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Abstract. The equations of motion of compressible viscous and heat-conductive
fluids are investigated for initial boundary value problems on the half space and
on the exterior domain of any bounded region. The global solution in time is
proved to exist uniquely and approach the stationary state as ί-> oo, provided
the prescribed initial data and the external force are sufficiently small.

1. Introduction

The motion of viscous compressible fluids is described by the system of five
equations for the density p, the velocity u = (w 1 ,w 2 ,w 3 ) and the temperature θ:

* = 1 , 2, 3,

where p is the pressure, μ is the viscosity coefficient, μ' is the second coefficient of
viscosity, K is the coefficient of heat conduction, cv is the specific heat at constant
volume, all of which are known functions of p and 0, and Ψ is the dissipation
function :

We consider the initial boundary value problem of (1.1) in the region t ̂  0, xeΩ.
The boundary condition is supposed

"Ufl = wL=0, 01^ = 0^=0, ί>0, (1.2)

* Both authors are partially supported by the University of Wisconsin-Madison, Mathematics
Research Center
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50OΓ M«Ufl-"L-o, dn
= 0, r>0. (1.3)

The initial condition is given by
i>Ω 8n

The local existence theorem for the initial boundary value problem (1. !)-(!. 4) is
proved by Tani [10] under full generality. Here we want to solve the problem (1.1)-
(1.4) globally in time under the following assumptions.

A.I. The domain Ω is the half space R3

+ = {xeR3,x3 > 0} or an exterior domain
of any bounded region with smooth boundary. Here we note that the initial
(-boundary) value problems on the whole space and on the interior domain are
solved globally in time in [6-8].

A.2. μ,μ', κ,p and cv are smooth functions of p,θ > 0, and μ, /c, cv, /?, pp, pθ > 0,

A3. The external force / is given by the potential Φ(x)eH5(Ω),

f=-φχt, i= 1 , 2 , 3 , xeΩ, (1.5)

where, and in what follows, we use the Sobolev space

Hl(Ω) = {feL2(Ω\ Dkf= {dΛf/dxlldxΛ

2

2dxΛ

3\ |α | = k}εL2(Ω\ l^k^l}

/ I \ l / 2

with the norm 1 1 / 1 1 , = £ j \Dkf\2dx 1 .
\ k=0 Ω /

A.4. The initial data are smooth functions close to a constant state (p, 0, 0), where p
and θ (also appeared in (1.2)) are any positive constants, i.e.,

p0 - p, uQ9 Θ0 - θεH\Ω\ and || p0 - p, MO, Θ0 - θ \\ 3 is small. (1.6)

A.5. The compatibility condition on the initial and boundary data is satisfied as
follows:

-
Po

-Γ + T« ϊ f o0o.* J )^ + *O}lM = o, (i.η
Po\cv)o Po\cv)o

where we used the notation p0 = p(p0, Θ0) etc. In the case of Neumann condition (1 .3)
for θ we need a necessary change of compatibility condition.

Wejαse the following notations for the function spaces;
^°(Ω): Banach space of bounded continuous function on Ω,

<£l(tί,t2',B) = {u(t): /-time continuously differentiate function of
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ίe[ί1?£2] with values in a Banach space B, where the norm is given by
max sup \\(d/dff*t,-)\\B},

L2(tl9t2',B) = (u(t): L2-function of ίe[ί1,ί2] with values in B, where the norm is

given by { $ \\u(t9 )\\2

Bdt}V2}.
tι

The stationary solution (p,ύ,8)(x) of (1. !)-(!. 3) in a neighborhood of
(p,0,0) in H2(Ω) x H2(Ω) x H2(Ω) has the form (cf. Lemma 2.1)

^ ΰ = Q9θ = θ. (1.8)
V

We can state the main

Theorem 1.1. Under the Assumptions A.I . ~ A.5 there exists a constant ε > 0 such that

if

then the initial boundary value problem (1.1)— (1.4) has a unique solution
(p,u,θ) globally in time and a unique stationary state (p,0, θ), which satisfy

p - pe^°(0, oo H3(Ω)) n ̂ (0, oo H2(Ω)),

M, 0 - ffe^°(0, oo //3(£2)) n^(0, oo H^Ω)), (1.9)

|p - p, w, θ - 0(01^6) -»0 as r -* oo. (1.10)

The theorem is proved by the energy method which is similar to [6-8], but it
requires the estimates valid in the half space and in the exterior domain. We note
that the solution decays as in (1.10), but the decay rate is not known, cf. [6-8]. In the
following we only mention the arguments for the Dirichlet boundary condition (1.2),
because the Neumann boundary condition (1.3) for θ can be treated similarly.

2. Stationary Solution

Let us write the equations and conditions for the stationary solution (p,u,B):

(pfi'X,=0, (2.1)

pΰWXj + pxι + βΦXι - (μ(u'Xι + «',) + μ'wl<5% = 0, i = 1 , 2, 3, (2.2)

pcvΰ'θxj + Sp0uJXj - (κθXj)Xj -Ψ = 0, (2.3)

fi|M = *L=0, fl"|an = ?!„ = ?, pU = A (2.4)

where p — p(p, 8) etc. The stationary problem (2.1)-(2.4) has a unique solution as

Lemma 2.1. Under the assumptions A.I ~ A3 there exist positive constants ε and C
such that ίf\\ Φ || j ^ ε, / = 3, 4 or 5 the problem (2.1)-(2.4)has a unique solution (p(x), 0,
θ) in a small neighborhood 0/(p,0,$) in H2 x H2 x H2 satisfying

| | p - p | | / ^ C | | Φ | | / , / = 3, 4 or 5 respectively, (2.5)
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where p(x) is determined by (1.8), i.e.,

Pίc)PpMd +φ(χ)=0ί (2.6)

P ^

Proo/. Since we consider a small neighborhood of (p, 0, 0) in H2 x H2 x H2, by
Sobolev's lemma, we may suppose |p — p|, | M | , |# — $| <^-min{p,#}. Then we can
estimate the equalities:

J[2.3] x[9-3)dx=Q, (2.7)

where [2.1], [2.2]' and [2.3] denote the terms on the left hand side of (2.1), (2.2)' and
(2.3) respectively. Take the sum of (2.7) and integrate it by parts using the mean value
theorem and Lemma 4.1. We obtain the inequality:

| | />wp + ||/>0||2^C{||D^

Therefore if | |Dp||, | | w | | l 5 \\θ — θ\\2 is small, we can conclude

fi = 0, θ = θ. (2.8)

If we substitute (2.8) in (2.2), we have

which implies (2.6).

3. Local and Global Existence

Let us rewrite the problem (1.1), (1.2) by the change of variables (p,u,θ)
(p + p,u,θ + θ) using (2.6) as follows:

PP - + Pθ Θ =( "rpvr ' r ? " ' "' -\\Φ
~ * l ^+p)Pp(P,9) ' "'

(3.2)
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Further we rewrite the problem (3.1)-(3.3) as follows:

ί>, M) EE Pt + UJpX] + puxj =/°, (3.4)°

U(p, u, θ) = u\ - μ4jX. -(μ + μ')uiίXj + PlpXι + p2θXι =/', i = 1,2,3, (3.4)'

L\u,θ) = θί-κθXjXj+p3uίj=f4, (3.4)4

(p0,u0,θ0), (3.5)

where we denote the constant for the function g of p and θ by g = g(p, θ), and also
μ = μ/p, μ' = μ'/p, K = κ/pcv, pγ = pp/p, p2 = pθ/p and p3 = θpθ/ρcv. The terms on
the right hand side of Eqs. (3.4) are nonlinear and have the form:

— K

Next we choose a constant E0 by use of Sobolev's lemma such that

| |#| | co^imin(p,θ) for any gεH2, | | g f | | 2 ^f; 0 .

Then the solution of (3.1)-(3.3) is sought in the set of functions X(Q, oo E) for some
E ^ EQ9 where for 0 ̂  t1 ^ ί2 < oo, we define

Ar(ί1,ί2;£) = {(p,ιι,θ):

ί l 5ί2;//3), DpeL2(tl9t2',H
2),

where
N2(tί9t2)= sup l l p . M . Θ W I I i

I Dp(s) I I 1 + II p,(s) I I I + II D(«, θ)(s) ||f + || u,, θ,(s) || |ώ. (3.7)
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Here and in what follows we do not write Ω in Hl(Ω) and L2(Ω).
We will obtain the global solution by a combination of a local existence theorem

and some a priori estimates for the solution in X, namely that for the norm N.

Proposition 3.1. (Local Existence). Suppose the problem (3.1}-(3.3) has a unique
solution (p,u,Θ)eX(0,hιE0) for some h ̂  0, and consider the problem (3.1)-(3.3) for

t ^ h. Then there exist positive constants τ, ε0 and C0(ε0 y
/T+~Cf ^ E0) independent

of h such that if N(h, h), | |Φ| | 4 ^ε 0 , the problem has a unique solution (p,u,θ)e
X(h9h + τ;C0N(h,h)).

The proof is the same as that for the interior problem in [8] and is omitted.
Although the local existence theorem by Tani [10] is more general, we need it in the
form of Proposition 3.1 to extend the solution globally in time by use of the L2

energy method.

Proposition 3.2. (a priori Estimates). Suppose the problem (3.1)-(3.3) has a solution
(p9u, θ)eX(Q,h;E0) for given h>0. Then there exist positive constants ε1 and
Cί(ε1 ^ε0'

ει^ι = EO) which are independent of h such thatifN(Q,h), \\Φ\\5 ^ε

If Proposition 3.1 and 3.2 are known, then global existence of a unique solution
can be proven as follows: Choose the initial data (p0, U0Θ0) and the potential function
Φ so small that

The Proposition 3.1 with h = 0 gives a local solution (p9u,θ)eX(09τ:>C0N(Q,0)).
Since C0N(0,0)^ε1 ^ε0, Proposition 3.2 with h = τ implies JV(0,τ)^ ^#(0,0).
Then Proposition 3.1 with h = τ implies the existence of a solution

(p, M, θ)eX(τ, 2τ C0JV(τ, τ)), eX(Q, 2τ ^/l + C0

2]V(0, τ)).

Hence, since ,/! + C^JV(0, τ)^Cί^/l+ Cj JV(0, 0)^εl9 Proposition 3.2 with h = 2τ
gives N(0,2τ) ^ CίN(090\ and Proposition 3.1 with h = 2τ gives

(p, u9 θ)eX(2τ, 3τ C0 JV(2τ, 2τ)), eX(09 3τ v/lTcf N(09 2τ)).

Repetition of this process yields

Proposition 3.3. (Global Existence). There exist positive constants ε and
C(εC^EQ) such that if N(Q,Q)9 | |Φ| | 5 ^ε, then the initial boundary value problem
(3.1)-(3.3) has a unique solution (p9u,θ)eX(Q9co 9CN(Q90)).

4. A Priori Estimates

First we recall some inequalities of Sobolev type.

Lemma 4.1.

(i) Let Ω be any domain with smooth boundary. Then

\ \ f \ \ « ~ ( Ω ) £ C \ \ f \ \ H 2 ( Ω ) , 0 ^ σ < l / 2 ,

\ \ f \ \ L Ω ^ C \ \ f \ \ H > 2^p^6. (4.1)
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(ii) Let Ω be the whole space R3, the half space K + , or the exterior domain of a
bounded region with smooth boundary. Then

L2(β), L2(ΩΊ g C I I D/ || La(β), (4.2)

w/zere Ω' is flπy bounded subregion of Ω.

Proof. See for example [3], [4].
Next we note some estimates of the elliptic system of equations for our domain,

when we regard Eq. (3.4)1', z = 1,...,4, as elliptic with respect to x variables, i.e.,

μ u l

X j X j + (μ + μ')uj

XιXj = u\ + p,pXι + p2θXι -/'', i = 1,2, 3,

"U = «lαo=0U = 0loo=0. (4.3)

Lemma 4.2. Lei Ώ be the half space or any exterior domain. We have for k = 2, 3,

||}, (4.4)

}. (4.5)

The first estimate is well known, e.g. [1]. The last L2 norm is contained on the right
hand side because of the unboundedness of our domain. The second one is given in
[5]. It contains the L2 norm of the first derivative as the last term on the right hand
side and is stronger than that containing the L2 norm of the function itself such as
(4.4).

The last estimate for an elliptic system concerns stokes equation in Ω which

comes from (3.4)1, i = 0, . . . , 4.

puj

Xj = h,

-ίiu^+PiPx^g*, i = l,2,3,

u\dΩ = a9 «U=0. (4.6)

Lemma 4.3. For k = 2, 3, 4,

| | D * M | | 2 + | | D * - V I I 2 ^ C { W (4 7)

where the last term on the right hand side is necessary in the case of exterior domain.

Proof. In the case of the half space Ω = R^ , the lemma is proved by Solonnikov [9]
and Cattabriga [2], where the definition of the space Hk~ 1 / 2 ( d Ω ) is also given. In the
case of exterior domains Finn [3] and Heywood [4] obtain the lemma provided
h = 0. Thus we only need a slight improvement for h =£ 0. Let us extend the func-
tion hεHl(Ω] to a function KeHl(R*) with the estimate || h \\ fll(R3) ^C\\h || fll(β). Then
we approximate h by H1 functions hn with compact support, i.e., Λπ->ί in
Hi(R3\ as n-> oo. Thus we can define the function
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It is well known by use of Fourier transform

Thus we have

where Ω' is any bounded subdomain of Ω (cf. (4.2)). Since C is independent of π, as the
limit of «-> oo, we have

Now we can put u — Vφ = v and q = p + h/p1p, which satisfy divi?
— μΔυ + Pj Vq = g, and reduces to the above case. In fact we have

|| Dυ \\L2(Ω) £ || Du \\L2(Ω} + || D2

L2(0) C || h \\H (Ω)9

and

where the boundary of Ω' contains dΩ.
Now we begin to obtain the energy estimate for solution of Eq. (3.4)1', i = 0,..., 4,

with (3.5).

Lemma 4.4. W7^ have for 1 = 0 and 1

ds

where

A0 =

A, =

— =

l\ +\\d\f \\2ds\,

P3

(4.8)

- uX), + uW + ̂

(4.9)

We have also for k =0 and 1,

|| Ddk

t(u, θ)(t) || 2 + J I I 5f+ l(p, u, θ)(s) \\ 2ds ^ C

J I I D d k

t ( u , Θ ) ( s )
o

(4.10)
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Proof. Compute the integral

J J ̂ p(L° -/°) + ul(Li -/') + — Θ(L4 -f4)dxdt = 0.
OΩ P Pi

Integration by parts using the boundary condition gives

453

0 Ω P3

2 P P3

where A0 is defined by (4.9). If we use the notation dp/dt in (4.9), we can obtain (4.8),
/ = 0 from this equality. The time derivative can be treated similarly, because it has
the same boundary conditions. Next compute the integral

j pt(L° -/°) + «,'(L' -/*) + 0,(L4 - = 0.

Integration by parts gives, by use of Schwarz inequality,

^ 0 Ω

0 Ω

where/ = (/° — ujρx j/1,/2,/3,/4). If we use Schwarz inequality for the term puj

x ,
we obtain (4.10), / = 0. The estimate (4.10), / = 1 is obtained similarly.

In the following we first treat the case of the half space Ω = R3

+ since it is easier to
obtain estimates in this case than for the exterior domains treated later.

Since the tangential derivatives of the solution of (3.4) satisfy the same boundary
conditions (3.5), we can obtain the estimates for these similarly to the above Lemma
4.4. Let us denote the tangential derivatives by d = (dXl,dX2) and integrate the
equality for each fc = 1,2, 3 by use of integration by parts

dk(L° ~f°)dkp + dk(U -/'')SV - 0.
P

Thus we have

Lemma 4.5. For k — 1, 2, 3,

ds

(4.11)
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where

Ak+ι = ^skpdk(f°-ujpXj)dx for each fc = l,2,3. (4.12)
Ω P

Then we have to obtain the estimates for the normal derivatives of solution. To
do that we use the following equations from (3.4).

+p2θXi =/3. (4.13)

If we eliminate the term ul3X3 from these, we have

, 2μ+μ' 0= - "< -̂  +-—/°3
(4.14)

where we note the second derivatives of u at the last two terms on the right hand side
contain one tangential derivative. Multiply (4.14) by pX3 and (dp/dt)Xz respectively
and integrate them respectively. We obtain after integration by parts

ί

ί ί { - «? -

0

and

2= y ί Po2,,3^ + ί ί y( - <P,3 + ui3pXj)pX3dxdt
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+ j I K I | 2 + \\DΘ\\2+ \\Ddu\\2

o

respectively. Thus we have obtained the following

Lemma 4.6. For k + / = 0,1,2,

\\Skdl^lp(t)\\2+\\\dkdl^p(s)\\2

o

h , + i l |δ* + 'δ ' 3

where

and here the summation is not taken for k and I

| |/Ίl2

+ ί + 1

2dxdt

(4.16)

Proof. For fc+ / = 1 and 2 we differentiate Eq. (4.14) by dkdl

3 and multiply it by
dkdl

3

+1p and dkdl

3

+1(dp/dt) respectively. Integration by parts gives (4.15) and (4.16),
in this case similarly to that for k = I = 0.

Last we use Lemma 4.3 for stokes equation (4.6) with u dΩ = 0, where h and gl have
the following explicit forms.

(4.17)

Lemma 4.7. For k + 1 = 0,1,2, we have

I D 0 I I + II/Ί

δ Ύ-dt l+l

(4.18)

Now we can combine the above Lemmas 4.1-4.7 to obtain necessary a priori
estimates. First we obtain the H2 version of norm N(0, t), i.e.,
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1| pt(s), Dp(s) I ! \ + || ut, θ,(s) || J + || D(u, θ)(s) || \

sup

l l ί + l l « V Λ j l l ? + Σ

It is proved by fifteen steps as follows:

(i) By Lemma 4.4, / = 0, we have

(ii) By Lemma 4.4, k=0, and (4.20), we have

dp. ds

i

Σ s. (4.19)

(4.20)

J \\f(s)\\2ds [. (4.21)

where ... means the terms already appeared on the right hand side of inequalities
(4.20)-(4.32), especially (4.20) for (4.21).

(iii) By Lemma 4.4, / = 1, we have
2

| |p,,U,,<9 r(ί)ll2+ $ \\D(ut,θt)(s)
0

ds

(4-22)

(iv) By Lemma 4.2 for θ and by (4.20)-(4.22), we have

\\D2θ(t)\\2+

\\f*(s)\\2ds (4.23)

(v) We have the estimate of tangential derivatives of p by Lemma 4.5, k = 1,

> ds<

(4.24)

(vi) The estimate of the normal derivative for p and dp/dt follows from Lemma
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4.6, k + / == 0, and from (4.24), (4.21) and (4.20)

>ί(s

i l l / 0 I I 2

457

ds

\B0.Q\ds (4.25)

(vii) Then we have the second derivative of u by Lemma 4.2 for u and k = 2, and
by (4.19), (4.21), (4.22), (4.24), (4.25).

\\D2u(t)\\2^ + C\\f(t}\\2. (4.26)

(viii) Further since dp/dteL2(0,t;H1), we have by Lemma 4.7, k + I = 0, and by
(4.21), (4.20), (4.24) and (4.25),

(4.27)

(4.28)

\\D2u(S)\\2+\\Dp(s)\\2ds^ + [[/°|[2

0 0

(ix) By Lemma 4.2 for θ,k = 3 and by (4.27), (4.21) and (4.22), we have

(x) By Lemma 4.5, k = 2 we have

t
\\S2p(t)\\2+ ds

\\df(s)\\2 + \A3\ds

(xi) By Lemma 4.6, k = 1, I = 0 and by (4.29), (4.22), we have

2

ds

£C\ \\δ2(p,u)(0)\\2+ J ί (4.29)

(4.30)

(xii) By Lemma 4.7, k = 1,1 = 0 and by (4.29), (4.30) and (4.22), we have

(4.31)
o o

(xiii) By Lemma 4.6, k =0, / = 1 and by (4.31), (4.22), we have

(4.32)

(xiv) By Lemma 4.7, k = 0, / = 1 and by (4.29), (4.30), (4.32) and (4.22), we have

]\\D*u(s)\\2+\\D2p(s)\\2ds£- (4.33)
o
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(xv) Then by the Eq. (3.4)

\\PMI +S\\Pt(sn2ιds£' +\\f°-uiPXJ\\2

ί
0

+ ]\\f0-ujpxj(s)\\2

1ds. (4.34)
0

Thus if we sum (4.20)-(4.34), we arrive at the H2 energy estimate (4.19).
To elevate the differentiability once to obtain the estimate of norm N(0,ί), we can

repeat the above argument beginning from Lemma 4.4, k = 1 and by use of Lemma
4.2, fc = 3, Lemma 4.5, k = 3, Lemma 4.6, k + l = 2 and Lemma 4.7, k -1-1 = 2.
Therefore we arrive at the estimate for 7V(0,ί)

,t)2 = \\p,u9θ(t)\\l+ l l A ( O l l i + MWIIi

+ } 11^,^(5)111 + \\ut,θt(s)\\2

2 + \\D(u,θ)(s)\\lds
0

^ C\ I I p,M(0) I I i + sup { || f° - v>pXί(s) \\* + \\ f(s) \\ ?}
I O S s S i

+ ί I I f°(s) I I I + II /(s) || I
0

4 2 1

+ Σ I4J+ Σ \Bk,ι\ds\. (4.35)
fe=0 Λ + / = 0 J

Last we have to show

Lemma 4.8.

sup { I I /° - u*Pxj(s) | | 2
2 + II f(s) | | f } + f II /°(s) II f -h II (/° - ^Ws) I I 2

0 ^ 5 ^ ί 0

+ IU(*)ll2 + l l/(ί) l l l+ Σ IΛI+ Σ \Bk,ι\ds
k=0 k+l=0

^C2(Λf(0,ί)+||Φ||5)N2(0,ί). (4.36)

It is proved by use of Lemma 4. 1 and integration by parts. We show only the term A0

and omit the proof of the other terms which can be treated similarly. Let us recall
(4.9) and compute the following

P(f° - ujpxj)dx\ = \

= \IPXJ((P- P)ui

ί \\Dp\\ {( $ (p- p)2\u\2dx)1/2 + ( j p^ufdx)1'2}
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dx

The remaining terms in A0 can be treated in the same way as above.

Finally let us turn to the case of exterior domains. In this case, since we cannot
generally designate a coordinate system over all of Ω so that directions are consistent
with the normal and tangential directions on the boundary dΩ as in the case of the
half space, we have to modify the Lemmas 4.5 through 4.7. To do that we shall
separate the estimates of the solution into that over the region away from the
boundary dΩ and that near the boundary dΩ. Let χ0(x) be any fixed cut-off function
in ^°°(ί2) such that support χ0 c Ω and χ0 = 1 outside of a bounded region Ω'. Then
we have the following as the estimate on the region away from the boundary.

Lemma 4.9. For k = 1, 2, 3, it holds that

\\XoD
kp(t)\\

\ \ D ( u 9 θ ) \ \ ϊ - ι + \ A ' k + ί \ d s

\\χ0D
k(p,u)(t)\\

where

and here the summation is not taken for k.

Proof. Compute the integral

' , 2μ-h μ' 9 / τ Π />0xff-^—ti(L -J\PXI0 Ω P

(4.37)

ds

\D(u,θ)\\ϊ-ι+\A'k+1\ds

Ω P

(4.38)

< - f>)pxdxdS = 0.
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After integration by parts, we have

ί ^^X2

0\Dp\2 + χ2

0u>pxdx + ί J Plχ
2

0\Dp\2dxds
Ω LP 0 Ω

t

= J J - 2^0X0^14^ + 2μχ0χ0,X ιwi .p^ +

Since the support of Dχ0 is contained in Ω', we can make use of (4.2) and
consequently the Schwarz inequality gives (4.37), k = 1. The other cases k = 2, 3, are
obtained similarly. To prove (4.38), compute the integral

ί χ2

0(Dp)D(L° - f°) + x2(Dul)D(L' - f')dxds = 0.
0 Ω P

Integration by parts gives

if xo- m2 + xW2d*lό + ί ί
Ω P 0 Ω

which implies (4.38), k = 1 after using the Schwarz inequality. The cases fe = 2, 3 are
obtained similarly.

Next let us establish the estimates near the boundary. To do that we choose a
finite number of bounded open sets {(9j}

IJ=ί in R* such that

and in each set $y we choose local coordinates (ψ,φ9r) as follows;
(i) the boundary Gj n 5Ω is the image of smooth functions / = yl(ψ9φ) satisfying

(e.g., take the local geodesic polar coordinate)

ltyl = l, 4^=0, bφ|^δ>0, (4.39)

where c> is some positive constant independent of j — 1, . . . 9N.
(n) any x in Θj is represented by

x1' = xty&r) = rn^φ) + y'dl/J), (4.40)

where ri(ψ,φ} represents the external unit normal vector at the point of the
boundary coordinated (φ,φ). Here and in what follows we omit the suffix j for
simplicity. Let us define the unit vectors e\ and el

2 by e\ — y\ and el

2 = yl

φ/\yφ . Then
Frenet-Serret's formula gives that there exist smooth functions (α,β,y,α',/Γ,/)
oΐ(ψ,φ) satisfying
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An elementary calculation shows that the Jacobian J of the transformation (4.40) is
given by

J = K x xφ\ = M + (*\yφ\ + β')r + (*β' - β«')r2. (4.41)

By (4.41) we can see the transformation (4.40) is regular choosing r small if needed.
Therefore the functions (\l/,φ,r)Xι(x) make sense and is calculated as

j(

-.(
J

*,)< =j(Ae\

φ)ι = -(Ce\
J

Όe\\

(4.42)

where A = \yφ\ + β'r, B= - rα', C = - βr, D = 1 + αr and J = AD - EC > 0. Hence
(4.42) implies

dxi = j(Ae{ (Ce\ + De'2)dφ + nldr.

Thus in each ^ we can rewrite the equations {(3.4)1}f:=0 in the local coordinates
(i//,φ,r) as follows:

4- B2)M^ + 2(AC + BD)u1^ + (C2

4- first order terms of u and θ

TΛβ' 7 '̂

p dt
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where we note that J2 =(AC + BD)2 - (A2 + B2)(C2 + D2). Let us denote the
tangential derivatives by d = (dψ, dφ) as before, and let χ^l ^j^N} be any fixed cut-
off function in ^^(Θ^). Estimating the integral for k = 1, 2, 3,

j J Xj^-(δkρ)dk(L° -/°) + i2(dk^)dk(U -f()J dφdψdrds - 0
OΩ P

in the similar way as in Lemmas 4.5 and 4.9, we can get

Lemma 4.10. For any positive ε and k = 1, 2, 3, it holds that

2

ds

t

' Xj P'U o k~l U' k~*

where Λ k+l = J ~ τ χ f ( d k p ) d k ( f Q — ujpXj)dx, and here the summation is not taken
Ω P

fork.

In order to estimate the normal derivatives we make use of the equation

dr(L° -/°) - 0 and n\Ll -/') = 0, which have the form

+ P

Ί{(Ae\ + Be^ + (Ce\ + Del

2)u^ + Jn^}
J

+ first order terms of u =/J?,

+ -|{(^t2 + B^n'u^ + 2(AC + BD)u'φφ + (C2 + D2)n'u^ + J2nlul

n}
J

H- first order terms of u and θ

p \dtjr p

Eliminating nlul

rr from (4.43), we get

PiPr = - "X + ~
P \aτ

+ (C2 +

+ first order terms of u and θ + n'/1 + ̂ -^/V0. (4.44)
P

If we apply dkdl

r(k+ I = 0,1,2) to (4.44), multiply it by χ2dkdl

r(dp/dt)r and χ}&dl

rpr,
and integrate them respectively in the similar way as in Lemmas 4.6 and 4.9, we can
have

Lemma 4.11. For k + / = 0, 1, 2, z'ί /zo/ds ί/zαί
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Jdp

/*+'^l«

ds

Dp(θ)\\2

k+l + ι\
o

\\(D(u,θ)\\Lι +

1 dlDu ||

where

ί ti
Ω

,

f/ze summation is not taken for k and I.
Last we have to get a lemma corresponding to Lemma 4.7. Evidently the

statement of Lemma 4.7, k + / = 0 holds also for the case of exterior domains, if we
add the term || Du \\ on the right hand side of the inequality, (cf. Lemma 4.3). Next
operating Xjdk, k = 1, 2 to Stokes equation (4.6) with (4.17) and u\dΩ = 0, we have

(4.45)

Thus we can apply Lemma 4.3 to (4.45) and consequently we have

Lemma 4.12. For 1 = 0, 1, 2, we have

i i -L. dp

|J'+ Λ

and for k = I, 2, I + k = 1, 2, we have

Combining the above Lemmas 4.1-4.4 and 4.9-4.12 as in (i)-(xv) for the half
space, one can obtain the same inequality (4.35) and the same Lemma 4.8 modulo the
replacement of

+ Σ |βM |byμ0l + l^Σ I Λ I + Σ |βM |byμ0l + l ^ ι l + Σ
fc=0 k + l = 0 k=2

Σ j Σ l
j=l (k=2

Σ
Thus the proof of Theorem 1.1 is completed.
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