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Abstract. By a suitable choice of the lapse, which in a natural way is connected
to the space metric, we obtain a hyperbolic system from the 3 + 1 system of
Einstein equations with zero shift; this is accomplished by combining the
evolution equations with the constraints.

Introduction

The success of the temporal gauge in Yang Mills theory for proving existence
theorems (cf. [17,18, 7]) has led us to look for an analogous gauge in general rela-
tivity. It is well known that neither normal gaussian coordinates, nor other
arbitrary choices of lapse and shift lead to a hyperbolic evolution system for the
conjugate unknowns gtj and Pij. However this system is very useful in numerical
computations of space time models [16] as well as in certain quantization
procedures ([2, 1]).

We show here that if we call "temporal gauge" a choice of time lines
orthogonal to the space sections (choice always possible in a globally hyperbolic
manifold) the conjugate unknowns satisfy a hyperbolic evolution system if we
choose the lapse appropriately. The local existence and global uniqueness
theorems1, under their most refined form (cf. [6, 4]) can then be deduced with the
help of the usual machinery constraints - Bianchi identities. The explicit geometric
expression of the evolution system gives a better light to study global problems.

Let us remark, for numerical relativists, that the choice of lapse we propose
with zero shift, has the merit to make stable the solution of the Cauchy problem, a
property which could be useful in their constructions of dynamical models.

1. The 3 + 1 Equations

We recall the Einstein equations in the 3 + 1 form (see [15, 8,1]), or the review
article [9]). Let S x IR denote the space-time manifold we choose the time-lines

1 A different approach which also does not use harmonic coordinates is due to DeTurk (preprint)
that introduces an assigned 2-tensor



270 Y. Choquet-Bruhat and T. Ruggeri

orthogonal to the space sections (zero shift2). Then the space-time metric is given
by

(4}gΆβdx«dxβ = - α2(d;x°)2 + g{jdx{dxj , (1)

the "conjugate momentum" of gtj is the contravariant 2-tensor,

(2)

where K denotes the second fundamental form of the submanifold t = const
Putting /= df/dχΌ, we have

^P), (3)

where P = PJ.
The Einstein equations in vacuum are

£αβ Ξ (4)|jαj8 _ 1(4) aβ (4) £ _ Q ^

The evolution part is given by (/= 1, 2, 3) :

gίjAoc) + Lίj + Sίj , (4)

where

L» j = 2P
ίkPj[ - \PPij - ^gijPhkPhk + igfuP2 , (5)

Sij~Rij-^gijR. (6)

Here Rij and R are the Ricci curvature and the scalar curvature of the space metric
gtj\ D denotes the covariant derivative with respect to the metric gtj and
Δ = gijDtDj is the usual Laplacian.

The constraint part, which does not contain second derivatives with respect to
the time variable, is

Σ ί oΞ-D.F j, (7)
α 3

(8)

2. The Hyperbolic System

Lemma. The following identity holds

Sίj -f α2(D^'0 + DjΣίo - gijDkΣ
k°) = κAPίj + ±(DlDj- gίjA) (αP) + Hίj, (9)

where Hu is a given function of ghk, α, of their derivatives of order at most 2, of Phk

and of its derivative of order at most 1. Furthermore Hlj is analytic if Q —

2 Analogous results can be obtained with a nonzero given shift. For an intrinsic formulation of the
evolution problem with an arbitrary shift, see the papers by G. Caricato (e.g. [3]), that used the
technique of "projection" due to C. Cattaneo [4]
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Proof. A straightforward calculation shows that the principal terms - of order two
in Phk - of the x° derivative of Sίj = Rij — ̂ gij are given by:

Sij ~ a(ΔPij - DlDkP
jk - DjDkP

ik + gίjDhDkP
hk + %D*DJP - gijAP)) . (10)

Then by exploiting the identity (7) we obtain (9).

Theorem. The equations

Σίj + a2(D^j° + DjΣί0 - gijDhΣ
h°) = 0 , (11)

with the relation (3) between Plj and glj, form a strictly hyperbolic system in the
unknowns Plj, and glj, if the lapse α is chosen such that it satisfies the equation

The "dependence domain" of the solutions is determined by the isotropic cone of the
space metric (1).

Proof. From (4) we get

Σίj = -- Pίj + Sij + (gίjΔ - DlDj) (α" xά) + Mίj, (12)

where Mlj depends only on ghk, α and their derivatives up to the second order, Phk

and their derivatives of order 1.
Taking into account (9) we get

Σij + α2(Dl'Σj° + DjΣί0 - gίjDhΣ
hQ)

ίόc oc

'\α 2
where Π is the hyperbolic operator:

_ i a2

α2 5x02

We note that if α is such that

2oΓ2ά = P, (14)

then the principal terms in (13) reduce to — αQP0.
As P = a~1g~1g, Eq. (14) can be written

g~1g = 2a~1ά, (15)

which, because of the condition α>0, has the solution

a = e-ίf2gί(2, (16)

where e = άQt(eij), etj arbitrarily given Riemann metric on S.
With this choice the system (3), (11) becomes a quasi-diagonal hyperbolic

system

flnV

(17)

(18)
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whose characteristics at a point are the isotropic cone and the time axis. This axis
being interior to the cone, the cone determines the propagation.

Remark 1. The system can be written as a third order system in the unknowns gglj,

with principal part Π j^^(00/J)k because

Remark 2. Condition (16) coincides, for the time-lines orthogonal to the space
sections, with the harmonicity condition of time-like index :

Remark 3. The hamiltonian constraint (8) cannot be used as the other constraint to
obtain hyperbolicity : the principal part of R is a linear differential operator acting
on the principal terms of the other constraints.

We need to verify that every solution of the system (17)-(18) is a solution of the
Einstein system. This will be accomplished by use of the following :

Theorem 2. Let glj and Plj verify the hyperbolic system (17), (18), then the Einstein
tensor Σ*β, corresponding to the metric

- (X2(dx°)2 + gijdxidxj , α - ]/g/e ,

verifies a linear hyperbolic homogeneous system.

Proof. By Bianchi identities (V denotes co variant derivation with respect to the
metric gaβ] we have

FαΣ
α/* = 0. (19)

Equation (18) says that the metric —a2(dxQ}2+gijdxidxj with %2 = e~^g, verifies
the equations :

Σίj + a2(D^° + DjΣί0 - gijDhΣ
ho) = 0 . (20)

Hence also

Dj{Σij + oί2(DlΣj0 + DjΣί0 - gijDhΣ
h0)} = 0 .

So using (19) we obtain:

DΣi0 +/' = <), (21)

where / is a linear form in Σ«β and DkΣho. The system formed by (20), (21) and the
identity :

is a strictly hyperbolic system in the unknowns Σaβ, analogous to the one of the
preceding section, which moreover is linear and homogeneous.
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3. Existence for Einstein Equations

Let S be a C°° manifold, equipped with a properly Riemannian metric e, regular,
that is (cf. [6]) we suppose e is C°°, has an injectivity radius on S (for the
exponential map) strictly positive and has null curvature outside of a compact set.
We call Hs a space of tensor field / over 5, which are square integrable as well as
their generalized covariant derivatives in the metric e of order k^s, which we
denote by dkf.

As in [3] we denote Es, Es the (Banach) spaces of tensor fields over S x / :

E,(S*Q= Π Ck-l(7,Hs_
l^fc^s

and (G° bounded continuous tensors)

Es(SxI) = {f\feC°b(SxI),

Theorem 3. Let glj, Pj/, Pj/ be Cauchy data on S0 = Sx {0} such that glje C° is
uniformly positive definite (with respect to e) on S0 and :

, with s^3.

Then : i) There exists an interval I such that the hyperbolic system (17), (18) admits a
solution gijeEs(SxI) uniformly positive definite, PίjeEs_1, having the prescribed
initial data. This solution is unique.

(ii) If moreover the Cauchy data verify Σ"Q

β = Q on S0, then the solutions of (17),
(18) also verifies Σaβ = OonSx I.

Proof, i) It is a theorem on hyperbolic equations, which may be obtained by
refining the methods of Leray [13] in a manner analogous to the one used in [3].
The energy estimates for the linear case can be obtained in multiplying by a
hyperbolic second order expression, with characteristic cone which separates the
temporal axis from the isotropic cone.

ii) It is a consequence of the uniqueness of the solutions of the Cauchy
problem for hyperbolic equations and of Theorem 2 the Σaβ being zero for x° = 0
by hypothesis, and also Σl° because of Bianchi's identity V0Σ

0l+VjΣji = Q con-
sidered at initial time.

Theorem 4. Let (γ, K) be initial data for Einstein equations on a regular riemannian
manifold (S, e). We suppose

and uniformly positive definite,

Then, if the constraints are satisfied, there exists an Einstein space time (S x /, g),
ge£s, development of the initial data set (S, γ, K).

Proof. It is an immediate consequence of Theorem 3, after remarking that, if we
denote by glj and K% the image of the contra variant tensors associated with γ and
K by the diffeomorphism S-^S0 = Sx {0} CS x R, and set

the equation ΣJ/ = 0 (cf. [7]) determines PJ/.
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Remark 1. The metric g constructed on S x / is of the form :

with g.j uniformly bounded and positive definite with respect to etj. Thus (S x /, g)
is globally hyperbolic, with 50 a Cauchy surface (cf. [9]).

Remark 2. The geometrical (physical), global uniqueness theorem (cf. [9]) can also
be proved in this context, but the proof seems to require more regularity than with
the use of harmonic maps.

4. Equivalent Hyperbolic Systems

The lower terms Mij + Hίj that appear in (18) are extremely complicated, but if we
choose Ktj or Kl as unknowns instead of PIJ, we obtain simpler hyperbolic
systems. For instance let

ktj = aKiJ ' ai = α" 1(9ία ' fdJ) =fij +fβ '

if α = (g~1gf)1 / 2, we have:

D fcy + lkh(ίRj}

h - 2Rί

h™khm + 2kRiJ - 2a(ίDj}k -

- kh(iDj}a
h + 2ahD(ikj)h - ahDhk{. - 2ahD(ikj}h - 3 t .

An expression using K{ has been given in [10].
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