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Abstract We consider products of structure constants of a finite-dimensional
compact simple Lie algebra, in which all indices except a few are contracted in
pairs. We prove that such a product is zero if only one index is free, is
proportional to the Cartan-Killing tensor if two indices are free and is
proportional to a structure constant itself if three indices are free. For SU(rc),
n ^ 3 w e also consider products of usual d (related to the anti-commutator) and
structure constants / The results for one and two free indices are still valid.
For three free indices the product is proportional to either an / or a d
according to whether the number of / ' s in the product is odd or even.

1. Introduction

In quantum chromodynamics (QCD), the various fields carry colour and the
interaction vertices depend explicitly on quantities connected with the colour
group SU(3)C, which is gauged to produce the interactions. In particular, the colour
dependence of the bare triple gluon and ghost-gluon vertices is given by the
structure constants cijk of the colour group (forgetting for the moment about the
contravariant or covariant character of the indices). The question then arises
about the colour dependence of the vertices in higher loop orders. Is it still given
by cijk as above, or are there additional terms with a different dependence on the
colour indices? This question is important from the viewpoint of having a renormal-
izable theory. The point is that unless the counterterms required for these vertices
in higher orders depend only on cijk, such theories will not be renormalizable in the
usual way. Fortunately, using charge conjugation invariance, one can show [1]
that the proper triple gluon vertex depends solely on cijk. However, this proof does
not work for the ghost-gluon vertex. Instead one can use the Slavnov-Taylor
identity [2] connecting the two vertices to show [1] that in two momentum
subtraction schemes [3] the divergent part of the ghost-gluon vertex depends only
on cijk, though finite parts with a different colour dependence are not ruled out.
Much before this proof was found, one was led to speculate that there may be a
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mathematical property of the structure constants themselves which would ensure
that the proper ghost-gluon vertex is always proportional to cijk.

In any higher order contribution to the ghost-gluon vertex, the colour
dependent part will factor out and will be a combination of the structure constants
with three free colour indices. Moreover, since any higher order diagram is
constructed from the elementary vertices connected by propagators, and since the
ghost fields do not couple directly to quarks, the dummy indices will be contracted
pairwise. Thus, the general form of the colour dependence expected is

The dots represent dummy indices which are contracted pairwise only. Our
considerations include the Tijk in which ij, ik or jk may belong to the same c.
Elementary counting tells us that the number of c's in Eq. (1.1) must be odd. In
words: a combination of an odd number of c's with three free indices is a number
times a single c, provided the dummy indices in the combination are contracted
pairwise.

Apart from the original motivation from QCD, it is interesting in its own right
to prove that all such Tijk are proportional to cijk. We prove this not only for SU(3)
but for all compact simple Lie algebras. We also prove that contracted tensor
products of c's with one and two free indices are, respectively, zero and
proportional to the Cartan-Killing form. Two proofs are given one pleasing to
the mathematically minded (Sects. 2-4) and the other which might appeal to the
physicists (Sect. 5). In the special case of SU(n), n ̂  3 these results are extended
using the first proof to the contracted tensor products containing fijk (pro-
portional to cίjk) and dijk. Some numerical results for SU(3) are given in Sect. 6.

2. Invariance of the Structure Constants under the Adjoint Representation

In this section we recall some well known results which will be relevant for us.
Let u9v,... be the elements of a finite-dimensional Lie Algebra si and [u,v\

their anti-symmetric Lie product. The Jacobi identity

[«, [», w]] + [v, [w, u]] + [w, [u, «]] = 0 (2.1)

tells us that the adjoint operator Δu defined for every v in si by

Δuv = \u,υ\, (2.2)

gives a representation of the algebra si into itself: the so-called adjoint repre-
sentation. The Cartan-Killing form is defined by

g(u,v) = Tτ(AuAv). (2.3)

Let ^ be the simply connected Lie group associated with si u in si corresponds
to expu in ̂ . The adjoint representation A=Δ(^) of ̂  is defined by the formal
power series

n = o n.
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It is known ί that the Lie product is invariant under the adjoint representation A,
i.e. for every u, v and w in s/

[exp(zl>,exp(zljw] = exp(zlM)|>, w] . (2.5)

With respect to any basis (e ) of s#9 the structure constants c f j

 k are defined by

[ e ( > e , ] = C y V (2.6)

Here and in what follows, summation over repeated indices will be understood.
The matrix elements of Ae. are thus equal to the structure constants and the
Cartan-Killing form reads

gij = g{ei,e) = cijcjl

k. (2.7)

From now on we will be concerned only with the semi-simple Lie algebras over
the complex field. They are characterized by a non-degenerate Cartan-Killing
form. In these algebras one can lower or raise the indices at will using the non-
singular metric tensor (g^) and its inverse (gιj). Tensorial sequences which are
related by the above procedure are said to be equivalent and an equivalent class is
called a tensor, the components of which are the tensorial sequences with a definite
tensorial (contravariant or covariant) character. For instance, (c ̂ ) are particular
components of a tensor c ( 3 ) of order three. Its completely covariant components
(cijk) are known to be totally anti-symmetric in the three indices. This is an intrinsic
property of the structure constant tensor c(3). Similarly, (g^) are the covariant
components of a tensor # ( 2 ) of order two which is symmetric.

Under a change of basis

eί = ^.M/, (2.8)

where (M/) is any non-singular matrix, the structure constants and the metric
tensor transform as tensorial sequences of order three and two respectively. For
example,

c'ijk = M>M>»M"kclmn, c'J^MlMJiM-1)^", (2.9)

g\ΓM\Mm

jgim. (2.10)

We now restrict ourselves to changes of basis in si generated by the adjoint
representation A,

e^efixpΔJl (2.11)

for any u in si. It follows from Eq. (2.5) that the structure constants form an
invariant tensorial sequence, i.e.

C;./ = (exp ̂ ' ( e x p Λ ^ e x p - Δufnclm" = ctJ

k. (2.12)

1 Expanding the exponential series in the left hand side of Eq. (2.5), and using induction on n and the
00 n\

Jacobi identity (2.1) to prove £ — ^ K ^ J ^ ί ^ / w ] ={ΔJ[v,w], one gets the result
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Since the metric tensor (gtj) is given in terms of the structure constants [Eq. (2.7)],
it also forms an invariant tensorial sequence, i.e.

0y = (exp4,)ί(«PΛ)7Λ» = ft7 (2-13)

Hence c ( 3 ) and g(2) are two invariant tensors under the adjoint representation A.
This property plays a central role in proving our main results.

3. Contracted Tensor Products of Structure Constant Tensors

Let

T < " W 3 ) ® c ( 3 ) ® . . . ® c ( 3 ) (3.1)

be a contracted tensor product of p tensors c ( 3 ) in which n indices are free.
Elementary counting implies that n + p is even. For example, g{2) is itself a Ti(2)

tensor, and for p = 5:

T^cmdι

mc\/r

mcr (3.2)

will represent the components of a T*1*.
We now prove that for a finite-dimensional compact simple Lie algebra s$ one

has:

7 ^ = 0, T<2) = V 2 ) , T ( 3 ) = μc ( 3 ), (3.3)

where λ and μ are constants (possibly zero) which depend upon the tensor
considered.

The components of T^ are a tensorial sequence of order n transforming
according to the nth power of the adjoint representation A. Since from Sect. 2 the
tensor c ( 3 ) is invariant under A, the same holds true for any T^.

For compact Lie groups any finite-dimensional representation is either
irreducible or completely reducible. Therefore, the invariant tensor T^, as any
other invariant, transforms according to the unit representation of ̂  (Wigner-
Eckart theorem). Hence, to find what T^ can be, we have to answer the question:
how many times does the unit representation occur in the nth power of A ?

From now on we consider only compact simple Lie groups. For these groups
it is known that A is irreducible and different from the unit representation. Also
that the unit representation occurs once in D1®D* if and only if the two
irreducible representations D1 and D2 are equivalent [4]. Moreover, A is
real [5, 6], Zl^zl*. Therefore, the unit representation occurs:

(i) zero times in A,
(ii) once in A®A, and

(iii) as many times in A®A®A as A occurs in A®A.
It is verified in the appendix that A occurs twice in A®A for the algebra An

(isomorphic to the algebra of SU(rc +1)), π ^ 2 , and once for every other compact
simple Lie algebra including the five exceptional ones.

Thus:
(i) T ^ ^ O .

(ii) All T ( 2 ) are proportional to one of them, say the Cartan-Killing tensor g{2\
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(iii) For all compact simple Lie algebras, except An, rc^2, all T ( 3 ) are
proportional to one of them, say the structure constant tensor c{3) itself. This ends
the proof of Eqs. (3.3) for these algebras.

(iv) For An, ft^2, one needs further arguments to show that T ( 3 ) is pro-
portional to c(3), since there are two linearly independent third order invariant
tensors under A. This is done in the next section.

4. The Special Case of SU(n), w^3

The Lie algebra of SU(w) is isomorphic to the (n2— l)-dimensional Lie algebra si
over the real field of n x n traceless hermitian matrices, the Lie product being
defined by — ί times the commutator. Without loss of generality, we choose the
commonly used [7] basis (V^ of si normalized such that:

Tr(ViV) = 2δij. (4.1)

The commutator and the anti-commutator of two Vs are then given by:

LVPV^=2ifijkVk, (4.2)

^ ^ V y Λ (4 3)

The structure constants fijk are related to the c's considered previously by

fo-W'-k'*- (44)

The fijk and the dijk are, respectively, completely anti-symmetric and symmetric in
/, j , and k. Both of them are real.

The adjoint representation of SU(^i) corresponds to changes of basis in si
defined for all U in SU(n) by:

V! = UVtU-\. (4.5)

Thus, the tensorial sequences (fijk) and (dijk) are seen to be invariant under the
adjoint representation. They are the components of the two linearly independent
third order tensors / ( 3 ) and d(3\ Consequently, any invariant tensor Γ ( 3 ) is a linear
combination of / ( 3 ) and d{3\

To distinguish between / ( 3 ) and d{3) we examine the law of transformation of
these tensors under the change of basis in si defined by the complex conjugation
of the basis matrices Vv Since fijk and dijk are real, taking the complex conjugate of
Eqs. (4.2) and (4.3) one finds that / ( 3 ) changes sign while d{3) remains invariant:

V.-^V* => / ( 3 ) - ^ - / ( 3 \ di3)^d{3). (4.6)

It follows that T ( 3 ) defined as the contracted tensor product of an odd number of
tensors / ( 3 ) changes sign under complex conjugation of the Vi9 and therefore is a
multiple of / ( 3 ) . This completes the proof of Eq. (3.3).

More generally, let T^ be a tensor of order n defined as a contracted tensor
product of q tensors d^ and p tensors / ( 3 ) . Elementary counting implies that
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Fig. 1. A path starting at line i and ending in line; associated with the expression for Tijk given in Eq.
(5.1)

n + p + q is even. This tensor T^ is invariant under the adjoint representation of
SU(n), and following the same arguments as above yields for all q and p:

C = °> 3,2) = V 2 ) , (4.7)
,3 ) = ίμdi3) if q is odd and p even

qp [v/(3) if q is even and p odd, l * j

where /I, μ, and v are constants (possibly zero) depending upon the tensor
considered.

5. Second Proof of the Nature of T0 0 for ^

This proof is based on the matrix representation of the adjoint operator. Let us
denote by Δt the matrix of Δe. with respect to a basis (e.) of si. Without loss of
generality, for compact simple Lie algebras we choose (g^) to be proportional to
the unit matrix. Then cijk = (Δi)kj = (ΔJ)ik = (Δk)ji follows from the complete anti-
symmetry of the cίjk. This is used below to express products of c's in terms of
matrix products.

A product of any number of c's with certain contracted indices can be
represented by a trivalent graph. Apart from a sign, a c is denoted by a point and
its indices by lines radiating from it, a line joining two points corresponds to a
contracted index. Thus Tijk is represented by a trivalent graph with three outgoing
lines marked i, j , and k. It is sufficient to consider connected graphs. One can then
always trace a path starting at line i and ending in line j , see Fig. 1. Therefore,
Tijk can always be written as:

*ijk = ^ijCocίa2a3 ' ' ' Cocr - 2 α r - ί Λ r > W 1)

where Mtj is the (ij) matrix element of the matrix

M = ΔβιΔf2...Δβ,. (5.2)

By definition all the indices a and β, except k which is one of them, are pairwise
contracted. Since the graph is connected, there is at least one index in the set
{βv...,βs}, call it β, which occurs in the set {av...,otr}. Denote the unique
structure constant which carries the index β in Eq. (5.1) by cao,,β. Now using the
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obvious matrix relation

cm.βAβ = AaAa.-Aa.Aa (5.3)

again and again, we can absorb all the c's in Eq. (5.1). Then Tijk can be written as
the (ί, j) matrix element of a linear combination of matrices

. . . ) i J 9 (5.4)

where M\ M",... are, up to a sign, matrices of the type defined by Eq. (5.2). This
time Ak occurs in each of them.

Given Eq. (5.4), it is sufficient to show that any such matrix

p odd, all indices β except k being contracted in pairs, is proportional to Δk. Using

[ x , y 1 y 2 . . . 7 p ] ^ [ x , y 1 ] 7 2 . . . y p + y 1 [ x , y 2 ] . . . y p + . . . + y 1 y 2 . . . [x,y p ] , (5.6)

the commutator [Δi9Mj] can be written as a sum of terms. One of them is:

APί..ΪAi9Aj]...Δβp = cijΊcΔβί...Δk...Aβp = ciJkMk, (5.7)

while the other terms are paired to have a zero sum. Indeed, for any contracted
index β which occurs twice in the right hand side of Eq. (5.5), there are two terms

which sum to zero owing to the anti-symmetry of ciβy. Thus one finds:

lΔ»Mj-] = ciJkMk. (5.9)

The number of linearly independent solutions Mf of this equation is the number of
times the adjoint representation Δ occurs in the reduction oϊΔ®Δ. The arguments
of Sects. 3 and 4 above then complete the proof that Mk is proportional to Ak.

It then follows that

TiJk = μciJk9 (5.10)

from which one can easily deduce the results for one and two free indices, i.e.

Ti = Tijkδjk = μcijΓQ, (5.11)

6. Some Numerical Results for Tijk in the Case of SU(3)

Instead of Ai9 we use the proportional matrix Fi9 the (k,j) matrix element of which
is fijk. In the graphical representation of Tijk with at least three /'s there always
exists a closed path, see Fig. 2. Then, the same arguments as in Sect. 5 allow us to
write any Tijk as a linear combination of traces of products of F's. In the compact
notation of indicating Ft by the index i it carries, we write:

.FJ....Fk...) = Tr(i...j...fc...). (6.1)
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Fig. 2. A closed path which allows us to write any Tijk as Ύτ{ΔβiΔβ2...Aβs) times a product of c's

Table 1. Traces containing products of nine F's for SU(3). Each is
proportional to fιjk. The constant of proportionality is given in the
second column
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I )
n)
m)
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0
0

27/4
189/16

9/4
225/16

27/4
27/4

0
9/2

- 9/4
9/4

- 9/2
0

For products of two and three /'s the results are well-known

(6.2)

(6-3)

All the products of five /'s can be reduced to a product of three or less /'s by using
Eqs. (6.2) and (6.3).

All the products of seven fs can be expressed in terms of products of a fewer
number of /'s and

Tr (ijlmklm) = 0, (6.4)

Tr(iljmklm) = 36fijk. (6.5)

On a systematic study of the traces of nine /'s we find that one can express them all
in terms of a set of fourteen traces and products of a fewer number of /'s. The
values of these fourteen traces are given in Table 1. Traces containing seven and
nine /'s were calculated on a computor using the explicit numerical values of
the fijk.
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Appendix - Number of Times the Adjoint Representation A Occurs in A ®A

As we could not find a convenient reference, we worked out the reduction of Δ ®Δ
into its irreducible components. We list the result for all compact simple Lie
algebras. An irreducible representation is characterised by its highest weight

M = Σ ^iπi expressed in terms of the fundamental dominant weights π . In labelling
i

these π we have adopted the notation of Cartan (see for example, Refs. [5]
and [6])

Aί: 2πγ ®2π1 = 4π : 0 2 π x 0 0 ,

dimensions 3 x 3 = 5 + 3 + 1.

A2: (T^+712)0(7^+π2)

= (2π1 + 2π 2 )®3π 1 Θ3π 2 ®(π 1 +π 2 )0(π 1 +π 2 )ΘO,

dimensions 8x8 = 27+ 10+10 + 8 + 8 + 1.

D3=A3): (π1+πn)®(πί+πn)

dimensions φ + 2) x φ + 2)
= J φ + l)2(n + 4) + J φ - l)(w + 2)(n + 3)

B3: π3(g)π3=2π3®{2πί+π2)ξB2π2ξ&2π1®π3®0,

dimensions 21 x 21 = 168 + 189 + 27 + 35 + 21 + 1 .

dimensions 36x36 = 495 + 594 + 44 + 126 + 36 + 1.

n, n = 5: π3(x)π3 = 2π30(π2 + π 4 )©2π 2 0π 5 ®π3©O,

dimensions n(2n + 1) x n(2n +1)

= f (n2 - l)(2n + l)(2n + 3) + \n{n - l)(2n + l)(2n + 3)

1)+1

Cn? n = 2, (5 2 = C2): 2 π 1 ® 2 π 1 = 4 π 1 0 ( 2 π 1 + π 2 ) 0 2 π 2 0 2 π 1 0 π 2 0 O ,

dimensions n(2n +1) x n(2n +1)

+ f n(n - l)(2n - l)(2n + 3) + n(2rc + 1) + (n - l)(2n + 1) + 1 .

dimensions 28 x 28 = 300 + 350 + 35 + 70 + 28 + 1 .

D5: π 4 ® π 4 = 2π 4 φ(π 3 + π 5 ) φ 2 π 3 © ( π 1 + π 2 ) © π 4 © 0 ,

dimensions 45 x 45 = 770 + 945 + 54 + 210 + 45 + 1 .
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dimensions n(2n — 1) x n(2n — 1)

= i Φ + l)(2n+ l)(2n- 3) + ̂ n(n + l)(2n- l)(2n- 3)

+ (n + l)(2n - 1) + £ φ - l)(2n - l)(2n - 3) + n(2n -1) + 1 .

£ 6 : π2(x)π2 = 2 π 2 ® π 6 ® ( π 1 + π 3 ) θ π 2 φ 0 ,

dimensions 78 x 78 = 2430 + 2925 + 650 + 78 + 1.

EΊ\ π 1 ®π 1 = 2π 1 ©π 5 θπ 4 ®π 1 ®0,

dimensions 133x133 = 7371+8645 + 1539 + 133 + 1.

Es: π 1 ® π 1 = 2 π 1 φ π 3 ® π 2 ® π 1 φ 0 ,

dimensions 248 x 248 = 27000 + 30380 + 3875 + 248 + 1 .

F 4 : π2(g)π2 = 2π 2 ©π 4 ©2π 1 ®π 2 ®0,

dimensions 52 x 52 = 1053 +1274 + 324 + 52 + 1 .

G 2 : π 2 ® π 2 = 2 π 2 φ 3 π 1 ® 2 π 1 φ π 2 ® 0 ,
dimensions 14 x 14 = 77 + 77 + 27 +14 + 1 .
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