
Communications in
Commun. Math. Phys. 90, 1-26 (1983) Mathematical

Physics
© Springer-Verlag 1983

Reconstruction of Singularities for Solutions of
Schrόdinger's Equation

Steven Zelditch
Department of Mathematics, Columbia University, New York, NY 10027, USA

Abstract. We determine the behavior in time of singularities of solutions to
some Schrόdinger equations on R". We assume the Hamiltonians are of the form

n

Ho + V, where Ho = 1/2A + 1/2 £ co^x^, and where V is bounded and smooth
k = ί

with decaying derivatives. When all ωk = 0, the kernel k(t,x,y) of exp ( — itH) is
smooth in x for every fixed (t,y). When all ωι are equal but non-zero, the initial

mπ
singularity "reconstructs" at times t=— and positions x = (— l)my, just as

if K = 0;fc is otherwise regular. In the general case, the singular support is
shown to be contained in the union of the hyperplanes {x\xjs=(—\)ιjsy },
w h e n (Ojt/π = lj for j=jί,... Jr.

0. Introduction

Let H = Ho + V be a Schrόdinger operator on L2(R% where Ho is one of the model
Hamiltonians:

(1) - 1/2 A Free Particle,
(2) - 1/2 Δ + 1/2 |x|2 Isotropic Oscillator,

n

(3) - 1/2 A + 1/2 £ ωlxl Anisotropic Oscillator,
k=ί

and where the perturbing potential V is a 0-symbol on Rn, i.e. \da

xv\ ^ Cα(l + |x|)~ |α |.
Then H generates a one parameter group of unitary operators U(t) = exp — itH,
whose Schwarz kernels we denote by kv(t9x,y) (called "propagators"). Our goal is to
determine the wave front sets of these kv(t,x,y) when (t,y) are held fixed. This is the
essential step in finding out how U(t) propagates singularities—or, more correctly,
how U(t) smooths out and later reconstructs singularities.

The main problem is that although these distributions are oscillatory integral
ones, i.e. of the form

k(t,x,y) = J a(t,x,y,θ)eiSiUx>y>θ)dθ,

they are not Lagrangian distributions (cf. 4, 7). Consequently, WF(k(t,-9y))φ
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ΛSty = {(x,ξ)\ξ = (dS/dx)(t,y,x,ΘUδS/dθ)(t,y,x,θ) = 0} and WF(U(t)φ) φ Ψ WF(φ\
n

where Φ is the Hamiltonian flow for H(x,ξ) = \β\ξ\2 + 1/2 £ ω\x\ + V(x).
k = l

Indeed, these relations fail for simple reasons. First, the Lagrangian manifolds
ΛSt and phase flow Φι are not even conic. Secondly, the amplitude a is not a symbol.
Finally, k(t,x,y) is known to be regular for small |ί| for a wider class of potentials (cf.
[5, 6]). Hence singularities are instantly smoothed out, and the above relations
would appear to be vacuous; however, singularities can appear at later times, and so
the problem is really to locate them by a suitable replacement of these relations.

Our central point in this paper is that despite such problems the smoothness,
decay and reconstruction of singularities for solutions of these Schrodinger
equations can in fact be determined from the geometry of the phase flows Φι. The
idea is this. An oscillatory integral wave function φ should have a local singularity at
x if and only if an "infinite amount" of its lagrangian projects over every
neighborhood of x (under the projection π(x9ξ) = x). Indeed, the lagrangian
represents the positions and momentum of the family of classical particles
corresponding (in the semi-classical interpretation) to φ. A singular point x of φ
should therefore correspond to an infinite density of these particles coinciding at x
with various different momenta. Further, a co-direction ξ should be singular at such
an x if an infinite density of these coinciding particles pass through x with momenta
in the ^-direction (i.e. in every conic neighborhood of ξ).

Now, the unperturbed phase flows Φι

0 for the Hamiltonians (l)-(3) are not conic,
but they are of course linear. Consequently the lagrangian Ay = {(x,ξ)\x = y) for the
initial data x = y is carried by Φι

0 into an affine lagrangian Ay, the lagrangian for
ko(t,-9y). One can check from the explicit formulas for ko(t,x,y) (Mehler formulas)
that WF(ko(t,-,y)) consists exactly of the (vertical) rays in Ay, if such exist at time ί, as
would be predicted from the preceding remarks.

When the Hamiltonians (l)-(3) are perturbed by O-symbols V, the phase flows
Φι remain asymptotic, as |x| + \ξ\ -> oo, to the Φι

0. Hence the ΦιAy are asymptotic to
the Λy, and so one would predict that local singularities build up at the same places
and in the same directions as for the unperturbed ones. Our main result is that the
wave front sets are indeed stable under these perturbations.

This paper contains four sections. In Sect. 1 we treat perturbed free particle
Hamiltonians, and show that kv(t,x,y) is smooth on R"xRy for all ί if V is bounded
with bounded derivatives. In Sect. 2 we treat perturbed isotropic oscillators. Here we
show that the amplitude oϊkv inherits enough "symbol properties" from V to allow
an analysis of singularities. The main point is to show that when t = mπ, kv(t,-,y)
becomes both rapidly decreasing in x, and regular away from x = ( — l)"y, so that
this latter point is forced to be singular. In Sect. 3, we derive containment relations
for the wave front sets of perturbed anisotropic oscillators. Finally, in Sect. 4 we deal
with some routine technical problems which come up in Sects. 1-3 and which are
best confined to an appendix.

Section 1. Regularity of Perturbed Free Particle Propagators

In this section we wish to prove:
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Theorem I. Let Ve&k + 6(in/2]) + ί(M% then

kv(Ux9y) = a ( t , x , y ) ^ ^

where ae&k(Un

x x U") for each fixed t.

Proof. From (idt — HO)UV = V- Uv we get the "Duhamel formula"

1 t

Uv(t)=U(t) + -$U(t-s)VUy(s)ds9 (1.1)
1 o

where U is the free propagator e~aΔ.
Iterating and replacing U(Sj — sj+ί) by U(sJ)U(sj+1)~1, we get the norm

convergent "Dyson Expansion:"

Uyit) = U(t) + f ( - 0' f . Yds,.. JSlU(t)
1 = 1 0 0

l (1.2)

Our first remark is that U(sJ)~ίVU(sJ) is a ψDO whose amplitude is bounded
with bounded derivatives.

< L 3 )

Rewrite the phase as (zj+ί — Zj) ξj(sj9Zj,zj+1,Wj), where

) 0-4)

1Changing variables to ^ and noticing that the Jacobian

denominators in (1.3), we get

=s" cancels the

= j p(sj9Zj,zj+1)φ(Zj+ί)dZj+ί9 (1.5)

with

By hypothesis, V((zj+1 + z / / 2 ) - s ^ ) e # f c + 6 W 2 ] + 1) x (Un

Zj x ^ x O^ + 1), which
concludes our first remark..
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Next, taking kernels in (1.2) we get

kv(t9x9y) = k0{t9x9y) + £ ( - O ' ί f ί $ko(t,x,z1)p(s1,z1,z2)...p(sι,zι,y)dιz.
1=1 0 0

(1.6)

We now concentrate on the /'* term

(2πιt) 0 0

and

and

ds.-.Js.J^d'zd'ξ expliΦ^xΓzZyΏb^xXly), (1.6/)

(£>ι is independent of x since the amplitude of ko(t9x9y) is).
To put this term into the desired form αz(£,x,j;) exp((i|x — y\2)/2t)/(2πi)n/2, we first

take the Taylor expansion of Φι about its critical point. Evidently,

c φ | = ̂ (t,x,z;ίo>)ki= = zί = j>,

x-y>2

t t

Let ξ = (x-y)/t; therefore Φ = (\x -y\2/2t) +±{z - y,ξ - ξ). Hess (Φz)

where (z-y,ξ-ξ) = (zι - y,...,^-y\ξί-ξ9...9ξί - ξ\ whence we get

- I ) . (1.8)

Factoring Qxp((i\x — y\2)/2ή outside the integral, changing variables z, =
Zy — j/),ξy = (ξ7- — ξ) and dropping the bars, we get for the Ith term

exp((i|x-y|2)/2ί) ^ χ

(2πit)n/2

with

(1.91)

aι(t,x,y) = j . . . jJ^exp^l-ί + (z2 - ztf ί

1 If Φ{x,ξ,y) is a phase function with {x,y) free variables and ξ the integration variables,
Cφ = {(x,y)\S7ξΦ = 0}
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and with zι + 1=0.
00

We now need to show that a(t,x,y) = 1 + ]Γ at(t,x,y) converges in the space
1=1

@k(Un

x x Un

y) for each fixed ί,

The convergence proof is an integration-by-parts argument reminiscent of [11,

Appendix]. We will break it up into a sequence of four claims some of the proofs will

be deferred to Sect. 4.

CMml.dxd
β

yaι(t,x,y) =

j=2

y I - π κ ( | α j | + | / ? j | )

\β\=\β\

t-s, . s{ \ ίt-SjVMfSjXM

\ ί

where Φ'ι=\{\zι\
2lt) + {z1- z^ξ^Λ- ••• + (-z^; n0 is arbitrary, z1 + 1 = 0 .

2

Proof. Pass δ"d^ under the sign of integration in (1.9/); since Φ{ is independent of
(x,y) one may immediately expand

- ί - t

by Leibniz' rule and the chain rule. Next integrate by parts using:

(zj+ι-Zj)y-\Dξjy
2eiφ'=eiΦ\ ; = l,../,(z, + 1 =0), (1.10a)

< ί i - ^ - 1 > - 2 < / ) Z J > V φ ' = e ίφ', 7 = 2,...,/, (1.10b)

^ ^ ) 2 ^ ^ ^ ' , (1.10c)

where we recall that <M> =(1 + |w|2)1 / 2,D2 j =(1/OVZ., <I>Zj>
2 =(1 - Δj), etc.

Using the product of the operator of (1.10b) to the n0 power, followed by those of
(1.10a) and (1.10c) to the n0 power, and integrating by parts (taking transposes) we
get the claimed expression for d^dfi

yat.



S. Zelditch

Claim II. d%dζat is a sum of terms of the form

. Yl<ξj-ξj-1}-2noPι(s1...A,tXξ)UV^ + ̂  + ^n^
7 = 2 7 = 1

where || P, || m g C J ί ) 1 , and V. = K((z i+ x + zrj)/2 - s& + ((ί - s)/t) + (s,./φc). Here
and hereafter Cι

no(t) is a constant depending only on t and n09 raised to the /ίΛ power.3

Proof. We have only applied Leibniz' law to the expression in Claim I. Dif-
ferentiations of bracket factors such as (zj+1 — Zj}~2n° only produce bracket
factors to a lower order, and we may absorb the extra decaying factors in Pt. (Pt does
not decay altogether, since some terms involve no differentiations of bracket
factors.) Differentiations of tΛM + l/?jl) can go no higher than 6n0, since Vj depends
only on (zj9zj+ί9ξj)9 and one can only perform 2n0 differentiations with respect to
each. The factors of Sj may be absorbed in P,. Proof that || P, || ̂  ̂  Cno(tf and further
details will be given in Sect. 4.

Claim III. Each term in the sum of Claim II is bounded by Cno(t)11| V || ι6no + M + m(tι/l!)
fo[/

Proof. We have only to estimate

t S ί - i 21 I

f f f f Π / z - z N > " 2

0 0 7 = 1

. π < ξj - ξj-1 > " 2 n o x Π I V T A + m ) + - βno\dιzdιl
J-2 7=1

First, change variables to y} = Zj +1 - z},,ηx = - zjt + ξί 9η5 = ξj -ξj-1 for j ^ 2.
The Jacobian determinant may be computed by adding the /th column to the

(/— ΐ)st (note yι =— zz) and repeating; this puts the matrix in upper triangular
form and shows |det J\ = 1. Then bound

j| < II 17 II
II oo = II V H | α | + | / J | + 6 π o '
ί si_ i 21 21

We are then reduced to || V \\ \α) + {βl + 6no j . . . j j\f Π < V J ) ~ 2n°dvj9 aside from some
0 0 7 = 1

harmless factors of n/it. For 2n0 > n, the integrals converge, so take n0 ̂  [n/2] + 1.
Absorbing the bound for j < v7 > ~ 2π°ί/v7 into the bound for Pj, and integrating over t
we get \\V\\\]a]+m+ίn/2}+ί)C^{t)(^/ll) as a bound for the expression above.

Claim IV. The number of terms in the sum of Claim II is bounded by Cι

no.

Proof. This is again a consequence of Leibniz's law, and is deferred to Sect. 4. The

3 y(\*j\ + \βj\+ 6̂»o) i s the result of (a) differentiating V \oLj\ + \βj[ +(no more than 6n0) times and then

substituting cos Sj((zj+! + Zj)/2) — sin Sjζj + (sin(ί — s^/sin t)y + (sin Sj/sin t)x in for the argument
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main point is that although there are / factors of <zJ + 1 — Zj}~2n° and of Vj9 each
depends on only two Zj variables; hence the number of terms for the product grows
like a power of the number for each factor, which is independent of /.

Modulo the remaining details in part 4, we have proved Claims I-IV. Summing
up, let us state the

00

Conclusion. Let a = 1 -f ]Γ at(t9x9y). Then if Ve&k+6i[n/2]+1)9 ae&k for each t.

Proof. According to Claims I-IV, || at\\ j α | + {β{ ^ Cno(t)\t/l !)|| V\\ {,,,+„, +6[n/2]+1). Sum-
ming over /, we get | |α | | , α , + , / ? , ^exp(iC n o(i) ' l l ll<ι«ι+ifl+6[»/2]+i) Taking the ma-
ximum over | |α| | + \\β\\ :g/c yields the conclusion, and thus the proof of Theorem I.

Section 2. Reconstruction of Singularities for Perturbed Oscillator Propagators

In this section we will prove the following theorems :

Theorem II. Let VeS°(Un\H= - 1/2A +±\x\2 + V(x) and kv(t,x,y) be the Schwartz
kernel for exp( — itH). Then

\φ if t φ mπ

— l)my] t = mπ.

Moreover when t = mπ,kv is rapidly decreasing in x away from the singularity.

Theorem III. Let Ve@{M%H = - 1/2A + ̂ \x\2 + V(x)9 and U(t) = exp - itH:Then
S(t) = tΐU(t) is a temperate distribution on U, and sing supp S c {2πm}, the period set
of the unperturbed motion.

Remark. Most likely, WF(kv(nm,-9y)) = {( - l)mj;,ξ)^6[R"}4, i.e. there are no regular
directions at the singularity. This is certainly predicted by the phase space picture.

The key element in the proof of these theorems is the following description of the
amplitude and phase functions of the perturbed propagators:

Definition 2.1. Let a(x,ξ,y) be a complex-valued function on [R" x M™ x M". Then a is
an isotropic multi-symbol of order 0, written aeIS°(M$ x U^ x RJ) if

(i) \d^ydl

(iii) \d^ydla\sσia>β>γ)<x

for some constants Ap

{(xβy) etc. Here <M> = (1 + \u\2)1/2. If there are no ^-variables,
i.e. m = 0, we speak of an isotropic bi-symbol. The word isotropic is used because
differentiations in any component of the x, y or ξ variables produces equal decay in
all of them.

4 This has been verified by Alan Weinstein, in "A symbol class for some Schrodinger Equations on [

to appear in the Am. J. Math.
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We can now state the basic lemmas.

Lemma 2.1. LetH=- \/2Δ + \β\x\2 + V(x\ with VeS°(U% and let kv be as above.
Then for t Φ mπ,

where

is the oscillator action and aeIS°(U"x x U"y).

Lemma 2.II. With the same hypotheses as above, now let

t = mπ, then kv{t,x,y) = j e - i i χ - { - 1 ) m y ) ξσ(x,ξ,y)dξ,

where σeIS°(Un

x xUn

ξx RJ).

Lemma 2.III. If we assume only that Ve0$(Un)9 then the same conclusions hold except
that ae@{Un

x x Rp and σe@{Un

x xUn

ξx Rp.
We now proceed to the proofs. There is a good deal of overlap with Sect. 1, but

we feel the differences make a separate exposition desirable.

Proof of Lemma 2.1. Start again from the Dyson expansion

/ = o o

I U(t)\_U(sιr
1VU(sι)...U(sιy

1VU(sinds1...dsι, (2.2)
0

where U(t) is now the oscillator group. For t =/= mπ, the kernel of U(t) is well known

eiS(t,x,y)

where

1 / fx2+y2

sinίV V 2 ' y ]

ϊj) is again a ψDO:

• V(wj)φ(zj+1)dWjdZj+1.
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W r i t i n g S(sj,w, ,Zj + ί ) - S(Sj,w, ,z.) = (zj + 1 -zβξj

2

changing variables in the integral to ξj9 we get

U(sj) ~1V U{Sj)φ(Zj) = J p(Sj,Zj,zj+ί)φ(zj+1)dzj+ί, (2.4)

where

V^cos sj(^γ^j-sin sjξ^jdξj. (2.5)

Taking kernels in the Dyson expansion, we get

kv(t,x9y)=k(t9x,y)

yΎT^ (2.6)
/ = o o

Concentrate on the /th term. Substituting in (2.5), we get

\t9x,yΛξ) bfa,.. .9sl9t9x9y9z9ξ)dιzdιξdfs9 (2.7/)
o o

where

and

) ί w ϊ ί2πiJ{2πismt)n/2/tί

Then

Cφι = {(x9yXξ)\zι =• •= zt = y,ξx = =

^ = — (cosy-x)}. (2.9/)
sinί

Write ξ = (1/sin ί)(cos ίy — x). Taking the Taylor expansion of Φt about its critical
point, we get

Φ = S(t,x,y) + ̂ ^(z, - y)2 + ((z2 - y)

- (zi - ^))(ii - ξ) + . . . + - (z, - y)(ί, - ξ).

Changing variables in the integral Zj = z} — y, ξj = ξj — ξ and dropping the bars, we
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get for the /th term

(2πίsmt)n/2J

0'

where

and

Then

ί y j ^ eiφ\b[{s^y^ξ)dιsιdιzd% (2.10/)

w
°ι

ao =

UJ

1 and

π
7 = 1

for />

χ,y)

o,

| =
t

ί
0

(Zj+

{

Si-

-i
0

2 )

eiS(t,x

— sin Sjξj

,y) i

0 " / 2

i = o

sin(ί — Sj)

sinί

,yXξ)dιsdιzdι

sin Sj

sinί

(2.12/)

We now need to show that at is a bi-symbol. Again we will break up the proof
into a sequence of four claims

Claim I.

' »•/ J J J *
(27Π)'

sin ί

J+2

I

7 = 1

where F, = F(cos 57.((zj+1 + z^/2) - sin Sjξj + (sin (ί - s^/sin ί)j; + (sin 57 /sin ήx).

Proof. As before, we have rid the phase of dependence on (x,y) so may apply Leibniz
laws directly to the amplitude. Then we integrate by parts as before.
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Claim II. d^dfa is a sum of terms of the form

11

o o

'Pt(s,t,Z,ξ) X

sin sinί (2.14/)

where || P J U ^ C ^ / ί ) .

Proof. Same as before; the statement about is deferred to Sect. 4.

Claim III. Each term in this sum is bounded by C^β no r{t)1 x
ll̂ ll|«l + l/ϊ| + 6»o(ίi/ίl) <Λ>"r<>'>Γ, where 0 ^ r ^ | α | , and similarly if roles'of x

and y are switched. Here || V \\ m is the max of the first m 0-order symbol semi-norms of
7,andno>[n/2].

Proof. The product

ΓΊ yi}* sins,-
sinί

., sin(ί — Sj)

sinί

\βj\

is bound by

sin(ί — Sj) sin Sj

sin ί sin ί
s i n s

L
sinί

l«,l

sin(ί — Sj)

sinί

\βj\

Since V is 0-symbol, and since any extra bracket factors5 may be bounded by 1. Now
apply the inequality

5 By extra, we mean those from the 5Ξ 6n0 differentiations
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with

sin(ί-s)
_ _ Γ L

and η = (smSj/sint)x. Next use Isinsj/sinίl1^1 to cancel the coefficient of x in
((sinsy/sinφc) " | α j l . Bound the bracket factors to the power - \βj\ by 1.

Finally, apply (η1+η2}^ v/2<η1>(η2}9

with

sm(t-Sj)
= - — - y .

Summing up, we get the product bounded by

where we have absorbed factors of y/29 ί/sinί, etc. into Caβ(t).

Remarks (i). We may of course reverse the roles of x and y in this argument, i.e.
bound the bracket factors to the (— \OLJ\) power by 1, put x in the numerator, y in the
denominator, and cancel the coefficient of y.

(ii) Cancelling coefficients seems necessary to get the decay laws we want. Hence
differentiations in x do not produce decays in y or vice versa. However,
differentiations in any x-component will produce decay in all x-components because
all have the same coefficient.6

This is responsible for isotropicity of the symbol.

(iii) We may bound any inverse bracket factor by 1. Hence in estimating x-decay,
e.g., we may ignore some of the factors of

/ fzi+i+zΛ r sin(ί-s,) sins, \ ~ | α j l

(coss ,M^-— J - )-smsjξj + — ^ ^ + -τ-^x)
\ J\ 2 J J J sinί sinί /

Then going through the steps above with fewer factors, we can bound the product by

J = l

where 0 ^ r,-^ | α7-1. This remark, which will be important later, is responsible for the
definition of 0 order bi-symbol given earlier.

6 I.e. (sins /sinί)
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Resuming the proof of Claim III, we have now succeeded in bounding

Π vt- sins;
sinί

l«/l sin(ί —Sj)

sinί

\βj\

by

x Π {cossj

or with |α,.| replaced by 0 ̂  rj ^ |α,.| and |α| replaced by r = rx + + rz g |α|. Thus we
must only shown that

J - Π J
ncosί /cosί

+
i sinί \smί

/cosί
-τ—zί-ξ

\smί

2\-»o

0 0

j=2 j=l

Ca.β(t)

As a result of Claim II and the fact that Caβ(t) is independent of /, we may pull
|| P^s, t,z, ξ)Caj(t)\\ ^ ̂  Cl

atfittt0(t) outside the integral. Then we change variables as
before, setting

cosί

Wj=zj+1-zp zι+1=0.

Letting J " 1 be this linear change of variables, we have |de tJ | =

we get

21

Σ

and

cosί
sinί

t
I

π11
J = l

. Writing

h= Σ
l = m

-π<

V » an(

2 J "
V ίCOSSj

tΆ 2
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+ Σ <UsinS j.J i + j ; m)>m

κl
m = / + l

where we have repeatedly used (u + v}^ Λ/2<w> <*;> and <Aw> 5̂ |Λ,|<w> for
|λ| > 1. Taking the product over j and recalling |αj -f... + |αf| = |α|, we get =

(|2/sinί|2'β y Π <W/>W Π <^>|α|.Absorbing(|2/sinί|2lαl)intoCα5/?5M0,andnoting

that what is left is

0 0 j=l L'

for 2n0 - |α| > n, we can finally conclude the proof of Claim III, when n0 ^ [n/2] +
max ([|α|/2,|/?|/2]) + 1. (Replacing |α| by r < |α| only simplifies the proof.)

Claim IV. The number of terms in the expression for 5"<9^(i,x,y) is bounded by
rι

Proof. This consequence of Leibniz laws will be checked in Sect. 4. The details are
identical to those in Sect. 1.

Summing up, Claims I-IV imply that

1

where 0 ^ r ^ |α|,n0 ^ [n/2] + max{ [|α|/2],[|j8|/2]} + 1. And likewise for y. Thus
aeIS°(Un

x x Un

y).

Proof of Lemma 2.II. Simply write

kv(mπ, x, y) = \dξ kvl-,x,ξ)kv\mπ- -, ξ,

by Lemma 2.1.
Since a(π/2,x,ξ), a{mπ - π/2,ξ,y)eIS°(Un x Un) their product σ is a fortiori in

JS°([R£ x R| x My). In fact, of course, differentiations in x produce decay in x
independently of y; however, this observation plays no essential role, so we ignore it.
Then note that the phase is — ξ (x — ( — l)my). This concludes the proof.

Proof of Lemma 2.III. Identical to the proofs of Lemma 2.1 and 2.II except for Claim
III. Now we only assert the analogue of that in Sect. 1, namely that each term is
bounded by C£ fMo(ί)|| V\\\a{ + m+6no{m, where || ||k is the Ck norm rather than a
symbol norm. Here n0 > [rc/2] as in Sect. 1.
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Theorems II and III follows easily from these lemmas.

Proof of Theorem II. By Lemma 1.1, sing supp/cF(ί, , y) = φ if t ψ mπ. If t = mπ, we
may write by Lemma 2.II

with σe/5°([R2 x IRJ! x RJ). For x f ( - lfy we may integrate by parts using

(l/i)(x-(-l)"j,) gg

|x-(-l)>|2 ? C

whence for any r

kv(mπ,x,y) = ^e-i{χ-{-1)my)'ξ(Lt)rσ(x,ξ,y)dξ.

Lι has two nice effects on σ: since σ is isotropic, L lowers its order in ξ and || Lισ \\ ^
= 0(l/|x — ( — l)my |), so for fixed y, L introduces decay in x. However these effects
compete, since to estimate decay in ξ one must compensate with growth in x.
However we only need enough decay in ξ to render the integral absolutely
convergent. So we apply [jj)n + ι~k and set p = n + 1 in Definition 2.1 to get

which for fixed y is 0(|x| ~k). Since x is arbitrary, and the integral converges we have
I kv(mπ, x, y) | = 0( | x\ ~k) for all k, as desired.

Finally we note that kv(mπ, , y) cannot be locally L2 near ( — \)my else it would be
globally L2 in x. But then Uv( — mπ)kv(mπ, , y) would be L2, a contradiction since it
is δ(x — y). Hence sing supp kv(mπ,-,y) = {( — l)my}

Proof of Theorem III. It is well known that S(t) = tr U(t) is a temperate distribution
on U. We briefly recall this proof. For θeSf(Un\ define Uθ = \uθ(t)u{t)dt Since
idtU = HU one has by partial integrations that Uθ = $(H~k)U(t)'(ίdt)

kθ{ΐ)dL Since
this holds for any k, one knows that \JB\£f'-+£f is continuous and so its kernel
Uθ(x9y) is ^{Un

xxUn

y\ therefore θe^(IRII) ̂ t r ( l / θ ) = J Uθ{xix)dx = (S(t), θ(ί)>

defines a continuous linear functional. Then

S(t) = jfc(ί, x, x)dx = j \al t,x,z Jar-, z, x\emux>z) dx dz,

where by Lemma 2.II the amplitude is &(Un

x x U"z) if t = 2mπ and
Φ = (l/sin(ί/2))(cos(ί/2))(x2 + z2) - 2xz). Then.

(1 - Δx)eiφ = (1+ — + ~4rW, (cos ί/2x - z) V / Φ = P(^ *YΦ

\ i sin2(ί/2)

(\-Az)eίφ = ί

So S(ί) = $$eiφ((\ - AJpfaz)-1)^ - zlXz,^)- 1 )" 0 x a{t/2, x, z)α(r/2, z, x) and as
in the proof of Lemmas 2.1, 2.II this is bounded by Cno\\a\\lnox
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Hp(x,z)~"oρ(z,x)~nodxdz. Changing variables to

lγ = cos tβx — z, with Jacobian cos2 ί/2 — 1 φ 0

ξ2 = cos tβz — x

for t=/=2mπ, the integral is bounded by C{t)\\{ξι> ~"° (ξ2) ~n°dξιdξ2 < oo for
n0 > [rc/2]. But α and Φ are continuous in t away from t = 2mπ, and the estimates are
uniform in ί in compact sets away from 2πZ, so S(t) is continuous there as well.7 So
sing supp S(t) c {2mπ}. Q.E.D.

Section 3. Reconstruction of Singularities for Perturbed Anisotropic
Oscillator Propagators

In this section we wish to explain the modifications of Sect. 2 needed to handle
anisotropic oscillators. In particular, the amplitudes of the perturbed propagators
will now be anisotropic symbols, and the locus of singularities will lose the
isotropicity of Sect. 2.

We will prove:

n

Theorem IV. Let VeS°(U% H = - \βΔ + £ ω\x\ + V(x), and kv(t,x,y) be the

Schwartz kernel for exp( — itH). Assume that the {ω } are irrationally related, then

Remarks. We assume {ωj are irrationally related for simplicity. If some are equal,
and the rest irrationally related, the conclusion would still follow. If some are
unequal but rationally related, it seems we cannot describe the wave front set as
precisely as in Theorem IV. This will be explained in remarks during the proof.

First, we summarize how the amplitudes and phases change when the
oscillations are anisotropic.

a) The phase is now S(t, x, y) =

ωL

cos ωkt — xkyk

b) The unperturbed propagator k(t,x,y) =

c) We now define ordinary bi-symbols and multi-symbols by a component-by-
component rewording of (Definition 2.1α). Definition 3.1α): Let a(x,y) (respectively
(x9ξ,y)) be a complex-valued function on Un

x x Un

y (respectively Un

x x Un

ξ x Un

y); then

aeS°(Un

x x [R;)(SO([RJ X Un

ξ x Un

y)) if

7 Smoothness is proved in the same way as continuity
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(i) | ^ 4 , ί ) π

with 0 ^ pk < \a.k\. Analogously for y.

(ii) |δίdjd|α|^<, i 7 ) t\<χky'"'<yky '<ξk}'"'
k = l

with 0 ^ ρk ^ |afc| analogously for j ; and ξ.
Then the analogue of Lemma 3.1 is:

Lemma 3.1. With H and kv as above, let us assume t ψ mπ/ωkfor k= 1,... ,/t. Then
kv = a(t9x,y)k(t,x9y) with aeS°(Un

x x Un

y).

Proof. All goes the same as in Lemma 2.1 up to (2.1.0/). We now get:
The /th term in the Dyson expansion is

h(f, x, y) ] • • • T ί ί eiΦ'b'M x, y, z, ξ)dιs d'z'dξ,
0 0

(3.1.0/)

where

and

I / /zk + z * \
b'ι = Π v\ c o s ω kSj( J±λz—- - sinωkSjξkj

sinί

5J) m
si

where k = 1,..., n and the arrow denotes the vector with those components, e.g. (lj)

We integrate by parts exactly as before except that now

cosωfcί
z l Si+( X

(Write the parenthetical expression on the right as p.) All else is as before.
For Claim II we now need to change the chain rule factors to

π sin ωkSj sin ωk(t - sj)

smωkt

where α7- = (αj, . . . ,α"), etc.
Claim III is where a real change is needed. Indeed, let us now do the cancellations

last. Bounding each v(^ + ^β^ + -6no) by its norm times its bracket8 and using

< u + v > ~x ^ -yjϊ ( i ί ) ( i ; ) ' " 1 t o put (ξ, z) dependence in the numerator, we may now

write

8 I.e. the bracket of its argument
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Claim III. Each term is bounded by

0 0 / = !

J

Π
j=2

Π
j=ί

sin ωkSj

sinίo o j=i \ sιnojkι

where (Uj)aj = (wj)α;... (w")αλ

The proof is exactly as before, as is the proof of Claim IV. Again, n0 depends only
on the dimension, and |α|.

Summing up,

where
s i - i I

0 0 fc=l

/ sin ωk(t — Sj) k sin ωkSj
\ y -\—j }

sin ωkt

sin ωfc

sin ωk

Now the chain rule factors |sin ωk s ; /sin ωkt\ can only cancel the coefficients of xk the
remaining components in the corresponding bracket factors do not go to zero as
M->oo uniformly in Sj after cancellation. However we apparently require this
uniformity to get a 1//! in the estimate on this term. So it appears the best we can do
is (i) use (1 + M 2 ) " 1 ^ (1 + l ^ l 2 ) " 1 to ignore badly behaved components, then (ii)
use

smωk(t-Sj)yk |

sinω f cί si

sin ωkSj

sin ωkt

(or more generally ^ C(ί)< x*> ~p? with p) ^ αj) and finally, (iii) integrate in dιs to get

Π Π
j=lk=l
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kn> w h e r e p* ^ ι«*ι-
fc=l

Summing in / then gives the desired conclusion of Lemma 3.1.

Remarks. To see that our method requires this cancellation of coefficients, consider
ax(t9x,y) in dimension 2. We bound d™1aί by the function

ί . //sinωΛt—s) , sinews . sin ωM — s) 9 sinω2s ?

\dx([ — r ^ V + - — — x 1 — — -y + -——x2

J \\ o,.Λ .̂Λ + oi*Λ .̂Λ + s i n ω 2 ί s i n ω 2 ί

Fix y and x 1 and consider decay in x2. By dominated Convergence, the integral goes
to zero; however we have asked in the lemmas for a high rate of decrease. We may

t

estimate this rate by jds< sin ω2sx2> ~m |sinω15|m. Now assume the anisotropicity
o

condition that ωί and ω2 are irrationally related. We then claim that
t t

j ds( sin ω25x2 > ~m |sin ω^l™ can decay no more rapidly than j χ(sin ω2sx2)ds, where
o o
χ is the characteristic function of [ — 1,1]. Indeed, sin ωxs is bounded above zero on
some fixed intervals around those {mπ/ω2} in [0, ί ] . But for large enough
x 2 ,χ(sin ω 2x 2) will be zero off those intervals anyway. Thus the |sin ω 2s| can't affect
the decay rate, and of course χ decays more rapidly than < ) ~m for any m.

t

However j χ(sin ω2sx2)ds just counts the amount of time that sin ω 2sx 2 spends in
o

[ — 1, 1], and if any raπ/ω2e(0,ί) this is ~ const l/|x2|.
So our bound function for dr^ιa1 cannot decay more rapidly than ( x ) " 1 as

|x| -> oo, which is not good enough to allow our analysis of singularities.
(2) Of course if some of the ω are equal, one gets an isotropic decay in their

respective directions. If two are pairwise rationally related, there are some obvious
relations between differentiations in one of the directions and decay in the other. We
ignore these possibilities for simplicity, and assume the frequencies are irrationally
related.

Now let us prove Theorem IV:

Proof. For t =/= mπ/ωf, i= 1,..., n we know from Lemma 3.1 that WF(k(t, ,y)) = φ.
Now let t = mπ/ωί, say. We need to show

«i ' } l '

where * denotes a free entry.
Write /cF(ί,x,j/) = \kv(t —π/2ωι,x,z)k(π/2ωί,z,y)dz.

n

Also write the action function S as £ 5k(ί, xfc5 yk).

From Lemma 3.1,
ί { ί \ (IT W\ ί TT \ / π

kv = f exp (iX S( ί , x, z ) + Si , z, y ) > )aί ί , x,z)a\ , z, y

\ { \ 2ωx J \2ωγ ))) \ 2ω1 J \2cOi
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Now S(mπ/ω1 — π/2ωί9x,z) + S(π/2ω1,z,y) = — coί{xί—(—\)yί) + Φ, where Φ =

Σ Sk(mπ/ω1 —π/2ω1,xk,zk) + S(π/2ω1,zk,yk). Our first observation is that if we
kfl

integrate out the (z 2,.. . 9zn) variables, we will be left with a symbol in zv

Namely, let σ(x, z l 5 y) = j . . . j dz 2 . . . dzne
iφa((2m — l)π/2ω l 5 x,z)α(π/2ω1?z,y). Then

Φ is independent of z1? so

Then integrate by parts using

where

X-yk + ( 3 Z k

. ωksin—mπ
y = ^ 1
ϊk . ωkf(2m- l)π\ . ωkπ'

s i n — sin——
\ 2 ) 2

so
d\ίσ = \...\dz1...dzne

iΦ Π {(1 -

• Σ
ri+r2=r

As usual we can push the derivatives past the convergence factors, eventually
arriving at sums of terms of the form

k = 2

/2m-1 \ / π
i \2ωJ>

where z' = (z2,...,zπ).

Then | D ; ^ l α 1 ^ 1 α 2 | ^ C β i W < z 1 >-"<y1 / < * ! > " , where we use pfc = 0 for fc
2,... ,n. P is bounded, so each term is bounded by a constant Cr times

<z1>-'<x1yo1>'j...μ2l...dz11 Π (\ + -
k = 2\ ιlk

This integral is a product of one dimensional integrals. Since dZkΦ is affine in zk with
a non-vanishing coefficient of zk (due to anisotropicity), the integrals converge as
long as n0 ̂  1.

Thus |δ Z l σ| ^ Cr<Zi > - " < * ! / < j / i / . Moreover

-iω1(x1- ί)my1)'zί)σ(x9zl9y)dz1.
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Clearly, then, iϊx1^( — ί)my1 we may integrate by parts as before using i/ω1(xί —
( — l)mydZι repeatedly to render the integral absolutely convergent, and uniformly in
(x, y) so that k(mπ, x, y) is regular in x for x away from {(— l)myί9 * , . . . ,*)} . Thus far
we have determined sing supp/cF(mπ, -,y). At a point x = ((— \)myl9

x2,... ,xm)esingsupp/c(mπ, ,y) we must find Σ s .
Let F be the open conical set {ηeUn\ηjφ0 for some j = 2,..., ή\. We sketch the

proof that for ξeV there is a φeC$9 φ(x) = 1 but

Iplίv(mπ/ωί9'9y)(τξ) = 0(τ~N) for all JV.

The left side is

$ $φ(x)σ(x9zί9y)exp(- i{ωί(x1 - ( - ψyί)'zί +τx ξ})dzίdx.

Then integrate by parts with (1 + ( ω 1 z 1 + τξ1)
2)~1(\ — d X l )

2 once to insure con-
vergence in dzi. Next integrate by parts in (τξj)~1dx. N times with all j such that
ξj Φ 0. Since φ provides convergence in dx, the integral converges and is 0(τ ~ N) for all
N. Then ξeV are all in the complement of Σ-, so Σ- = {(^1?0,...50)|^1elR} as
claimed.

This concludes the proof of Theorem IV.

Remarks. The same proof works if some ω{ are identical. But if, say ω1 = \,ω2 — 2
then the unperturbed oscillators has singular support at ( — yt, y2) at ί = π. Factors
of sin 2s can cancel those of sin 5, but not vice versa, so the dXί derivatives of the
amplitudes decay in x1 but not necessarily to the same rate in x2. At t = π, one can
write

x1 +y1)zί +(x2-y2)z2)']σ(x,z,y)dz,

but now σ is not isotropic. So integrating by parts as in the isotropic case does not
yield convergence; one has to use instead (l/ί)(l/(x1 + yί))dZι, i.e. to assume x1 Φ
^ . S o α priori the singular support = {( — y1 ,*)}. This seems unlikely, but cannot as
yet be disproved.

Section 4. Details from Sects 1, 2, and 3

The purpose of this section is to fill in the gaps from Sects 1, 2, and 3.
First, we must make copious use of Leibniz's laws to settle the claims in 1 — 3. We

need to show that the operators

L/fΠ0=((i -zyp- 1 )" 0 n <D

ZJ>
2no π < v i -zjy2no

j = 2 j=ί

may be written

hno= Σ ^"ίKVl-^ 'X^ (4-1)
M^2no r=i

where
/ ncosί /cosr

P = 1 + τ ^ — + - — Z i -
\ 1smί V smί
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(or analogously in other cases), || P^no || ̂  ^ Cj,0(ί), and the number of terms is ^ Cι

no.
Here as before CM0(ί) is a constant depending only on (n0, ί); we do not relabel from
step to step.

To see this, we apply Leibniz law in the form of [9], p. 10). The operators
(Dzj)

2n° are of the form P(Dzj) with P(ξ) = (ξ)2n°. They are constant coefficient
operators, so

j=l

where P{a){ξ) = d^P(ξ)/(dξa

1

ι 'dξa

n

n). Of course \otk\^2n0. Iterating, we get:

Π < ^ > 2 " 0 Π < ^ + i - ^ >"2"ϋ

fc=2 7=1

= Σ

Next, we unravel ((1 — Δz^p'1)"0. Again,

where P(ξ) = (l 4- \ξ\2) and Pflt'1(ξ) = ( 3 l | J £

Iterating, we get

Now push P*"°(DΣι).. .Pα l l(Z)Z i) past the multiplications in the big sum (4.3) above.
P α " (DZι)...Paι(DZι) is constant, say β δ (D Z l ) , where α = (αn

1

0,...,α}). Applying
Leibniz rule again, we get Llrϊo =

ρ^φ z l)Pa 2ΦZ 2) ..^'Φ, ί). (4.5)

This is finally in the form (4.1). We must now show

where max { C , } ^ ^ ,

(ii) / ) ^ ( p - 1 . . . p - 1 (
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where || Pa no \\ ̂  Cno(t)1.

(iii) The number of terms in ^ ^ Cι

no.
( α , . . . , < * , )

Proof, (i) \βj I is bounded by the degree of Paj(ξ) ^ 2π0. So the number of relevant

terms is bounded by φ{βJ) \βj\ S 2n0} - Cι

no.

Let us consider max|C^|. Recall that P{ξ) = (1 + |ξ|2)"°,so that at ξ = (1 , . . . , l)all

derivatives of P are positive. Write Pa{ξ)/a! = ̂  Aβξ
β. Then each Aβ is bounded by

Pα/α!(l), where 1 = ( ! , . . . , ! ) . We are writing

Since distinct ξfs come from distinct factors, Af= Aβ2...Aβ} ^ Pα2/α2•(!)•••
Pα ί(l)/αz!. Finally the same argument applies to Q*Λ\l\ so

Now take max (P^/a'.)(l)= Cno and the result is Cι

no.

(ii) First consider Da

z\-Da

z\ \\ <zJ + 1 - z ^ " 2 " 0 .
j=i

Applying Leibniz rule, and the fact that only two bracket factors are operated on by
a given Dz to get

Σ

x . . . χ ^ ; D ? f : 1

i " y i - 1 < ^ - ^ - i > " 2 " o ^ Γ y ' < 2 / > " 2 n o .

Next note that (x — y}~2no behaves like a symbol in (x — y\ in fact

Proof. Let z = x — y, and λ(z) = <z>2. Then

Now

0
daj={ 0 o r 2

Π
JΊ«JI = i
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σ factors \d*z

jλ\ bounded each by \z\. This bound is achieved if all |αy| = 1 and σ = |α|.
Then

But

\z\σλ~σ ^λ~σ/2 = <z>" σ = |δj<z> " 2 π o g < z > - 2 π o " | α | .

Finally substituting z = (x — y) and differentiating in dxd
β

y produces dz

+β2(z) \z=(x_y)

up to sign due to linearity of the substitute. This concludes the proof.

Write D f 2 D z

α ; < z 2 - z 1 > - 2 " 0 D f - ^ < ^ > ~ 1 = ^ , y W Π < z 2 - ^ > " 2 M 0 . It fol-
j = i

lows from the above that each factor Da

zj
+

+

ϊ

ιD
a

z

j

j~
yj{zj+1 - z7 >~2n° may be bounded

by < z j + 1 - z , . ) " 2 " 0 ^ , where CΠo is the symbol norm of (x-y}~2n° or order
(2wo,2rco). That is, C^ = max{Caβ\CΛβ is best constant in \dxd

β(x- y}~2n°\ ^
C α / ? <x-^>- 2 / ι °- | α | - | / ? l } with |α |g2no, | j8 |^2no.

Thus || Pα y(z) || ^ Cί,0 it does not necessarily decay. Now let

(vi,...,vi),\yj\£M K&j-

Again, bounding Pα y and summing the binomial coefficients yields | P α π o | ^C[,o.
Finally, p'1 is also a symbol in ((cosί/sinί)zx — ξ^. Defining now λ(u) = (\

+ (l/0(cos ί/sin t) + \u\2) yields A~wo a symbol in u of order 2nQ as before without
change. Substituting u = (cos ί/sin ί)zx — ξx only changes the previous argument by
putting in factors of cos ί/sin ί, which makes all estimates ί-dependent. However this
can clearly be made continuous in ί for ί ^ mπ, so that all estimates may be assumed
uniform in t on compact sets disjoint from {mπ}. Then

is a product of differentiations of p ~ \ and multiplications by ρ~ι all of which only
increase the order of p " 1 . We then certainly get p ~"° and may sum the other factors
to get P5(z,£ l5ί), which is bounded by a Cno.

Finally let Pβ t n o(z1,...,z i,ξ1,t) = Pa(z,ξ1,t)Pβf l lo(z1...,z). This concludes part (ii).
(iii) This is obvious since if Cno = {α7 | |αy| ^2ft0} then the number of terms is

bounded by Cι

no.
This concludes the proofs of the major claims of power law growth of the

bounding constants.
Finally, we show that if one of the standard classical Hamiltonian systems (i)—(iii)

is perturbed by VeS°(Un), then the associated lagrangian submanifolds Ay are
asymptotic to the unperturbed ones. More precisely,

Proposition 4.1. Let H0(x,ξ) be one of case (ty-(nΐ)9 and let H(x,ξ) = Ho + V(x),
VeS°(Un). Let (xo(t,y,η\ξo(t,y,η)) be solutions of the unperturbed initial value
Hamiltons equations and let (x(t,y,η),ξ(t,y,η)) be the perturbed solutions.
Then (x(t,y9η), ξ(t,y,η)) = (xo(t9y9η), ξo(t9y9η)) +(o(l), o(l)) for fixed (t9y)
as I η I -» oo.
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Proof. First use the variations of constant formulas:

\x(t,y,η)\ (xo(t,y,η)\ \(G{t,s) \

where G(ί, s) are the initial value Greens' functions

ii) G(f, 5) = sin (t - s),

iii) G(ί,s) = sinω f(ί — s)/ωf.

We then need to show

\ G(t,s)Vf(x(s,y,η)) and \(dG/dt) (t,s)V'(x{s,y,η))ds are o(ί) for fixed (t,y) as

N-^oo. But F G S ° = > | K / W 5 , M ) ) I ^ C < X , S ^ ) > " 1 . Since x(s,y,η) = xo(s^η) + o{\\

we have <x(5,^^)>"1 ^ G^x^y.η)}-1 by the <w + 1;)"1 g v/2<w>"1<i;>

inequality. Now

xo(5,.y,^) = i) y + sη,

ϋ)

iii) cos ωtsy + sin ωt sη.

So, writing the coefficient of η as ρ(s) and applying the same inequality to any of the
sums i)—iϋ) we get | V'(x(s,y9η))\ ^ C(y) (ρ(s)η)~J. For almost all s, (p(s)η}~1 ->0
as I η I -• 00. All constants and Green's functions are bounded continuous functions of
s. So by the dominated convergence the integrals

\G(t,s)V'(x(s,y,η))ds and

—(t,s)V'(x(s,y,η))ds

are (1) as |f/|-+ oo.

Remarks. Let L^ be the Lagrangian manifold XoΛy

o where χ0 is the unperturbed
phase flow, and let Λ*y = χ'Λ^, where χ\y,η) = (x(t,y,η), ξ(t,y,η)). Equip both with
initial value coordinates η determined by the diffeomorphisms χι

0 :Λy -• Vy and χf yl̂
-•yly. Then the Euclidean distance in T*[R" between Ly and ylj, outside the
coordinate balls \η\ ̂  r is bounded by the length of the pair of integrals in the
proposition. Hence this distance approaches zero as the balls increase. So we are
justified in saying that Vy and Ay are asymptotic.
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