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Abstract. We discuss a rotation number a(λ) for second order finite difference
operators. If k(λ) denotes the integrated density of states, then k(λ) = 2a(λ). For
almost periodic operators, k(λ) is proved to lie in the frequency-module
whenever λ is outside the spectrum this yields a labelling of the gaps of the
spectrum.

Introduction

We study in this paper the Jacobi matrices, acting on /2(2ζ):

(Hu)(n) = - φ +1) - u(n -1)4- V(n)u(n), (1)

and more general second order finite difference operators defined later below.
These operators have been of interest for a long time in mathematics, and also in
physics where they appear in the tight binding approximation of one-dimensional
condensed matter systems. They can be viewed as a finite difference analogue of
the Schrodinger equation. On the other hand they have recently received renewed
interest both in mathematics and physics particularly in the cases where the
diagonal elements V(n) are realizations of a sequence of independent random
variables or when they constitute an almost periodic sequence. For reviews
describing motivations and results in these two situations we refer, respectively, to
references [10] and [15].

In the study of the continuous Schrodinger equation, one of the basic tools is
the rotation1 number α(/l) it follows from Sturm Liouville theory that it is equal to
half the integrated density of states k(λ). Recently Johnson and Moser [9] found
the following remarkable result: if the potential V( ) of the continuous
Schrodinger equation is an almost periodic function, k(λ) = 2a(λ) lies in the

1 Our definition may differ by a factor 2π from the one used by other authors same remark for the
frequency module
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frequency module of V( •) whenever λ is outside the spectrum. This result yields, in
particular a labelling of the gaps of the spectrum, although this spectrum has a
"tendency" to be a Cantor set as can be seen from perturbation theory (we come
back to this last point in the concluding remarks of this note).

In the finite difference case, the situation is much poorer and there is only one
result related to the above ones: if there is only one frequency in the frequency-
module2 of the sequence V(n\ then the integrated density of states, in a gap, lies in
the frequency module. It follows from the remark [2] that :

i) the integrated density of states is equal [14] to the trace on some C* algebra
naturally associated to the problem, and

ii) that this trace is [13] in the frequency module. (This provides also an
alternative proof for the continuous case if one replaces ii) by the analogue result
of [6].)

The limitation of the result to the case of one frequency in the finite difference
situation relies on two facts: on one hand there was apparently no good analogue
to the rotation number in the finite difference case, forbidding extension of the
Johnson-Moser type of argument. On the other hand the known results of [13] in
the C* algebra approach are limited to the one frequency case.

In Sect. I of this note, we discuss a rotation number α(/l) for operators of type
(1); its relation with the integrated density of states k(λ\ namely k(λ) = 2α(/ί), is
established for random or almost periodic potentials. This relation shows that our
α(Λ) is really the good finite difference analogue of the rotation number. In the
preprint of this note, we wrote that we believed that such an analogue should have
been known from some mathematicians for a long time. In fact we found that, as
noted in his original paper [16], Sturm discovered his famous results by
considering first the finite difference case! His results for the discrete case have
been published later [17]; several approaches appeared in textbooks on the
subject. We have not found our proof by orthogonalization in these references,
although it was certainly known by someone somewhere; we keep it here for
selfcompleteness. The first application to the physics of disordered systems of
oscillation properties seems to appear in [18], although this paper never mentions
the Sturm-Liouville theory! These ideas also allow us to derive an equation for the
density of states of the operator (1), for example when V(n) is a random potential;
this remark is the last proposition of Sect. I and already appeared in Schmidt's
paper [18], where there was also an almost complete proof of the existence of
invariant measures and of their uniqueness for energies within the spectrum.

In Sect. II, we prove the main result of this note: if V(n) is an almost periodic
sequence, the integrated density of states k(λ) is in the frequency module of V for all
real λ in the resolvent set. This gap labelling theorem is obtained through an
adaptation of the Johnson-Moser approach the main burden is to construct a
"nice" almost periodic function associated to a given almost periodic sequence.

In Sect. Ill, we indicate how to extend such results to second order finite
difference operators

Note that, in the finite difference case, the frequency-module is defined modulo Έ
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As a conclusion, let us mention that we become interested in this question
partly because it had been repeatly mentioned at various opportunities that the
rotation number has no good analogue in the discrete case, and that counterex-
amples could exist to the gap labelling theorem in this case. These are the main
justifications in our mind to publish these notes that we find simple and natural.

I. The Rotation Number and the Density of States

In this section we define a rotation number associated to Eq. (1), the general Eq. (2)
being treated in Sect. III. We then establish its relation with the integrated density
of states. Finally we note an expression of the density of states of Eq. (1) with a
random potential.

Let H be defined by Eq. (1):

(Hu)(n)=-u(n+l)-u(n-l)+V(n)u(n), (I.I)

and let us consider the solution of the equation Hu = λu for rc^O with initial
condition u(0) = cosθ, u(l) = sinθ. We will denote by u(x) the linear interpolation of
the sequence u(n). Let us first consider the number NL(λ\ whose dependence on θ is
left implicit, defined by :

Definition LI. Let NL(λ) be the number of changes of sign of u(n), for l^n^L,
adding 1 if u(L) = 0. Alternatively NL(λ) is the number of zeroes of u(x) in [1,L].

Remark. In the previous definition u(n) may be zero for some n, l<n<L, but the
total number of changes of sign is well defined since u(n) = Q implies u(n—ί)
= -φ+l)Φθ.

Definition 1.2. Let kL(λ) be the integrated density of states [i.e. (L— I)"1 times the
number of eigenvalues less than or equal to λ] for the restriction HL of the

operator H to the set {!,..., L— 1} with boundary conditions - =cotg#,
w(l)

w(L) = 0.
The basic lemma in our future definition of the rotation number is the

following one, which represents a finite difference analogue to the Sturm-Liouville
theory, although its proof follows different lines.

Lemma IL3. kL(λ) = (L-ϊ)~lNL(λ).

Proof. We consider the case cotg# = 0, the other ones being obtained by replacing
by F(l) + cotgθ, except the cases where cotgθ is infinite, in which case one

studies the operator on {2, ...,L— 1} and boundary condition - =0. The
w(l)

number of eigenvalues less than or equal to λ is also the number of negative or null
diagonal elements of the quadratic form associated to H — λ when put in diagonal
form. We use the Lagrange method in order to construct a basis in which the
quadratic form H — λ is diagonal: in the initial basis the quadratic form has
coefficients {y.j}, where i and j run in the set {1, ...,L— 1}, and yiί=V(i) — λ,
yij= — l if \ί—j\ = l, yί7 = 0 otherwise. We first orthogonalize at 1, and the new
coefficients of the quadratic form become {y(j} with y'lί=yll, /i 2 = /2 1 = 0>
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/22 ~ ̂ 22 -- ' and y'ij — Tij otherwise. We can then proceed by induction at least if
^11

none of the diagonal term appearing is zero. We first suppose that such is the
situation, and this amounts to excluding only a finite number of values of λ as will
become clear below. Thus proceeding by induction we get a diagonal quadratic
form {dt}f~i whose diagonal terms have been constructed by induction according
to

δi = γiί-l- = v(i)-λ--±-. (L2)

The number of eigenvalues less than λ is the number of negative terms in the

sequence δ . Let us now note that if w(n)φO for all n,Q<n<L, the ratio — - —
tt(n-l)

satisfies the same induction relation (1.2). [Incidently, this justifies our claim that
for all but a finite number of λ, the diagonal terms <5. constructed by iteration do
not vanish: otherwise λ is an eigenvalue of the matrix (I.I) restricted to some
subset {1, ...,/}, i<L.~] We have thus established Lemma 1.3 for all λ but a finite
number. Finally it is also easy to check that Lemma 1.3 holds also for those
exceptional values of A, because kL(λ) and NL(λ) are right continuous : kL(λ) is right

continuous by definition, NL(λ) is because of the continuity of u as a function of A,
because u(n) = O f o r l ^ n ^ Ξ L — 1 implies u(n + 1) = — u(n — 1) φ 0 and because of the
convention of adding 1 in the definition of NL(λ) when u(L) = 0. Π

We are now in a position to state the definition of the rotation number :

Definition 1.3. We define the rotation number as

α(λ)= lim NL(λ) (1.3)
L->oo 2 jL

whenever the limit exists.

Remark. The a(λ) may depend on the parameter Θ governing the boundary
condition. However we will see that, in the cases of interest for us, α(/ί) will turn out
to be independent of θ.

Let us now restrict ourselves to the case where the potential {V(n)}neZ is a
random variable on some probability space (Ω, J*, IP), the probability IP being ergo-
dic with respect to the action of the shift on ΊL. This general setting includes for
example the two cases of particular interest : the first is the case of an almost
periodic potential 7, for which the space of configuration Ω is the hull of V and the
probability IP is the Haar measure on this hull, the second is the case when the V(n)
are independent random variables with a common distribution. Under the above
general hypothesis, it follows from the work of Benderskii and Pastur [4] and of
Pastur [12] and its adaptation to the almost periodic case [9, Ib], that the density
of states k(λ) of H satisfies :

Lemma 1.5. For P-almost all V, the limit of kL(λ) as L-+ oo exists, is independent of
the boundary condition θ and

lim kL(λ) = k(λ). (1.4)
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In the case of almost periodic potentials, this result holds for all V in the hull.

As a consequence of Definition 1.4 and Lemmas 1.3 and 1.5, we have obtained
the

Theorem 1.6. For W-almost all V, the rotation number oc(λ) exists, is independent of
the boundary condition θ and

2α(λ) = fc(λ). (1.5)

In the case of an almost periodic potential, these results hold for all V in the hull

Finally we want to remark how our approach in Lemma 1.3 to these problems,
indicates a simple way to get an explicit expression for the density of states, or
equivalently to the rotation number. For simplicity we restrict ourselves to the
case of a potential V(n) which is a set of random independent variables with a
common distribution which will be absolutely continuous with a density r( ), and
we will suppose r( ) to be in L^ with some weight (1 + |x|)1+α, for some α>0. We
then have :

Proposition 1.7. Under the above hypothesis,

o
fc(A) = 2α(λ)= J μλ(x)dx, (1.6)

— GO

where μλ(x) is the unique L1 function satisfying

. (1.7)

Proof. We just sketch the proof, which is not technically difficult to complete; it
follows from the ideas developed in the proof of Lemma 1.3 that the rotation
number or the integrated density of states are linked to the proportion of n such
that δn^0 in the sequence (1.2), and in fact

k(λ) = 2α(λ) - lim 1 # {n, 0 < n ̂  L\δn g 0} , (1.8)
L->oo L,

from which it follows easily that

k(λ) = 2α(λ) - lim W{δn g 0} . (1.9)
M-> 00

But the probability distribution of δn is deduced from the one of δn_1 by the
following relationship between their densities :

(1.10)

It is not hard to verify that this integral operator is compact in appropriate spaces
and has its maximal eigenvalue 1 nondegenerate, with an eigenvector μλ(x) [which
is the density of the invariant measure of the Markov process (1.2)] and that

> μλ(x) as x -> oo . Π
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II. The Gap Labelling Theorem

We assume throughout this section that V(n) is an almost periodic sequence, and
we will prove that the integrated density of states k(λ) = 2a(λ) of the operator H is
in the frequency-module of K for all real λ outside the spectrum of H.

We first recall the definition of the frequency-module 9Ji(F) of an almost
periodic sequence on Z. It is the Z-module of the real numbers modulo 1,
generated by the θ such that

ι JV-l

lim — V e2iπnθV(n) + Q. (11.1)

Then V can be expressed as a uniform limit of a Fourier series, the (countably
many) frequencies of which are in Wl(V).

Let us now recall a few basic facts concerning the Green's functions that we will
need later. For λ in the resolvent set, the Green's functions Gλ(n, m) are the matrix
elements of (H — λ}~1 it can be written when n^m, as

u~(n)u+(m)

where u~ and u+ are the solutions oΐHu = λu which go to zero respectively at — oo
or at + oo, and

is the Wronskian of u+ and u~ and is independent of n. In the following, we will
always normalize u+ and u~ in such a way that their Wronskian will be equal to
one.

The main result of this section is :

Theorem ILL For any real λ in the resolvent set

Proof. As in the proof of Johnson and Moser for the continuous case, we are going
to rely on the following lemma [9] which is a direct consequence of a lemma on
almost periodic functions (e.g. Lemma 6.7, p. 104 of [7]):

Lemma Π.2. Let f(x) be an almost periodic function on IR, with frequency-module Ji

and such that f'(x)= — is also almost periodic with frequency module included in Jt.
dx

Also suppose that any f in the hull off has only simple zeroes. Then the number N(x)
1 N(x)

of zeroes of f(t) in [0, x] satisfies lim - - ^Jί.
χ-> oo 2 X

In fact we are going to construct a function gλ(x) satisfying the hypothesis of
the above lemma, and for which N(x) will be associated to the number of changes
of sign of the two solutions u+ and u~ and hence to the rotation number oc(λ) of
our operator. In [9] the analogue function was elegantly found as the Green's
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function, GA(x, x), of the continuous problem. Our search for a function gλ(x) will
also begin by a study of our Green's functions, and we state first :

Lemma II.3. For λ real in the resolvent set, the sequences {Gλ(n + p,m + p)}peZ are
almost periodic for all n and m in TL and their frequency module is included in 9Jί(F).

Proof. The proof is elementary, using the criterion of Bohr (see e.g. [7]): it is

sufficient to prove that for all sequences tn of integers such that Vt — ̂ -> K then
£ n

Gtn — ̂ -> G, Vtn and Gtn denoting the translated of Fand G by the translation tn. But
the /^ convergence of the potential implies the norm convergence of (H — λ)~ l and
hence the /^ convergence of the Green's functions. Π

We come back now to the proof of Theorem II. 1. Let us first introduce the
linear interpolations u + (x) and u~(x) of u + (n) and u~(n):

and note that

M + W^-U-(x)^Ξ[u + ,M-] = l (Π.5)
ax ax

on IR\N and also on the integers for the right or left derivatives, hence these linear
interpolations also satisfy a Wronskian condition. This leads us to introduce a
continuous interpolation gλ(x) of Gλ(n, n) as :

for O^j ^l.
This interpolation gλ(x) satisfies :

Lemma II.4. The function gλ(x) has the following properties :
i) it is an almost periodic function on IR, and its frequency-module W is

included in the module generated by SOΪ(F) and
ii)

iii) g'λ(x) and g"λ(x) exist on JR\N and are uniformly bounded.
iv) 3(5 > 0, such that any two zeroes of gλ have distance larger than δ.

Proof. Part i) follows directly from Lemma II. 3 and from the formula (II. 7) (see e.g.
Theorem 4.5 of [7]). Part ii) is the same as to say that u+(x) and u~(x) cannot
vanish simultaneously this is implied by the property (II. 5). In order to verify iii) it
is sufficient to look at the explicit expressions of g'λ and g"λ, which in view of
formula (II.7) will depend only on the sequences Gλ(n,n) and Gλ(w,n + l); the
uniform boundedness will follow from the one of these sequences which is due to
their almost periodicity (Lemma II. 3). Let us come now to the proof of point iv),
and let us begin by noting the following expression for the discontinuity of the
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derivative of gλ(x) at an integer n: in view of (II.4) and (II.6), we have

(n)

Since gλ(x) is also derivable on R\N, it follows from (II.8) that gλ(x) is derivable at
all its zeroes. It then follows from the Wronskian condition (II. 5) that g'λ(x)= ± 1
at any zero of gλ, and it has to change sign at any two consecutive zeroes because
of the continuity of gλ. Hence if x1 and x2 or two consecutive zeroes, we have

± 2 = g'λ(Xl)- g'λ(x2) = 7 &(x)dx + Ag'λ, (11.9}

where Δg'λ is the discontinuity of g'λ in the case where the open interval ]x1,x2C
contains an integer n. On the other hand, using (II.8) we get:

Δg'λ = [4 + 2(λ- V(n}}\ } g'λ(x)dx = [4 + 2(λ- V(n}}~] | gf

λ(x)dx. (II. 10)
jci n

It follows now from (II.9), (11.10) and from the uniform boundedness of g'λ, g"λ, and
V(n) that \x1 — x2\ is uniformly bounded from below. Π

Let us now come back to the proof of Theorem II. 1, and consider now the
following function on R:

9λ(χ)=-j (X.δi2*9λ)(χ)> (Π.11)

where χδ/2 is the characteristic function of the interval , +- . It follows

directly from Lemma II.4 that gλ(x) is an almost periodic function with frequency-
/ x

module W! furthermore it is differentiable and its derivative g'λ(x) = gλ \x + -

/ δ\ .
— gλ he + -1 is an almost periodic function with the same frequency-module which

is 5DΪ'. When δ is chosen as in Lemma Π.4iv), gλ(x) has the same number of zeroes
as gλ, and they are simple as can be seen from the above expression of g'λ(x). All
functions in the hull of gλ(x) also have simple zeroes, and we can hence apply
Lemma II.2 to gλ(x\ and we obtain that the corresponding number of zeroes N(x)

1 N(x)
satisfies lim e W. But since gλ has the same number of zeroes as gλ, this

x^oo 2 X

limit is also 2α(/l) in view of ii) in Lemma II.4, and in view of the results in Sect. I
concerning the existence and independence with respect to the boundary con-
ditions of the rotation number. So 2α(/l)e 9JΓ, but 2oc(λ) = k(λ) in view of Sect. I, and
hence belongs to [0, 1], which implies that 2α(/ί)e$R. This ends the proof of
Theorem ILL Π



Rotation Number for Finite Difference Operators 423

III. The General Second Order Difference Equation

We study now the operator H( J) :

(n)u(n), (III.l)

for which we assume Jn n+1=Jn+1,n for all neZ. We suppose that the operator
H(J) is almost periodic, which means that it satisfies the Bohr criterion, in the
operator norm; it implies that the sequences {Jn>n+1}neZ

 and {^W}nez
 are almost

periodic. We denote by SCR the frequency module of the operator H( J) it is also the
module generated by the frequency modules Wlj and $RF of the sequences J and V.
It follows from the same references as for Lemma 1.5 above, that the integrated
density of states k(λ) of H(J) exists, is equal to the limit as L-> oo of the density of
states of the restriction of H(J) to {1, ...,L} with arbitrary boundary conditions at
0, and is continuous in λ.

We are going to prove the following :

Theorem III.l. For any real λ in the resolvent set, the integrated density of states k(λ)
satisfies

Proof. The spirit of the proof is very similar to Sect. I and II above, and we will just
sketch the differences. First let us consider the following unitary transformation

«- 1
ψ(n) = u(n) £ sgn(J ί f ί + 1) if rc>0,

i = 0

sgn(Ji_lri) if n<0, (III.2)
i = 0

where sgn(JM+1) denotes the sign of Jifi+ί and is taken, by convention, as +1
when J. / + 1=0. By the transformation (IV.2), the operators H(J) and H(\J\) are
unitarily equivalent and hence have the same integrated density of states. Let now
λ be in the resolvent set of H(J) it is also in the resolvent set of H(|J|), and also of
H(\J\ + ε) for all ε small enough, where H(\J\ + ε) is the operator deduced from
H(\J\) by adding — ε to all its coefficients — |J. ί+1|. By the operator convergence
and the continuity oϊk(λ\ the integrated density of states of H(\ J\ + ε) will converge
to k(λ) as ε->0; hence in order to prove Theorem III.l, it is sufficient to prove it in
the case of an operator (III.l) with Jn n + 1 >ε>0 for all n. We can now relate our
density of states to the number of changes of sign of a sequence u(n) solution of
H(J)u = λu, as in the proof of Lemma 1.3; Eq. (1.2) becomes now δ = V(i) — λ

— Jf-i ί/^i-iJ which is also the equation satisfied by the sequence Jn n "+1

n+1

Theorem III.l can then be obtained in a way parallel to Sect. II above; the
Wronskian is now given as :
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and is still identical to 1. Equation (II.7) is now

n, n+ 1

and at zero of gλ, its derivative now satisfies g'λ(x) = ± - for n<x<n+l. The
J n,n+ 1

discontinuity (II.8) of the derivative of gλ at integer points is now

As a matter of fact the above proof also suggests the definition of a rotation
number a(λ) for the operator H(J\ which reduces to the one of Sect. I when
Jt >ί+ 1 = 1 for all I One first introduces the number NL(λ) of changes of sign of the
sequence ψ(n), defined as in formula (III. 2), where u is a solution of H(J)u = λu with
given boundary conditions at 0 and 1. One then proves the analogue of Sturm -
Liouville theory as in Lemma 1.3, with the use of the modifications mentioned in
the proof of Theorem III.l. We can then define the rotation number α(A) as the

limit, if it exists, of -- NL(λ) as L— >oo. If the operator H(J) is now a random
2* 1—t

variable on some probability space (ί2, J>, IP), IP being ergodic with respect to the
shift on Z, which includes the case of almost periodic operators, but also of
random operators with J and/or V random variables, we have :

Proposition III.2. For IP almost all H(J\ the rotation number a(λ) exists, is
independent of the boundary conditions and

In the case of an almost periodic operator, these results hold for all H(J) in the hull.

Remark. In the above introduction of the rotation number we implicitly assumed
that J ί > ί + 1 ΦO for all J. Otherwise it is defined by continuity as was done in the
proof of Theorem III.l.

Finally let us mention that for example in the case of a random H(J\ where
Jiti+ί and V(n) are independent random variables with respective densities of
probability p(J) and r(F), we have an analogue of Proposition 1.7 for the density of
states :

Proposition III.3.

o
= { μλ(x)dx,

where μλ(x) is the unique L1 function satisfying

J2\
= ί lLiλ(y)r (λ-x -- p(J)dy dJ .
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Concluding Remarks

i) Theorem II. 1 (or III.l) tells that for any gap of H, there exist a finite number of

integers mn such that 2a(λ) = Σmnωn, where the ωn are the frequencies, including
n

the frequency 1 of TL. As explained in [9] (see the remark after Theorem 4.7) these
integers, which label the gaps, have a clear topological interpretation as winding
numbers.

ii) As mentioned in the same remark of [9], it is possible to look only at the
winding of one particular solution, for example the one which decays at + oo,
instead of looking at the winding of the Green's function. This variation of the
same proof can also of course be readily adapted to the discrete case.

iii) The integers mn are clearly constant if one varies λ and the operator H in
such a way that λ remains in a gap.

iv) The α(/ί) and k(λ) are constant in a gap but are strictly increasing for λ in the
spectrum of H. We suppressed the simple proof of this fact that we gave in the
preprint of this note, since it was proved before in [Ib] by another simple proof.

v) We have mentioned in the introduction that the spectrum for almost
periodic potentials has a "tendency" to be a Cantor set. As a matter of fact there
are already a certain number of results in this direction. First of all one may note
that if V( ) i s not periodic and if all gaps are opened, i.e. if for any y in the frequency-
module there is a gap where 2a(λ) = y, then the spectrum is a Cantor set [15] and
actually it is known, in the special case of limit-periodic potentials, that the
spectrum is a Cantor set [11, la, 5] in a certain number of situations, and it is also
a Cantor set for the almost Mathieu equation in some generic sense [3]. Let us
note that in the limit periodic case, all gaps allowed by gap labelling occur.

vi) Michel Herman has independently obtained a definition of a rotation
number α(/l) for almost periodic potentials, and a proof that 2a(λ) lies in the
frequency-module whenever λ is in a gap, that is analogue of our Theorem ILL His
definition is however completely different from ours and is purely geometrical,
whereas our approach is purely analytical, and both proofs of Theorem II. 1 are
also completely different. We do not know if there is a systematic link between his
α(/ί) and our a(λ).

We are glad to thank Michel Herman for making his manuscript [8] available
to us, and for the explanations of his results.
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