpk2
i dJ\d_θ(χ + sh)ds]

-i L o d s X $ J
1 1 1

- |(2/zp/c2)
4 + (2/z/clP)2 \dt\ds J dxθ'(x + sh)θ'(x + th)

0 0 -1

) 2 \ \ θ ' \ \ l (3.12)

which proves (3.10), provided δ is sufficiently small. To prove (3.11), let
Ω = ( — a,a) and take a>\. Then

J Θ4dx^ sup|θ(x)| J \θ\3dx, (3.13)
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and for |x| > 1,

IθMI^MθiHxΓ1'4, (3 14)
cf. Eq. (3.4). Hence, by Lemma 3.3, there is a constant C such that

J 94dx^Cp4a-1/4 (3.15)
Dδ \Ω

for any θeV. Taking a sufficiently large yields (3.11). This completes the proof.

We have now proven the imbedding theorems that we need. It is convenient to
rewrite Bn(θ) as a sum of two functionals,

Bn(θ) = B(θ) + Rn(θ), (3.16)

where

Rn(θ)= J {(θ'n)
2 + 2Θ'nΘ' + l2t(θ' + θf

n)T-(2tθ')4

-i
+ 1 6(Lθn)

2 + 32(Lθn)(LΘ) - 4 sin (2θn + 2θ)Lθn

- 4 [sin (20n + 20) - sin (20)]LΘ + sin2(0n + 0)

- sin2 0 + 8 sin2 (θn + θ)l(tθ'n)
2 + 2(tθ'n)(tθ')']

+ 8[sin2 (0Λ + 0) - sin2 0](ί0')2} A. (3-17)

While the functional Rnmay look complicated, it is in fact much easier to deal with
than B, because the integration is over a finite interval. We are now prepared to
begin the analysis of Bn. Below, c l 5c2 etc. will denote numerical constants whose
values may change from one proof to another.

Proposition 3.5. The functional Bn is well-defined and continuous on X for any nεZ.

Proof. This follows easily from Lemmas 3.2 and 3.3.

Proposition 3.6. There are positive constants an and bn such that

-bn (3.18)

for any θeX.

Proof. From Lemma 3.2 it is clear that

Rn(θ)^-cί\\θf\\2-c2\\tθf\\l-c3\\(L-i)θ\\2-c49 (3.19)

where c l Jc2,c3 5c4 are positive and only depend on n. It therefore suffices to verify
(3.18) with Bn replaced by B. We have

B(θ) ^ 1{(Θ'}2 + (2tθ')4}dt + εj"{(4L6>)2 - 4sin(20)L<9 + sin2 θ}dt (3.20)

for any εe(0, 1). Using an integration by parts argument and Holder's inequality we
see that the ε-term in (3.20) is bounded from below by

s\\(L-±)θ\\2

2-sc5\\θ\\4-εc6\\θ\\2Jtθf\\2

4

-fic7||θ|l!l|ί0ΊU (3 21)
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Choosing ε sufficiently small, the desired result follows.

Remark. The reader may have wondered why we chose to use the norm
|| (L — i)( ) I I 2 rather than || L( ) || 2, which might look more natural. The reason is
that if we use || L( ) || 2 the proof of coercivity breaks down, since all of the L0-term
would be needed to control the negative term in B.

Proposition 3.7. The functional Bn is "weakly lower semicontinuous on Xfor any neZ.

Proof. We write Bn(θ) = A^θ) + A2(θ) + A3(θ), where

A,(θ) = J {(0; + θ')2 + [_2t(θ'n + 0')]2}^, (3.22)

A2(θ) = 8 Jsin2 (θn + θ)(tθ'n + tθ')2dt, (3.23)

A3(θ) = J{ [4L(θn + θ}-\2 - 4 sin (20, + 20)L(0M + θ) + sin2 (θa + θ)}dt. (3.24)

We first observe that A1 is convex in θ and thus w.l.s.c. Let now {χ.} c X converge
weakly to 0e X. Then χ. and tχ( converge pointwise to θ by Lemma 3.2. Hence, by
Fatou's lemma, A2 is w.l.s.c. It remains to consider A3 which we can rewrite as

ί { [4(L- i)0]2 + sin2 θ - θ2 - [4sin(2fl) - W]LΘ}dt
i

+ J {32LθnLΘ + sin2 (θn + θ}- sin2 θ - 4 sin (2θn + 2θ)Lθn
- 1

- 4[sin (2θn + 20) - sin (20)]L0) dt + c^ (3.25)

The integral from — 1 to 1 above is weakly continuous in θ because weak
convergence in X implies uniform convergence on [ — 1, 1]. The (L— £)-term in the
first integral in (3.25) is convex and hence w.l.s.c. We complete the proof by showing
that

A4(θ) = J {sin2 θ - θ2 - [4 sin (2Θ) - W]LΘ}dt (3.26)

is weakly continuous. Let χi and 0 be as before. Then,

\A4(Θ) - A4(χi)\ ^ I J(sin2 θ - θ2 - sin2 χ . + χf)dt\

+ I j [4 sin (20) - 80 - 4 sin (2χ.) + SχJLχ^ί |

+ I j (4 sin (20) - 80)L(0 - χ.)dt\. (3.27)

The last integral on the right of (3.27) is a linear continuous functional of 0 — χt since
it is bounded in absolute value by

c2 | |0||6

3 | |(L-i)(^-0)||2 + c 2 |0 | |^ | |^-0 | | 4 . (3.28)

The first two integrals on the right of (3.27) are bounded by

ί. (3.29)

Making use of Holder's inequality, Lemma 3.3 and the fact that || χ || is bounded
as i -» oo, we see that there is a constant c5 such that (3.29) is bounded from above by
C5 I I @ — Xi II 4 We conclude from Lemma 3.4 that lim || 0 — χ f || 4 = 0. This completes

i^oo

the proof.
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Proof of Theorem 3.1. It is easily checked that the Banach space X is reflexive. Hence
it follows from Propositions 3.6 and 3.7 by standard arguments that Bn attains its
infimum on X. For details see e.g. [15] p. 93.

4. General Lower Bound for the Action

In this section we derive a lower bound for the action in a finite volume containing
no singularities. This estimate will be used in the next section to obtain a bound for
the interaction energy of hedgehogs.

We leave the cylindrically symmetric ansatz considered in the last two sections
and study an arbitrary field configuration S = (S1

9S
2

9S
3), which is twice

continuously differentiate in (R3\{0) and has charge n at 0. Then, see e.g. [16] p. 568,

n = (8π) " 1 J εabcS
a dSb Λ dSc (4. 1 )

Σ

for any topological sphere Σ enclosing 0. For obvious reasons of convenience we
work with cylinders and cylindrical surfaces.
Define

2 + y2<R, -\L<z<\L}, (4.2)

2 + y2<R,z=±±L}, (4.3)
2 + y

2 = R,-±L<z<±L}. (4.4)

Then dΩR L = DR LuHR L. When there is no danger of confusion we shall omit the
subscripts R, L. The main estimate is the following.

Theorem 4.1. Consider a cylinder ΩR L and let dV be the volume form on dΩRL in-
herited from [R3. There are constants m l 9 w2 > 0, independent of R and L, such that
either

\ {(dβ)2 + (A$)2}dV^ m,n2R~2 (4.5)
DR.L

or

1/3. (4.6)
HR,L

Before proving Theorem 4.1 we shall derive its consequence, which is more
transparent. Let L> / > 0 and define

= ΩLtL2\Ωltl2. (4.7)

Theorem 4.2. There is a constant m3 > 0, independent of I and L, such that

J {(dzS)2 + (AS)2}d3x^m3\n\4/3lτij. (4.8)
Λ(L,l) *

Proof. (Assuming Theorem 4.1) Define

AD(λ}= j {(dβ)2 + (ΔS)2}dV, (4.9)
DA, A 2
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Then

AH(λ}= J
H A , A 2

183

(4.10)

J {(dβ)2 + (AS)2}dV= ${λAD(λ) + AH(λ)}dλ9 (4.11)
Λ ( L , l ) I

and using now Theorem 4.1, (4.11) is larger than

m3H
4 / 3lnL, (4.12)

with ra3 = min{m 1,m 2}.

Proof of Theorem4Λ. Let r, z, χ be cylindrical coordinates in R3. By formula (4.1) we
have

f d S b dSc dSb dS 1fl ^-^ — ι—" dv-^z dl dχ d
(4 13)

If u is a three-dimensional vector, let |u| denote its Euclidean length. Since α, b, c run
from 1 to 3 it follows that

^12J
dS

rdχ
Λ F + 1 2 J

as as

- 1 2 £ v ~' " U V ^ / H

using the Schwarz inequality. Since S S= 1, we have

1/2

Hence,

and similarly

I) ΰ

Γ Ί1/2

^(2π)1/2R\ \ ( Δ S ) 2 d V \ ,
ID J

Γ
J (VS) W^ (2πRL)1/2 J
H L//

From Eq. (4.14), (4.16) and (4.17) we obtain

1/2

(4.14)

(4.15)

(4.16)

(4.17)

Ί1 / 4Γ /<3SY Ί1 / 2

' J (— } d V \ , (4.18)
rr \ ί/Z /_J l_ ti \ / —I

where
/2

(4.19)
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Now we consider two cases.

Case 1. Rg ̂  (n/3)(π/2)1/2. Then g2 ^ (n2/l8)πR~2, which implies (4.5).

Case 2. Rg < (n/3)(π/2)1/2. Then,

where

— n 2 ^ ( 2 π R L ) 1 / 2 e f 2 , (4.20)

\ l / 2

e = { $ ( A S ) 2 d V \ (4.21)
J

and

v l / 2

(4.22)
V H \ OZ / /

Hence,

e 2+/ 2^e 2 + - , (4.23)
e

where αΞ(π2/9)n2(2π#LΓ1/2, which implies (4.6).

5. The Interaction of Hedgehogs

In this section we study the energy of a spin configuration with charge 1 at the origin
and change — 1 at another point r. Our estimates give upper and lower bounds for
the interaction energy of a hedgehog and an antihedgehog.

Since the action density is invariant under the generalized scale transformations
(2.3) it is natural to try to find an "inversion" that leaves the action density invariant
and can be used, combined with a translation, to construct a hedgehog-
antihedgehog configuration from the one hedgehog configuration. This method
works nicely for merons [17], where one has conformal invariance. However, an
explicit calculation shows that there is no mapping from the one point
compactification of [R3 onto itself that interchanges 0 and CO and leaves the action
density invariant.

Let ^(r) be the class of all spin configurations S with charge 1 at 0 and — 1 at
r = (x,y,z) that are twice continuously differentiable except at 0 and r. The
hedgehog-antihedgehog configuration with the specified charges should belong to
the class &*(*). We know from the last section that the action in small cylinders
containing the singularities is logarithmically divergent. We therefore introduce a
short distance cutoff as follows. Denote the unit cylinder Ω1 t l by Ω and denote by
A(τ) the set obtained by removing the cylinders Ω and r + Ω from [R3. Let

±}. (5.1)

We shall derive upper and lower bounds for the quantity

£(S)= j {(dβ)2 + (AS)2}d*x, (5.2)
Λ(r)
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with Se^(r) and ΓEΓ. The above cutoff is chosen solely for notational convenience.
One can choose the cylinders Ω of a different size and then obtain a different range
for r.

Choose reΓ and let

d = max{|z|1/2,i(;c2 + y2)112}. (5.3)

Then the intersection of the cylinders Ωdfd2 and r + Ωdtd2 is empty. From Theorem 4.2
we conclude

(5.4)

which implies the first half of the following theorem.

Theorem 5.1. There are positive constants El9E2 such that for any reΓ

EίS^JE^lnlrl (5.5)

for any Sey(r), and there exists Se^r) such that

(5.6)

Proof. Consider those reΓ that belong to a fixed parabola Pt u = {(x,y,z)\y/x = w,
z/x2 + y2 = t}. Let r0 be one of the two points in ΓnP, u closest to 0. Choose a field
configuration S065^(r0) with the following properties:

i) In ί2, S0 is equal to a hedgehog configuration with charge 1 at 0.
ii) In r0 + £2, S0 is equal to a hedgehog configuration with charge — 1 at r0.
iii) S0 is constant outside a bounded region.

The existence of a field configuration S0 satisfying (i-iii) is clear from standard
extension theorems. Furthermore, it is not hard to check that one can choose the S0's
such that

sup E(S0) = E<co. (5.1)
— 00 <f < 00

For any λ^ 1, define SQ(Γ) = S0(TA-ιr), where Tλ is the scale transformation
(2.3). Then Sλ

0e^(Tλr0) and

Λ(Tλr0)

= £(S0) + I {(dβ0)
2 + (ΔS0)

2}d3x, (5.8)
Ξ

where Ξ = TA_ι(Λ(TAr0))\Λ(r0). Using (i) and (ii) we see that the integral over Ξ is
bounded from above by fab^nλ, where b1 is the inίϊmum of the functional B1 on X.
In view of (5.1) the inequality (5.6) follows easily.

We make two final comments. An inspection of the proof of the bounds (5.5) and
(5.6) indicates that the interaction energy increases twice as fast in the xy direction as
it does in the z-direction.

It is not possible to use the methods above without some modifications to
estimate a priori the interaction energy of two identically charged hedgehogs,
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because the action integral will diverge at infinity. In order to remove this divergence
one would have to introduce a third charge to ensure the neutrality of the system.

Acknowledgement. I would like to thank John Hertz for suggesting the study of the hedgehogs and
reading the manuscript.
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