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Abstract. The Yang-Mills fields considered by us in an earlier paper are
asymptotically non-interacting. Also any free field is an incoming field for some
Yang-Mills field.

Introduction

Interest in the classical solutions of the Yang-Mills equations in Minkowski
space has grown in recent years. The definitive global existence theorem
(solution of the Cauchy problem) has been found by Eardley and Moncrief [3],
following the local theorem of Segal [8]. Other existence results and methods
appear in [6], [4] and [1]. However, the scattering problem has so far been left
untouched. Christodoulou's transform method can be used to derive some decay
properties. In [5] we showed how the conformal invariance directly implies certain
asymptotic properties of the fields, in particular, local decay of the energy.

In Sect. 1 of this paper we use these asymptotic properties, and the special
properties of the class of solutions discussed in [6], to prove that these solutions α
are asymptotically free fields in the energy norm. In Sect. 3 we show that any free
field α_ of our special type is the incoming field of some α. In Sect. 2 we derive some
explicit pointwise bounds needed in the proof.

Our class of solutions is defined by a condition of the Polyakov-t'Hooft type for
the gauge group SU(2). We emphasize that there is no restriction on the size of the
solutions we consider. Specifically, the gauge potentials have the form

Ak= a(r,t)vk (k = l,2,3), A° = 0.

where t is time, xe [R3, r = \x \ and vk are certain vectors (see [6]). Such a field belongs
to both the temporal and Coulomb gauges. The field equations reduce to a single
scalar wave equation (see (1) below). Although this equation appears rather
innocuous, its asymptotic analysis is surprisingly non-trivial due to the singularity at
the origin. The free fields we consider are simply solutions of the Yang-Mills
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equations with vanishing coupling constant; that is, they satisfy the same equation
but linearized around zero.

Thus physically interesting phenomena such as solitons appear to be absent
from the pure Yang-Mills equations. It seems that a Higgs mechanism is necessary
to make them appear.

1. Asymptotic Freedom of the Yang-Mills Fields

We consider the solutions of the real scalar equation

2 2 3 , ,
αίt - αrr - -αr + ̂ α - -α2 -f α3 = 0. (1)

Denote the energy density by

_i 2 I 2 I 2 / / 2 _
2 2 4 \ r

and the inversional density by

1 1 /2 \2

/ = /(r, ί) = -(t2 + r2)(α2 + α2) + 2ίrαfαr + 2ία,α - α2 + -(ί2 + r2)α2 - - α .
2 4 V r /

Furthermore we denote xeίR3,r = |x| and dx = 4πr2dr. Let

dx (2)

at any time ί, where the integration is over all of space [R3. Let J4? be the Hubert space
of Cauchy data provided with this norm. That is, 3tf = Hf © L2 in the notation of
[6].

Theorem 1. (a) //J edx<co when t = 0, then there is a unique solution α = α(r, t) of (I)
with given Cauchy data att = 0 such that αeC((R; J?\ the energy \edx is independent
of time and

/2 \ 2 1
(i) B2 = f f α 2 —α -dxdt< oo

* V ) r
(integral taken over all space-time}.

(b) In case J(l + r2)edx < oo w/zβn t = 0, we /zαi e
(ii) J /(r, ί)dχ ̂  J /(r, 0)dx < oo.

Furthermore, J (1 + r2)e dx < oo for all time and

(iϋ) j

/or /αr#e ί, /or any θ < 1.

Proof. See [6]. For smooth a the last statements follow from (ii) because I can be
rewritten as

47 = (ί + r)2ί α, + α, + - 1 + (ί - r)2| α, - αr - -
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+ (t2 + r v - - α - 2r~2[(ί2 + r2)rα2]Λ,
\r )

where the last term drops out upon integration. Hence

But for R^θt

J L+*
r<R\ T r<R

whence

J a2dx + 4πRa2(R,t) = 0(t~2). (3)
r < R

By a free solution we mean a solution of the equation

Lβ = βt,-βrr--rβr+~β = 0, (4)

which is equation (1) with the nonlinear terms dropped. The main result of this
section is

Theorem 2. Given α solution α of(l) with J (1 + r2)edx < oo. Then there exist α unique
pair of free solutions α_ and α+ such that

|| α — α+ || ̂  -> 0 as f ->• ± oo.

Lemma 1. /l,s t~+ao we have

(a) supra2 = 0(ί"2)/or θ < 1,
r ^ θ r

(b) J a2dx - 0(ln ί),

(c) ί^x-0(ί-2lnί),

(d) sup ra2-0(ί"1(lnί)1 / 2).
0 ^r^ ex)

Proof, (a) is immediate from (3). Next we rewrite / again as

1 1 1 /2 X 2

/ = ~(ία + rαr + α)2 + -(mt + ίαr)
2 + -(ί2 + r2)α2 - - α

2 2 4 r

In this expression the first three terms are non-negative and the last term integrates
α2

to zero. So by Theorem l(b) t J α fαdx < c. This implies (b). By (b), j ~^dx =
t >fit^



468 R. T. Glassey and W. A. Strauss

0(f ~ 2 In t). Next we write

whence

oc
\Q -2 J ocr-dx

α2

#, ί) + 2 j α 2 dx-f- j — dx.
r < κ 2r<Rr

The last term is moved to the left side. The other terms are Q(t ~ 2 ) by (a) and (3), if
R ^ θt. This proves (c). Integrating (*) once again, we have

α α
J Γ2 r ^

,, α2

which proves (d). Q.E.D

Lemma 2.

1/2
df < oo.

3 2 3 3 2- - 3

Proof. We write

r 2 V / 2

and estimate the L2 norm of each term on the right separately. First,

9 4 Xί α6dx ̂  sup r2α -r-dx
j r

by Lemma 1 (c) and (d). Second,

/2 λ 2

A2(ή= J α4 --α dx
r < ί / 2 \ Γ /

/2 \ 2 1
^ j α2 — α J -dx sup rα2,

\ r J r r<tl2

so that by Lemma 1 (a)

cor /2 \ 2 ] Ί 1 / 2 ^^
f A ( f ) d t < c \\ ία2 --α -dx —<c5< DO.
i ~ J ιL J V / r I t~



Scattering of Yang-Mills Fields 469

Finally,

(2 \2 (2 Y 1
f α4 — α } dx < f α2 — α ] dx sup - sup m2

r > , / 2 \r J ~ J \ r / r>t,2r

= 0(ί~4ln1 / 2ί)

by Lemma l(d) and Theorem l(b). Q.E.D

Proof of Theorem 2. Let R(t) denote the Riemann operator for the free equation (4).
This means that the solution β of (4) with the initial data β(r, 0) = 0, βt (r, 0) = γ(r) is
written as β(r, t) = [R(ί)y] (r). If we multiply (4) by βt9 we get the energy identity

for all ί. Thus R(t) is bounded from L2(R3) into H}(U3) and d#/dί from L2(R3) into
L2([R3). Let α(r, ί) be the given solution of (1). Let α0(r, t) be the free solution with the
same Cauchy data at time t = 0 as α(r, t) has. Then we have the integral form of (1)

1 Γ3 Ί
α(t) = α0(ί) + j R(f - s) -α2(5) - α3(s) ds.

o L r J

Now we define

Γ3 Ί
α+(ί) = α 0(f)+ f K(f-s) -α2(5)-α3(5) U

o L r J

By Lemma 2 this integral converges in the norm of •%? and

tends to zero as ί ~> oo. It is clear that, being a linear combination of free solutions, it
is itself a free solution. Q.E.D.

2. The Representation and /.^-Estimates

In Sect. 3 we will demonstrate the existence of the free-to-perturbed wave operators.
For that purpose we need L°°-estimates on the solution α of (1). Inverting the linear
wave operator does not suffice for this purpose, because of the singularity in the term

— α. Therefore we will first find a fundamental solution for the operator L, given by
r

(4).

Lemma 3. A classical solution α of the problem

Lα = F(r,ί) in {r>0,f >0}

α(r,0) = α f(r,0) = 0, (5)
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is represented by

t r+t-τ

α(r,ί) = ^J J K ( p 9 r 9 t - τ ) F ( p 9 τ ) d p d τ 9 (6)

where the kernel K is given by

and where ωn denotes the area of the unit sphere in Rn. Thus, in the notation of the proof
of Theorem 2,

α(ί) = J R(t - τ)F(τ)dτ.
o

Proof. Introduce the change of variables

α = rυ (8)

in (5). The Cauchy problem (5) then becomes

tt γ r ^ γ

We recognize (9) as the nonhomogeneous five-dimensional radial wave equation,
whose solution, as is well-known (cf. [2]), can be represented by

- j " - ' _ 2 J I_V * / Γ -JΓ^s\~~7Γ7~/~~Γ7 \ '

3! o ot o

where Q(x,p,τ) = (l/α>5) j F(x -f pω,τ)dω.
|ω| = l

When we carry out explicitly the differentiation indicated in (10), we get the result

jΓ t_^ _τ )2^ ( x ί_τ τ )~L (11)
oL T 3p ' ' J '

Now we compute g explicitly, using the fact that F (and hence F) is radial:

CUΛ* ~

^5 0

Making the change of variable

we see that (12) is the same as

m ^ + l*

Next, we calculate dβ/δp using (12)'; the result is

dp p
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Substitution of this in the formula (1 1) for v gives

ω ί \x\ + t-τ

v(r, t) = 4 I J λK(λ, I x I , t - τ)F(λ, τ)dλdτ.
3ω5\x\ Q i j^ i _ r + τ|

Now r = \x\. When we replace v by α/r here, and recall that F(r, t) = (l/r)F(r, f), we
obtain the statement of the lemma.

Corollary. The solution α0 of the linear problem

Lα0 = 0; «0(r,0) =f(r),dt*0(r,0) = g(r) (13)

is represented by

K(P> r> fo(P)dp + T T ^(P5 ̂  0/(p)dp. (14)2 J> >3ω 5r 2, rl f, 3ω5r | r _ f j

We now make the following standing hypotheses on the Cauchy data/, g in (13):

)• (H0)
In making the L°°-estimates, we will need the following result, which is simply a

calculus computation.

Lemma 4.

Define

I^r-*'2'}* K(p9r9t)g(p)dp9 (15)

2 - K(p9r9t)f(p)dp. (16)
^ I r - t l

Thusα 0=(c/ v/r)(/ f f

Lemma 5. (Estimates on /^). Assume (//0). Then

/ r + t \ l / 2

(a) |/Jgcr 1 / 2 j pVίP^P fora l l r , ί

/ ί + r \ l / 2

(b) \L\<c\ f P2g2dp for allr,ί
"" \Λ | /

Jt+/ * 1 V2 t(c) \Ia\<ct pa dp f o r r < -
" V l - r / ~2

(d) \Ig\^cΓ1r1/2\\p2

g\\L» f o r r ^ ^
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Proof. Call a = \r — t\,b = r + t. We may assume that ί > 0. We first establish (a)
above in the case r > ί/2. For, splitting the kernel, we clearly have

1/2/b l / 2

1/2 /b

1 / 2

1 / 2

..1/2*

1 / 2
1/2

1/2

since r > ί/2 by assumption. In order to prove (a) in the case r < ί/2, write

-3/2
l / 2 / b l / 2

But for r < ί/2, a = \t-r =t-r^ ί/2. Thus

' b

12

l / 2

in view of Lemma 4. This proves (a).
To establish (b) we write

l / 2

l / 2

by Lemma 4. This proves (b).

Note that (a) implies (c) trivially, since r ̂  ί/2 is assumed in (c). Clearly (c) implies
(d), which concludes the proof of Lemma 5.

Lemma 5 contains the basic estimates which we need to solve the nonlinear
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problem. However, we digress to estimate the integral I f , appearing in (16), to
complete our study of the free equation.

Lemma 6. (Estimates on If).

(a) s u p l / y l g c U +ί)~ 1 / 2 for all t^
r^O

(b) supr-^ l/ j l^c ί l + fΓ 1 for all t^.

Proof. We compute If explicitly, with the result

t) + \r-t\f (\r-t\K

J f(λ)dλ. (17)
| ί-r|

The last integral is, after integration by parts,

Using this in (17), we obtain

If = 2r~ 3/2[(r2 - t 2 ) f ( t + r) + |r2 -

(18)
| r - r |

In view of (H0), it is clear that If = 0(ί ~1 / 2) for large ί, provided r > ί/2. On the set
r < ί/2, we have from (18)

t + r

t -r

The first term here is equal to

Hence If can be written as

and so

LI(R
V^ r) t -r

^ cr1/2t ~ 1 1 | A/' || L1+ct-1r-ί'2 \\ λ2f \\ L. 2r
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This estimate completes the proof of (a) on the set r < f/2, and establishes (b)
simultaneously.

Corollary. Let α0 be a solution to the linear Cauchy problem (13) whose data satisfy
(H0). Then we have the following estimates:

(a) supr 1 / 2 |α 0 (r,ί) |=0(ί" 1 / 2 ) ast^oo.

(b) sup|α0(r,ί)l =0(ί-1) ast^co.

Proof. The first estimate is a consequence of Lemma (5a) and Lemma (6a). The
second conclusion follows immediately from Lemma (5d) and (6b).

We now turn to the L°°-estimates for the nonlinear problem. Let α _ (r, t) be a free
solution (Lα_ = 0) with data given at time t = — oo which satisfy (H0). In Sect. 3 (to
follow) we will convert (1) to integral form by inverting L, and will show that there
exists a solution α(r, t) to the integral equation

t b /3/v 2 \
&>A r /- . JU- λ \ 7 7 / 1 Γk\

α = α _ + ~ f f JC(p, r , ί -τ) a* }dpdτ, (19)
3ω5r2_V f l \ p )

where a = \r — ί + τ|, b = r + t — τ, and K is given by (7). We denote by ^α the
operator mapping α into the right-hand side of (19). Let T< 0. We will show that ^α
is a contraction for sufficiently large | Γ|. The resulting solution α will be asymptotic
to the given α_ in the energy norm || || ̂  as ί-> — oo. For our present purposes we
define a norm by

I α || o = sup
T ^ L- iire-j

I H n(r i\ 1
(20)

L2([R3)

Lemma 7. (A priori global L°°-estimate). // ||α||0 < coon an interval ( - oo,T], then
the following estimate holds:

forallte(-co,T).

Proof. From (19) we clearly have

|r 1 / 2 (ί%α-α_)|^c J (\Γ\ + \I"\)dτ,
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a P

b

Note that these integrals are of precisely the same form as those treated in Lemma 5
(i.e. Ig there). Hence, by Lemma (5a),

\Γ

1/2

tt follows that

f \Γ\dτ^c\\a\\2

0 J (ί-τΓ 1 / 2 | ln

• τ l o

τ τ 3 / 2<iτ

which is the required estimate for this term. To treat /", apply Lemma (5b):

l/2 /b \ l / 2

Thus

f \Γ\dτ^c\\Λ\\3 ί | l n l / 2 | τ | l^ τ

as desired.

<c | |α |

Lemma 8. (A priori local L00 -estimates). Let | |α | | 0 < oo on an interval (— oo, T].
Then the following estimates hold:

(a) r
1 for r ̂  l,ίe( - oo,T].

(b)

1-h In

r^l ie(-oo,T],

2r
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Proof. We split up the integral operator (19) as

(~>2 \

- «3 dpdτ
Γt-2r t -\b

*-«_) = -y j + j J
r L - co ί - 2 r J a

Consider E2. By applying Lemma (5a) as above, we find

4 1/2 * 1 / 2« Γ / * α4

^c J (ί-τΓ1 '2 Jp'
t-2r L\a Pt-2r

V/2-1

\dτ.ίc j (ί-τΓ 1/ 2 l l n ^ l τ l l l l α l l S l τ l - ^ + l l r ^ α W l l i fdp
I - 2r L \ α / J

Here we have used on the first term the estimate for /' in Lemma 7. Therefore

+ c\\a\\3

0r
1/2 \τΓ3l2(t-τΓ1/2dτ,

t-2r

since r ̂  1 . Hence we find

I ^ l ^ c d l α l l g + H α l l ^ r ^ l l n ^ l ί l l l ί r 3 / 2 (21)

f o r r ^ l .
To handle E19 we apply Lemma (5c):

t-2r Γ/b 4 \ l / 2 /b X l / 2 - 1

|^|^c J (ί-τ)-1 Jp4— ̂ p + j/ α^p Λ. (22)
-oo \_\a P / \ a / J

The second term here can be bounded as

'b \ l / 2 / 6 \ l / 2

The first term we bound as

1 / 2 /b \ l / 4 / b \ l / 4

~ \ r t / V f l /

^c||α||2 |ln1 / 4 |τ| | |τΓ5 / 4r1 / 4(ί-τ)1 / 4. (24)

Using (23), (24) in the estimate (22) for E19 we find

t-2r

— oo

+ ||α||3 |τr3 / 2r1 / 2(ί-τ)1 '2] ίίτ
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since r ̂  1. This and the estimate (21) for E2 establish part (a) of Lemma 8.
It remains to prove part (b). Notice that the estimate (21) for E2 is stronger than

that claimed in part (b) of Lemma 8. Therefore we need only estimate E1 . Since the
second integral in (22) is dominated by c || α [| ̂ r112 \ t \ ~ 1

9 as follows from (23), we can
write

t-2r / b \ 1/2

l ί i l ^ c d l α l l ' + l l α l l ^ r ' / ' I f Γ ' + c j (t -τ)~ Ίp^d} dτ.

The last integral is less than

l / 2

Jdp dτ
2 dτ

|τ|(ί-τ)

in
2r

and this establishes part (b).

3. The Free-to-Perturbed Wave Operators

Let α _ (r, t) be a free solution (La _ = 0) with data given at time ί = — oo which satisfy
(//0). Let - oo < T < 0, and let

We wish to show that there exists a unique solution α(r, t) of the nonlinear equation

2
α« ~ 7C

2 3oc2

. - α,, + -rα + α3 = 0,
rz r

(1)

such that

| |α( t )-α_(f) | 0 as ί^ - oo.

Here the energy norm \\-\\^ is given by (2).
The existence of such an α will be achieved by first showing that the integral

equation,

I JK(p,r,f-τ) α3 \dpdτ = (19)

has a unique solution on the interval - oo < t ̂  Γ, provided | T\ is sufficiently large.
This in turn follows from our showing below that the operator ̂  on the right-hand
side of (19) is a contraction for large enough | T|. The solution so obtained will be
shown to exist for all times ίeIR, as follows from positivity of the energy.

Define a norm on functions α(r, ί) (0 ̂  r < oo, — oo < t ̂  T) by

ί

Irΰ|= sup <sup|
In

2r
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1*1
(25)

All spatial norms here are to be taken over [R3. It follows from the corollary to
Lemma 6 and from estimates to be made below that |||α||| < oo for a free solution
with data satisfying (H0).

Theorem 3. Let α_(r, t) be a solution of the free equation Lα_ =0, whose data satisfy
(H0). Then there exists a unique solution α of the perturbed equation

3α2 .
Lα + α3 - 0,

r

such that || α(ί) — α_(ί) || ̂  -> 0 as t -> — oo. Moreover, this perturbed solution enjoys the
following properties:

(i) αeC^fl,1); α,eC0(R,L2),

(ii) the total energy is conserved:

Γ / 2\2Ί
ί 2α2 + 2 l V α l 2 + 4αΊ α""~ ) \dx = 2\\y<- \\l = constant,
03 I \ / J

Proof. Consider the integral equation (19) on the interval ( — oo, T). We will prove
that there exists a solution α of (19) for | T\ large, and such a solution is certainly a
weak solution of (1). Notice that || α ||0 ^ |||α||| and that the L°°-estimates for ̂ α - α_
in the first two terms of ||| ||| (cf. (25)) have already been given in Lemmas 7 and 8b).

Lemma 9. Let |||α||| < oo on an interval (— oo, T]. Then there exists a const ant c such
that

sup (26)

Proof. First we note that, given a solution u oΐLu =f, where /eL^ίR, L2), with zero
Cauchy data, we have

(27)

as follows from the proof of Theorem 2.
Hence, by applying (27) to (19), we get

3«2

r
dτ. (28)

L2(r>l)

supr- 1 / 2^c| | |α| | | 2 | ln 1 / 2 |τ | | |τΓ 3 / 2 .
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The estimate for this term near the origin is made by using Lemma 8b):

= c

Hi
Oln4|τ|ln4h

2r

\2r+ τ|

, l n 2 | τ | / i . „/ 2r
;

Using these estimates in (28) and integrating in τ, we obtain (26).
To complete the estimation of |||^α — α_ |||, we need the following //-estimates:

Lemma 10. Let β be a solution ofLβ = fin {t > 0} having zero Cauchy data. Then

Proo/. As in Sect. 2, Eq. (8), introduce the change of variables β = rv into the
equation Lβ =/. The equation for v becomes

vtt--vr-vrr =

and the operator on the left-hand side here is again the five-dimensional wave
operator. Then as a special case of the estimates proved in [7], we conclude

and

Since β = rv, we then have

and

and these identifications complete the proof.

Lemma 11. Let |||α||| < oo on an interval (— oo, T]. Then there exists a constant c such
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| | r" 1 / 3(^α-α_)(ί) | l3^c(| | |α | | | 2+ |||α|||3)|ίΓ1 for - oo < t ̂  T. (29)

Proof. Applying i) of Lemma 10 to (19), we find

,-1/3 ^c J (ί-τ)-2'3 -3α2

α* \ r l / ό ( τ ) dτ.
3/2

Now | |r1 / 3α2/r| |3 / 2- | | r~ 1 / 3 α ||2^ c|τΓ4/3 | | |α|||, and

Putting these estimates together, we obtain

t

- oo

and this proves the Lemma.

Lemma 12. Let | | |α|| | < oo on an interval (— oo, T]. Then there exists a constant c
that

^c(|||α|||2 + || |α|| |3)|ίΓ1/5 for - oo < t g T. (30)

Proof. Applying ii) of Lemma 10 to (19), we find

'-3α2

:^^ ί

,.2/5 3 (τ) dτ. (31)

Now

and

10/7

1-6/5

10/7

Putting these estimates into (31), we obtain the result of the lemma.

There is only one more term in the norm |||^α — α_ ||| to be estimated. This is the
content of

Lemma 13. Let || |α||| < oo on an interval (— oo, T]. Then there exists a constant c
such that

(32)

for ίe( — oo, T].

Proof. This result follows from already derived bounds. First, let

J1 = J r~2\moc-oc_\2dx.
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1/3

where we have used (29) from Lemma 11. Hence

and this is stronger than the desired estimate (32). For the estimate on the
complement [r < 1}, we have

|= J = Γ
— α _

r r<l Γ

Now bound r|^α — α_ |2 using a) of Lemma 8:

| g c f r - ^ r ^ ^ l l l α l l p - h l l l α l H 3 ) 2 ^ 1 / 2 !

^in^lίlir2!^1/2*.
0

Therefore

ι!/4

This establishes Lemma 13.
If we now examine the results of Lemmas 7-13, we conclude the following:

Lemma 14. Let |||α||| < oo on an interval ( — oo, T]. Then there exists a constant c
such that

(34)

It is now clear from the methods of Lemmas 9-13 and the corollary to Lemma 6 that
|||α_ HI < oo for a free solution α_ with data satisfying (H0). Inequality (34) shows that
the operator α-»^α given by (19) is a contraction for |T| sufficiently large. Thus
there exists a time Γand a unique solution α = α(r, t) of the integral equation (19) for
— GO < t < T<0. By construction and the definition (25) of the norm HI HI we see that

αeC((- oo, T);/?,1), and

This solution α can be continued for all times — oo < t < oo. This follows exactly as
in [6] (from the positive definite nature of the energy density e). By (28), we have,
since ^α = α,

3α2

 λ ,
— -α3 (τ) dτ, (35)

and the result of Lemma 9 shows that this integral tends to zero as t-> — oo.
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