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Abstract. We show that any self-dual SU(2) monopole may be constructed
either by Ward's twistor method, or Nahm's use of the ADHM construction.
The common factor in both approaches is an algebraic curve whose Jacobian is
used to linearize the non-linear ordinary differential equations which arise in
Nahm's method. We derive the non-singularity condition for the monopole in
terms of this curve and apply the result to prove the regularity of axially
symmetric solutions.

1. Introduction

We shall be concerned in this paper with constructing solutions to the Bogomolny
equations DΦ = *F. Here F is the curvature of an SU(2) connection on IR3, Φ (the
Higgs field) is a section of the adjoint bundle, and we are seeking solutions for
which I I Φ H = 1 — kr~1 + 0(r~2) as r-»oo. These are particular solutions to the
static, finite energy Yang-Mills-Higgs equations and we shall often refer to them
simply as "monopoles".

There exist already two different approaches to constructing monopoles. One
is due to R. S. Ward, using the twistor formalism to reduce the problem to one of
holomorphic vector bundles on the algebraic surface TF1? the tangent bundle of
the projective line. Ward's method, extended by Corrigan and Goddard [6] and
the author [8], shows that the monopole is determined by an algebraic curve in
TWV Moreover, as shown in [8], every monopole may be obtained in this way.
The main problem of this approach is finding the conditions to impose on the
curve in order to ensure that the monopole is non-singular.

The alternative approach, due to Nahm [10], incorporates the non-singularity
condition directly and has other formal advantages over the twistor viewpoint.
Nahm's method is a bold adaptation of the ADHM construction of instantons
[3], replacing matrices by differential operators and the quadratic constraint on
the matrices by a non-linear ordinary differential equation :
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for matrices T1? T2, T3. The main problem concerning this construction is to
actually solve the equations. There remains also the question of whether this
approach yields all monopoles.

In this paper we shall present a synthesis of the two methods which enables us
to answer the questions raised above. In fact we shall show that Nahm's equations
can be solved by considering a linear flow on the Jacobian of an algebraic curve -
the same curve that occurs in Ward's construction. To be precise, we prove the
equivalence of the following:

A. A solution to the Bogomolny equations DΦ = *F on 1R3 with boundary
conditions as r-»oo,

Al.

dΩ v "
A3. ||DΦ||=0(r-2).

B. A compact algebraic curve ScTW1 in the linear system |0(2fe)| satisfying the
conditions:

Bl. S has no multiple components.
B2. S is real with respect to a standard real structure on TIP1.
B3. L2 is trivial on S and L(k— 1) is real.
B4. H°(S,Lz(k-2)) = Q for ze(0,2).
Here Lz is the holomorphic line bundle on TIP1 defined by exp(zω), where

ωeH^TIPpO) is the standard SL(2, <C)-invariant element.

C. A solution to the differential equation

= - Σ ε i j k ί T j , Tk~] , ZE (0, 2) ,

for k x k matrices T.(z) (i= 1,2,3) satisfying the conditions:
Cl. T*=-T,
C2. η(z)=-τ;(2-z),
C3. T has simple poles at z = 0 and z = 2 but is otherwise analytic,
C4. at each pole the residues of (T1? T9, T3) define an irreducible representation

ofSU(2).

Section 2 is devoted to the proof of C => A, and consists of a detailed
presentation of Nahm's work [10]. The implication A => B is mainly dealt with
in the author's paper [8]. We review the results briefly in Sect. 3, but also prove
condition B3, a vanishing theorem for the algebraic curve. This turns out to be the
condition on the curve for nonsingularity of the monopole and the result and
method are similar to the crucial vanishing theorem H1(P3,E(—2)) = 0 for
instantons [7]. In Sects. 4, 5, and 6 we show how B => C and in Sect. 7 check that
the circle of ideas is complete by showing that the monopole one recovers by
pursuing A = > B ^ > C = > A i s gauge equivalent to the original one.

The proof of B => C, relating non-linear differential equations with algebraic
curves is analogous to the now familiar method of solving the KdV equation and
related equations. There is also a hierarchy of equations of which Nahm's is the
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first, whose solutions are obtained by taking linear flows in different directions of
the Jacobian. We consider these briefly together with other general comments, in
Sect. 8, where we also verify the non-singularity of Prasad and Rossi's axially
symmetric monopoles.

2. Nahm's Construction

In [10] Nahm succeeded in producing solutions to the Bogomolny equations
DΦ = *F by a striking adaptation of the monad (or ADHM) construction of
instantons. We shall review his construction in this section.

First, recall that a solution to the Bogomolny equations in IR3 is equivalent to a
solution of the self-duality equations in IR4, which is in addition invariant under
the action of the additive group IR of translations in the x0-direction. To see this,
let £ be a vector bundle with connection V on IR3 and Φ a section of the adjoint
bundle. Let p:JR4->IR3 be the projection. Then, V' = p*V—ΦdxQ defines an IR
-invariant connection on the pulled-back bundle E' = p*E which has curvature
F' = p*F — DΦΛdx0. Clearly F' is self-dual with respect to the orientation

dx0AdxiAdx2Adx3 iff DΦ = *F.

Conversely, suppose E' is an IR-invariant vector bundle on IR4, with invariant
connection V. Restricting to IR3 we obtain a bundle E, and the group action
defines an isomorphism a:p*E-*E' by

Φ*e\xo,x) = x0 (ex), (2.1)

where x0eIR, xeIR3, and x0 e denotes the action of IR on E'.
Since V is IR-invariant, we obtain u~lV'vL = p*V— Φdx0 for some connection V

on E and section Φ of the adjoint bundle. As the self-duality equations are
invariant under the gauge transformation α, it follows by the argument above that
(F7, Φ) satisfy the Bogomolny equations.

Now the ADHM construction [2,3] produces self-dual SU (2) connections on
IR4 by considering a (7c+l)x/c quaternionic matrix of the form A(x) = Cx + D,
where C, D are constant matrices and xeH is a quaternionic variable. This is to be
viewed more invariantly as a map Δ(x):W-+V, where F is a (/e+l)-dimensional
quaternionic vector space with a hermitian inner product compatible with the
quaternionic structure, and W is a /c-dimensional real vector space. If Δ(x) is of
maximal rank for all x, then the kernel of J*(x) is a 1-dimensional quaternionic
subspace Ex of V. As x varies in H = IR4, Ex describes a vector bundle E over IR4,
and the orthogonal projection in F defines a connection on E, from the trivial flat
connection on IR4 x F The curvature of this connection may be expressed as
F = PCdxρ~2dxC*P, where Q2 = Δ*Δ and P is the orthogonal projection onto E in
F If Q2 is real, this will involve components of the quaternionic 2-form

dx A dx = (dx0 + ίdx1 +jdxΊ + kdx3) A (dx0 — idx^ —jdx7 — kdx3),

which are all self-dual. Hence the constraint on A necessary to produce self-duality
of the connection is that A*A should be real for all xeH.
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Nahm's approach is to seek analogous vector spaces W9 V and a linear map
Δ(x) = Cx + D such that:

(1) A(x + x0)= U(xQ)~ 1 A(x)U(x0)9 where x0-+U(x0) is a representation of IRin
the group of quaternionic unitary transformations of V. This ensures that the
connection produced by the ADHM construction will be IR-invariant. Indeed,
U(x0) is essentially the gauge transformation α in (2.1).

(2) Δ*Δ is real.
(3) Δ*Δ is invertible.
(4) The kernel of A* has quaternionic dimension 1.
The major difference between the problem of monopoles and that of instantons

is that the spaces W and V are infinite-dimensional and A(x) is a differential
operator.

More precisely, let #° = j£?2[0, 2] and define a real structure on HQ (an anti-
linear map σ such that σ2 = 1) by σ(f)(z) = f(2-z). We then set F=H°®Cfc®C2,
and take (Ck to have a real structure σ' and <C2 to be the quaternions. Thus Fhas a
quaternionic structure and the usual J£?2 inner product gives it a compatible
hermitian structure.

For the real space W we take

W= {/e H1 <g> Ck|/(0) =/(2) - 0} ,

where Hl is the Sobolev space of functions on [0,2] whose derivatives are in £?2.
By the Sobolev embedding theorem such functions are actually continuous, and so
have well-defined values at each point. Thus Wis well-defined and, with respect to
σ and σ', is real.

Now let e19 e79 e3 denote the operation of left multiplication on the quaternions
(C2 by ij, k. Since they are constant in z, and commute with right multiplication on
C2 by quaternions they define quaternionic transformations of V. For the map
A(x):W-+Vwe take (with Nahm), a differential operator of the form

where T (z) is a / c x f c matrix depending analytically on ze(0, 2) and with simple
poles at the endpoints. Because of the choice of Sobolev spaces F^and K both Tj.(z)

and — are bounded operators, so A(x) itself is bounded. It is clearly of the form
dz

Cx + D with C = I, D = i— +iJ]T}ei9 so we must show first, in order to apply the
dz J J

ADHM construction that D is a quaternionic operator from 1/F®C2 to V. Now if J
denotes the quaternionic structure on Ck®(C2, the quaternionic structure τ on the
functions in For FRx)C2 satisfies τ/(z) = J(/(2 - z)). Hence,

dz dz dz
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and

i Σ Tj(z)ej(τf) = i Σ T/z)e//(2 - z)

So let us suppose that

149

'iΣT&ejS) if 7}(2-z)=-T/z).

T;(z)=-7;.(2-z),

then Δ(x) is quaternionic linear.
Next consider the in variance condition (1). We have

'JOc)*-""*

and

(2.3)

hence U(x0) = eίxo(z υ is quaternionic and clearly unitary, so condition (1) is
satisfied.

Secondly consider the reality condition (2). We require that A*A :W-+W* be
real. Now this operator may be written

dz dz

rfz2 dz

From the — term we require T, + Tf = 0 for reality, and from the zero order term
nΓ7 •> Jdz

we obtain

LJ i f "
i j> ~

Hence Tt = — T? and must satisfy Nahnfs equations

dz

dΊ±

dz
(2.4)

dz
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If these equations are satisfied and T.= — 7]*, then we may write

+ ||x||2- Σ Tf . (2.5)- ~

Suppose there exists /e W such that Zl*zl/=0. Then since / vanishes at the
endpoints of [0,2], we have from (2.5)

However, the right hand side is positive unless / is identically zero, hence we have
condition (3) that Δ*Δ is invertible.

For the final condition on zl, that dimHkerzl* = l, we must consider the
behaviour of 7](z) at the boundary of [0, 2]. Suppose that each Tf has a simple pole
at z = 0, then we may write

where b.(z) is analytic in a neighbourhood of z = 0. Thus

dT[ = _aL.db1

dz z2 ^ dz '

and from Nahm's equations (2.4) we have

-0i = 2Σ ειj jJ>7» βJ
7,Λ

Thus

(x1e1+x2e2 + x3e3)-+ — 2(x1a1 +X2α2 + x3α3)

defines a /c-dimensional representation of the Lie algebra of imaginary quaternions
and hence a representation of SU (2). We suppose, following Nahm, that this is the
unique irreducible representation Sk~1 on homogeneous polynomials in (z1?z9) of
degree (k— 1), and similarly at the other pole z = 2.

Now in a neighbourhood of z = 0, we may write

where b(z) is analytic and ρ is the representation homomorphism of Lie algebras. If

we consider the Casimir operator C(S) = ΣQ(£j)2 °f a representation S, then
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since the ordinary multiplication of quaternions on H^(C2 is the representation
S1. Thus the residue T= — i/2^ρ(e^®ej of j]Γ Ύ e at z = 0 may be expressed in
terms of Casimir operators. Now the Casimir operator on the irreducible
representation Sk is the scalar — k(k + 2). Furthermore the tensor product
Sk~ί®Si is isomorphic to Sk®Sk~2, decomposing into irreducibles. Hence,

onSk~2. (2.7)

Let us now consider the operator

It is clear that 4/ = 0 has a space of solutions of dimension dimSk = (k+ 1) of the
form φ2-2z)~(fc~1)/2, and a dimSk~2 = (k- 1) dimensional space of the form
c(z2-2z)(k+1»2.

Thus, as an operator on the Sobolev spaces we are considering, dimckerzϊ
= (fe-l) (if k^l), and similarly dimckerz3* = (k+l). Thus Δ\W®<£2^V is a
Fredholm operator with index (k— 1) — (fc+ 1) = —2.

At z = 0 and z = 2, the residues of 7] define an irreducible representation of
SU(2) on (C*. By Schur's lemma [and since 7J*(z)= - η(z)], there exists Pe [/(k)
unique modulo scalars such that Res Ti = ResP~lTiP. Let Q be a skew-adjoint

z— 0 z= 2

matrix such that exp2Q = P. Then zl =e~zQAezQ + K, where K is a matrix valued
function which is analytic in a neighbourhood of [0, 2]. Its regularity implies that
it is a compact operator on the Sobolev spaces, and hence by the invariance of
index, index A = index A — — 2. However, since A* A is invertible, kerzl— 0, so
dim(Ckerzl* = 2. Since A and hence zl* is quaternionic, it follows that our final
condition (4), that dim^kerzl*^!, is satisfied. Thus, we have proved

Theorem (2.8) (Nahm). Let 7](z) (l^ί^l) be kxk matrix-valued functions of
ze(0, 2) which satisfy

(2) Tt is analytic for ze(0, 2) with simple poles at z = Q and 2,
(3) the representation of SU (2) defined by the residues of T{ at their poles is

irreducible,
(4) Tί(z)=-fί(2-z\
(5) Ί*(z)=-Tf,z).
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Then the ADHM construction applied to the quaternionic operator

Al Λ / V^ Λ d rπA(x) = (χ0 + £x f) +1 — + i Σ Tfj

gives a non-singular solution to the SU(2) Bogomolny equations on IR3.

We shall now investigate the boundary behaviour as r-» oo of Nahm's solution
and show that it satisfies the conditions A1-A3 of Sect. 1.

We have already used the approximation A to A. We now put in the x
dependence and define A0(x) = e~zQAezQ + (x0 + Σxjej). Now, although A0 is not
quaternionic, it will provide a good approximation for the asymptotic behaviour
of A as r-»oo. Indeed, it is related to A by A(x) = A0(x) + A, where A is smooth in a
neighbourhood of [0,2] and independent of x. In particular, index A0 = index A
= -2. We also have, from (2.6), <zl*/!/,/>^r2||/||2 (r2=||x||2). Hence, for
sufficiently large r, we also have a positive constant c2 such that

Hence A$A0 is positive for large r and dimckerzl* = 2. We shall use these two
solutions to approximate kerzl*.

Let G0 be the Green's function for A0 so that A0G0 = I — P0, G0A0 = I, where
P0 is the orthogonal projection onto kerzl*.

Then, since <Λ0/,zJ0/>^c2r2 | |/ | |2, we have ||/||2- ||P0/||2^c2r2 | |G0/||2.

Hence ||Gn | | :g — and
cr

I I G J I I ^ - . (2.9)
cr

Now since G*/!* — / — P0, if ^*/ = 0, then we have

/ - P0/ = G*( Δ * - X*)/ = - G*Λ*/,

and so, for some constant K,

| |/-P0/ll^y 1 1 / 1 1 . (2.10)

We can thus approximate, to order r"1, solutions of A*f = 0 by solutions of
Δ*0f = 0.

Next choose a direction in IR4 given by a unit quaternion u. Since we shall be
interested in connections only in a neighbourhood of IR3, we suppose uή= ± 1, and
hence u generates a circle group in SU (2). The representation space Sk~1 &S1 then
splits into 1-dimensional weight spaces with weights

fc,fc-2,fc-4,..., -(k-2\-k for 5fe,

and

/c-2,/c-4,..., -(/c-2) for 5 f c"2.

Consider the action l(g)w of w on Sk~1®S1. This commutes with the action of
the representation (i.e., u®u) and since the spaces of weight ±k occur with



Construction of Monopoles 153

multiplicity one, they are preserved. Now if u is an imaginary quaternion (i.e.,
rweIR3), then (l(x)ι/)2= — 1, and hence (l®u}v± = +ίv±, where v± are vectors in
the ± k weight spaces.

Let g± = g(z)e~zQv±, then if x = ru

from (2.7). Thus g± = (z2-2z)k-ll2e±r(*-1)-zQv± defines an ^2 solution of

Λ*/=0.
Now from (2.10) it follows that a basis for the solutions of A*f = 0 can be found

of the form

f ± = g ± / \ \ g ± \ \ + 0 ( r - 1 ) , (2.11)

where g±=(z2-2z)k~ll2e±r(z-^-zQv±.
The estimates we require concern the Higgs field Φ. Now from the discussion at

the beginning of Sect. 2, Φ is defined in terms of an IR-invariant self-dual
connection by the formula

where s is a section of E' invariant under R In Nahm's framework, a solution of
A*f = Q of the form f = eιxo(z~1)g(x19x29x3,z) is such an invariant section of
E' = kerzl*, and since the self-dual connection V is obtained by orthogonal
projection of the ordinary flat derivative, we obtain

where P is the orthogonal projection onto the kernel of A*. Now, because of (2.10)
and (2.11) we can determine Φ to order r~ * by considering the operator J J and the
solutions g±.

In this case, if we use g+ and g_ to form a basis for the vector bundle, then the
Higgs field is given by

However,

\ \ g + \ \ 2 = ] ( 2 z
0

and so ||^±||^oo as r->oo. Also

z)g + ,g_y = li
0
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Hence the off-diagonal terms in Φ vanish. Furthermore,

}ί(ί-z)(2z-z2)k-1e±2r(z

lim — i

0

Hence, in this gauge,

/ — ί 0\
Φ-> Λ as r-»oo. (2.12)

\ 0 i/

Thus || Φ || ->1 and the eigenspace corresponding to + ί for large r is isomorphic to
the homogeneous bundle R3\0 x sι(C, where the circle group S1 acts on (C with
weight + k. The line bundles defined by the eigenspaces of Φ on a large sphere thus
have Chern class +/c, so by definition the monopole has charge k.

Consider next the curvature of V. This is given by

F = PdxGG*dxP. (2.13)

Hence from (2.9) we obtain ||F||2^3/cV, and so ||DΦ|| - ||F|| =0(r'2) verifying
condition A3.

Now from the Bianchi identity D*DΦ = 0, hence

Thus, from Green's theorem and the estimates

we find

,„,,„_, ' f l ί ϊ M (2,4)
4π^3 | |x-x||

We now approximate F by F0. If we set G = G0 + β, then

hence A0B = P0 — P — AG0. Thus from (2.9) and (2.10) there is a constant α such
that \\A0B\\^ar~l. Hence, \\B\\ = \\G0A0B\\^a/cr2, i.e. ||G-G0|| =0(r~2\ and so
from (2.9) | |GG*-G0G*|| = 0(r"3). Thus from (2.13) we obtain

||F-F0 | |=0(r-3), (2.15)

and hence

Now F0 is the curvature of a homogeneous connection on a direct sum of line
bundles over IR3\0, and so ||F0||

2 = /?r~4 for some constant β. Hence from (2.16)
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\\F\\2 = βr~4 + 0(r~5), and from (2.14) we may therefore write

Now by Stokes' theorem

J ||F||2= lim J *(DΦ,Φ)
R3 K^OO SR

-Jim J (F,Φ)

-Jim j (F0,Φ)

from (2.15). But as r->oo, the line bundles of which F0 is the curvature approach
the eigenspaces of Φ, so this last integral may be expressed in terms of Chern
classes, and we obtain from (2.17)

2k
I I Φ H — 1 \-0(r 2),

r

which is the condition A1. It is straightforward to take into account the angular
dependence of ||F|| in the estimates, and we obtain all three conditions Al, A2, A3.

In fact Taubes (unpublished) has shown, using the methods of [9], that the
conditions A1-A3 are consequences of the equations DΦ = *F and the single
condition ||Φ||->1.

We have thus seen that Nahrri's construction produces a monopole with the
required asymptotic conditions, passing from the realm of ordinary differential
equations to that of partial differential equations. In the next section we pass from
partial differential equations to algebraic geometry, using twistor methods.

3. The Spectral Curve

Nahm's construction started by interpreting the Bogomolny equations as
x0-translation invariant solutions of the self-duality equations in IR4. It is well-
known that a self-dual SU(2) connection on IR4 corresponds using the Penrose
twistor theory to a holomorphic rank 2 vector bundle on the complex 3-manifold
Π^V?!, which is trivial on every real line and quaternionic with respect to the real
structure on IP3 induced by a quaternionic structure on C4 (see [2, 4, 5]). The
action of translation in the x0-direction induces a free holomorphic action of the
additive group C of complex numbers on D^IP^ whose quotient is an algebraic
surface. It may be identified with the total space of the tangent bundle T1P1 to the
projective line.

Thus, a solution of the SU(2) Bogomolny equations on IR3 corresponds to a
holomorphic rank 2 vector bundle E on TIP1 which is quaternionic and trivial on
every real section of π:TΊP1->IP1, these being the projections of real lines in IP3.

This correspondence is dealt with directly, without passing to IR4, in [8], to
which we refer for details of the following. The complex surface TIP1 may be
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thought of as the space of oriented straight lines in IR3, and then the bundle E is
defined by :

Here U is the unit tangent vector along the oriented geodesic yz corresponding to a
point zeTΠY

. If (P, Φ) satisfy conditions A1-A3, then there are two distinguished holomor-
phic line bundles L+ and L~ in E defined by:

The spectral curve S is defined by S = {ze TF1 \LZ = L~ } and is a compact algebraic
curve.

We denote by L the holomorphic line bundle on TIP1 corresponding to the
trivial [/(I) solution of the Bogomolny equations Φ = i, and by 0(k) the pull-back
from IPj of the unique line bundle of degree k. We cover P1 by two standard affine

open sets (70, U1 and let £ be a coordinate on U0. Then — trivializes the tangent

bundle over L70 and we take local coordinates (η,ζ) on π~1(C/0) defined by

(η, ζ)-»J7 — . With respect to the open covering C/ = π~ 1(C/ ί) of 7ΊP1? the line bundle

L is defined by the transition function eη/ί* on UQnUv

It is shown in [8] that L+ = L( — k)anάL~ =L*( — k). Hence, since L+ =L~ on
5, we have the fundamental constraint L = L* on S.

The natural real structure on T1P1 is defined by τ(η,ζ) = ( — η/ζ2, — C"1) and
corresponds to the operation of altering the orientation on each straight line in 1R3.
The quaternionic structure σ:Ez^Eτz maps Lz to L~z and so on S the bundle
L( — k) has a quaternionic structure. Hence L(k— l) = L(—k)®0(2k — 1) is real.

Since S is defined by the condition Lz =L~9 this corresponds to the vanishing
of the map L~ CE->E/L+ ^(L + )*. But L~ ^L*(-k) and L+ ^L(-k\ so S is the
divisor of a section ψeH°(T]PvO(2k)) and since it is compact, is defined by an
equation

where «.(£) is a polynomial of degree 21 in ζ (see [8]). The curve S may of course be
singular or reducible.

To summarize, we have the following properties of S :
S is a compact algebraic curve in the linear system |0(2fe)| on ΓIP1 such that S

is real and L2 is trivial on S.
In this section we shall first describe the space Hl(C, 0) for any curve C in the

system |0(2fe)|, use it to show that S has no multiple components, and then prove
the important vanishing condition B4 of Sect. 1. For brevity we put T= TTPj.

Recall that there is a canonical section η—-eH°(T, 0(2)) which we shall denote
dζ

simply by η. We shall prove the following :
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Proposition (3.1). Let 8 be a curve in the linear system \0(2k)\. Then every element
ceH1(S,0) may be written uniquely in the form

fc-l

c= Σ niπ*ci>
ί= 1

where cίeH1(1P1,O( — 2ί)) and π:S^JP1 is the projection.

Proof. We first compactify T to a compact non-singular algebraic surface T by
replacing a line bundle by a bundle of projective lines. We take

Γ=P(0(2)®0) = IP(0(1)ΘO(-1)),

since T=TΊP1=0(2).
Let Hl denote the line bundle π*0(l) on Tand H2 the tautological bundle over

P(0(l)00(- 1)). Recall that any projective bundle P(F) has a tautological bundle
H whose dual is defined by :

H* = {(x,y)elP(V)x V\π(x) = π(y) and yεx}.

The canonical bundle K of holomorphic 2-forms on T is then expressed, in
additive notation, by

K=-2H2-2H1. (3.2)

The section η<ΞH°(T,0(2)) extends to a section ήeH®(T,Hl-}-H2\ vanishing only
on the zero section Z, and there is a section ξeH°(f,H2 — HJ vanishing only on
the section at infinity. Thus ζ trivializes H^ — Hl on TCT, and hence in a
neighbourhood of S.

We shall consider first the restriction map

and show that this is an isomorphism. Since H2 — H1 is trivial on S we shall then
have a description of H1 (5,0).

To do this, first note that the curve S is defined in T as the divisor of

V> = *7* + α1»/*-1 |+ .- . +akξ
kεH°(f,k(H1+H2)).

Thus we consider the exact sequence of sheaves

From the exact cohomology sequence, ρs will be an isomorphism if

HP(T,-H2- (2fe- 1)̂ ^ = 0 for p=l,2 . (3.3)

Now on T=1P(0(2)00), the curvature of the natural connection on the tautologi-
cal bundle is non-negative and positive in the fibre directions. In our notation this
bundle is H1+H2. Since Hί is positive on the base,

J + εH1>0 for ε>0.



158 N.J.Hitchin

Hence,

(2k- l)ff ! + H2 = (2k-2)Hί+(H1

for fe>l, and so by Kodaira's vanishing theorem,

T, -H2-(2k-l)H1) = 0 for p = 0,l.

On the other hand, we have the Riemann-Roch theorem for a line bundle with
Chern class I :

Since T is rational, c\ + c2 = 12. Now taking L=-H2-(2k- ί)H1 and using (3.2)
and the intersection numbers : HV H2 = 1, H\ = 0, #2=0, we see that h2 = (2k— 1)
— 1 — (2fc— 1) + 1 =0. Hence (3.3) holds and ρ5 is an isomorphism.

Consider next the map

Since ξ vanishes on the rational curve at infinity C, and ή trivializes H1 +H2 in a
neighbourhood of C, we have the exact sequence of sheaves :

Since //0(P190(-2/)) = 0 for />0, we see that ξ is injective. Also, if we consider
cleHί(PvO(-2l)\ then

ec(^*cz) = c z. (3.4)

This is because C is a section of π T-^IP^
Now, consider an element αeH1(7^(fe- l)(H2 — H1)) of the form

a = kΣήiξk~1~ίπ*cii

If this vanishes, then from (3.4), ck_ 1 =0. However, since ξ is injective, this implies

Repeating the argument we see that c . = 0 for all i. Hence the elements of the form
ήίξk-ί-iπ*c, for c ί6flrl(lP1,0(-20) and 1^/^/c-l are all linearly independent
and span a subspace of Hl(f,(k— 1}(HΊ — HJ) of dimension

Σ dimH1(lP1,0(-2i))= Σ (2i- l)-(/c- I)2. (3.5)
1 1

Thus, since ρ is an isomorphism, this is a (k— l)2-dimensional subspace ofH1(S, 0).
However, from the exact sequence

we see, using the Riemann-Roch theorem for f, that

dimH°(S, O) - dimHl(S9 O} = l-(k-
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Since S is connected, dimH°(S, 0) = 1, so dim//1 (5,0), the arithmetic genus, is
(k-1)2.

Hence from (3.5) every element ceH1(S,0) is uniquely expressible as

and Proposition (3.1) is proved.
If we now specialize to the case of the spectral curve of a monopole, we may

deduce the following property :

Proposition (3.6). Let S loe the spectral curve of a monopole. Then S has no multiple
components.

Proof. Let C be a reduced curve which occurs as a component of 5 with
multiplicity greater than one. Then from the definition of S, L+ —L~ on the first
formal neighbourhood of CcT. Hence L2 is trivial on the first order neigh-
bourhood. The curve C is the divisor of a section ψ of 0(21) for some / < f e (we may
take C to be real). Now consider the exact sequence of sheaves for the first formal
neighbourhood 0(

C

1)(2L),

If a is the trivialization of 2L on S, and it extends to the first order, then the
obstruction δ(ά)eHl(C, 0( — 21)) in the exact cohomology sequence vanishes. In
particular, if we take a family of sections ψ(t)eH°(T,0(2l)) with t/?(l) = φ, then the
obstruction to extending a in this direction vanishes, since it is the element

Take the family ψ(t) = ψ(tη,ζ)9 then η-^tη defines a biholomorphic equivalence
between the divisor Ct of ψ(t) and C. The line bundle 2L on Ct is then given as a
bundle on C by the transition function e2tη^.

Hence the obstruction to extending the trivialization in this direction is the
element in Hl(C,O) represented by the cocycle 2η/ζ.

Now C"1 represents a non-trivial element of H1(IP1,0( — 2)), thus by
Proposition (3.1), the cocycle 2η/ζ represents a non-trivial element in H^(C,O}.

Hence <5(α)φO and the Proposition is proved.
This is one condition on the spectral curve which is not included in [8]. We

shall next prove a more fundamental condition which will turn out to be
equivalent to the non-singularity of the monopole determined by 5. It is a
vanishing theorem analogous to the vanishing theorem for bundles on IP3 which
was so important in the ADHM construction of instantons [2, 7, 12].

We denote by Lz the line bundle over T corresponding to the solution Φ = zi of
the 17(1) Bogomolny equations. Its transition function with respect to the covering

C/o, #ι is Λ

Theorem (3.7). Let S be the spectral curve of a monopole of charge k. Then,

H°(S,Lz(fc-2)) = 0 if ze(0,2).
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Proof. First let us recall how the spectral curve determines the bundle E over T,
according to [8], Sect. 7.

The bundle L2 is trivial on 5, so the coboundary map

δ:H°(S9L
2)-^H1(T9L

2(-2k))

defines an extension of line bundles 0— »L( — &)— >-E+->L*(/c)— >0 by δ(a\ where
aeH°(S,L2) is a trivialization. Since S is connected, a is unique up to a scalar
multiple, so the bundle E+ is uniquely defined.

The real structure defines an antiholomorphic map σ:L2( — 2k)-+L~2( — 2k) on
T and so σδ(a) defines another extension

0->L*(- fc)->£- ->L(fc)->0 .

The bundles E+,E~ are both isomorphic, the isomorphism defining the quater-
ionic structure on E = E+ =E~. The two extensions then correspond to the two
distinguished subbundles L+ and L~ .

The coboundary map is at the source of the proof. The basic idea is to consider
the composite map :

where i is induced by the inclusion L(-k)->E. If s£H°(S,Lz(k-2)\ then iδ(s)
represents, using the twistor interpretation of massless fields, a solution φ of a
differential equation of Laplacian type on IR3. We show that φ decays at infinity
fast enough to ensure that it vanishes identically. It will then follow that s must
itself vanish.

In order to obtain estimates, we need a good analytical control of the
transforms involved, and so we pass from Cech cohomology to Dolbeault
cohomology in order to represent sheaf cohomology classes.

Let aεH°(S,L2) be the trivialization and {V^ a sufficiently small covering of a
neighbourhood of S by open balls. Since S is compact, this can be taken to lie in a
compact subset of T.

A Cech representative for δ(a) consists of extending the covering to T and
taking the cocycle (α.— a^/ψ on V^Vp where ai is some holomorphic extension of
α to Vt. We take the cocycle zero on any other intersections. A Dolbeault
representative may be obtained by taking a partition of unity {φ.} subordinate to
the covering and defining θj = dγjφi(ai — aj)/ψ. Then, on V^Vk

) = 0 .

Hence θ is a well-defined 3-closed (0, 1) form with values in L2( — 2k). In fact,

(3.8)

where α is a C°° section of L2 of compact support.
With this explicit representative, we can define the holomorphic structure on

the extension E+. We take E+ =L(—k)®L*(k) with a new ^-operator given by

y ) . (3.9)
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Similarly the holomorphic structure on E~ is defined by

5(X'9 /) = (Sχf + θ*/ , dy') , (3. 1 0)

where θ*eΩ°'1(L~2( — 2k)) is the form conjugate to θ using the real structure.
Thus, from (3.8),

θ* = da*/ψ* = da*/ψ, (3.11)

since ιpεH°(T,0(2k)) is real.
Now E+ and E~ are holomorphically equivalent via an isomorphism which

preserves the natural symplectic form on each :

B\/X

where AεΓ(T,L~2), DeΓ(T,L2\ BεΓ(T,0(-2k)\ and CeΓ(T,0(2k)) and
AD-BC=ί.

Now to be holomorphic the matrix above must intertwine the two δ-operators.
Hence,

dx' + θ*y' = d(Ax + By) + θ*(Cx + Dy)

= A(dx + θy) + Bdy, (3.12)

and

' = d(Cx

= C(dx + θy)+.Ddy. (3.13)

Now from (3.13) dC = 0, so C is a holomorphic section of 0(2k). In fact, by the very
definition of the spectral curve, C = ψ. Also from (3.13) we have dD = CΘ
= ψda/ψ = da. Hence D — α is a holomorphic section of L2. But if L2 has a
holomorphic section on T, then it must be trivial and define the trivial solution
Φ = 0 to the Bogomolny equations. Since for L2, Φ = 2i we must therefore have
D = α.

Now from (3.12), dA + θ*C = Q. Hence from (3. 1 1) dA + 3α* = 0, and again since
L~2 has no holomorphic sections, A= — α*.

The final entry f? is determined by the condition AD — BC=1, hence the
quaternionic structure on £, i.e. the isomorphism E+ =E~ is defined by

-α* -(l+αα*)M 4)

ψ α / '

Now, returning to the theorem, take a section seH°(S,Lz(k — 2)) and form the
element iδ(s)EH1(T, Lz~1E( — 2)). We can represent iδ(s), by a procedure analogous
to the above, by a Dolbeault form

where σ is a section of Lz(k — 2\ compactly supported around S.
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But, from (3.14)

Ά B\ίSσ/ψ\ _/-α*3σ/t/?\

C DJ\ 0 )~( dσ )'

and [as a section of LZ~1E~( — 2)] we have

d(°\ = (θ*σ\ = fσ^*/v<

\σ/ Uσ/ \ δσ

Hence,

(y4 B\fdσ/ψ\ -/0\ fd(ot,*σ)/ψ\
\ —d / (3.15)

In other words, the cohomology class iδ(s)eH1(T9L
z~1E( — 2)) is represented by

two forms,

1(Lz-1L + (-2)) and θ~ = -d(

where, moreover, if y = 5(0, σ)

θ+-θ-=By, (3.16)

where θ+,θ~ and y are all supported in the same compact neighbourhood of S.
Recall now that if E is a vector bundle on IR4 with a self-dual connection and E

is the corresponding holomorphic bundle on Π^MP^ then there is an isomorphism
[2, 7, 12]

It is straightforward to deduce that, for a self-dual connection which is invariant
under x0-translation, there is a corresponding isomorphism

H\T9E(-2))*{φeΓ(^3

9E)\(r*r+Φ*Φ)φ = Q } . (3.17)

In our case we are considering the bundle LZ~1E which corresponds to the U(2)
solution of the Bogomolny equations obtained by taking the original connection
on E, but with a modified Higgs field Φ' = Φ 4- (z— l)ί. Note that the eigenvalues of
IΦ' at infinity are — z and (2 — z) so that if ze(0, 2) they have opposite sign.

We must now examine the isomorphism (3.17) in more detail in order to
estimate the growth of φ.

The value of the section φ at a point xeIR3 is obtained by restricting to the
corresponding section PXCT.

Now by Serre duality

We want to estimate the norm of φ(x) and this we do by considering all
holomorphic sections of L1 ~ZE on Px and evaluating the class iδ(s) corresponding
to φ on them.
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Now from [8], a section / of L1 ~ZE corresponds to a section / of E on the unit
sphere bundle S 2 xIR 3 which satisfies the equation (Vv— ίΦ')f=Q along the
geodesic flow.

Similarly a representative form θEΩ°'1(Lz~ίE( — 2)) for ίδ(s) corresponds to a
form θ on S2 x IR3 which satisfies an analogous equation along the flow. The
evaluation <#,/> is then invariant under the flow and defines the evaluation
^θ9fyeΩ0ιl(T90(-2)). Therefore, to evaluate φ at a point xeR3, we take a basis
[e^e2] for Eχ9 pull back to S 2xIR 3 to obtain holomorphic sections {/15/9} of
LV~ZE on Px and evaluate the integral to obtain

<φ, *.>x = <iδ(s), /;> = j <θ(x, u), /£(x, u)> ,
S2

where ueS2 = Px runs over the unit tangent vectors at xelR3.
Now from (3.16) we have two representatives θ+ and θ~ for iδ(s\ where

θ±eΩ°>ί(Lz~1L±(-2)). But in [8], L+ is defined as the space of solutions to
(Vv— ίΦ)s = Q along a line which decay like tke~t as f-»oo. We similarly obtain
estimates

u)-ί¥z"2)ί as ί-^ + oo,

w)-Ίί|V"z|ί | as ί->-oo,

using the Higgs field Φ'.
Let us parametrize T by

IR3 | | |iί|| = l and u x = Q } .

That is, define a straight line by its direction and shortest distance to the origin.
Then since θ+ and θ~ have support contained in some disc bundle of radius R,

we have for ze(0,2) estimates of the form

ί<0,

if y M = 0.
Equivalently, putting x = j; + ίw,

\\θ + (x,u)\\<Ke-£(x'u} if

"e | x-M | if

Now if ||x ||2 — (x u)2 > R2, the straight line through x in the direction u is always a
distance greater than R from the origin. Hence from (3.18), if ||x|| >R we have

if ,

if

We define open sets V± in iS2 by

If ||x|| is sufficiently large, then V± are disjoint neighbourhoods of ±x/||x| |eS2

and Θ+ and θ~ have support in F+uF".
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Hence, integrating gives us

= ί <θ+Jί>+ ί <θ-Jiy+ I
y+ γ- γ-

However, from (3.16), y is supported in F+uF~, and so the last term vanishes by
Stokes' theorem. Therefore from (3.19) we obtain

and so as ||x||->oo, \\φ(x)\\ decays exponentially. Since (see [8]) the derivatives of
θ* also decay exponentially along each line we also have a similar estimate for

Φl
We now use the standard vanishing theorem argument. From (3.17)

Φ')φ = 0, so

0- J
11*11^

= ί (IIW + ITO)II2)+ ί

But the boundary term tends to zero as jR-> oo, by our estimates, hence Vφ = 0 and
as </>->0 we must have φ = Q, and so i<5(s) = 0.

To complete the proof we must show that iδ is injective. From the exact
sequence

Q-^0T(LZ(- k- 2))^0T(Lz(k- 2))-*Os(Lz(k- 2))->0 ,

the coboundary map c) will be injective if H °(T, Lz(k — 2)) — 0 and from the sequence

the map i will be injective if H°(T,Lz-2(k-2)) = 0.
However, if zφO there can be no holomorphic sections of Lz(k — 2) on T.

Indeed, such a section pulls back to a holomorphic section of 0(k — 2) on F3\P1

under the quotient map E>

3\IP1 -̂  T This is because Lz is the bundle on T associated
to the representation w->ezw of (C, considering F3\1P1 as a principal (C-bundle over
T. Hence Lz is trivial on IPgVPj.

Now by Hartog's theorem any such section on IP 3^ extends to IP3. However,
the action of (C on such sections is algebraic and there are no sections which
transform with the transcendental multiplier ezw [see also (5.4)].

Thus if zφO or 2 the map iδ is injective and so s = 0, concluding the theorem.
We have thus established the conditions B1-B4 for the spectral curve S.
The condition L2 = l together with the antiholomorphic isomorphism L = L*

defined by the real structure means that the element 2[η/ζ~]eH1(S, 0) is an
imaginary lattice point with respect to H1(S,%)CH1(S,O) and hence the straight
line through 0 and [2η/ζ']eH1(S90) defines a homomorphism

ft : S1-^H1(S, O)/H\S, Z) = Pic(S) .
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Now we may identify the Picard group with the Jacobian Jac(S) of divisor classes
of degree 0-1 by L->L(fc-2), (recall that deg(fc-2) = ίc(fe-2) = (fe- I)2- 1), and
then the vanishing condition of Theorem (3.7) is that h~1(Θ) = ! 9 where Θ is the
theta divisor of line bundles of degree (0 — 1) with at least one section. In particular
h is injective, so [2η/ζ] can not be a multiple of any element in H1(S,1).

4. Solving Nahm's Equations

Let us suppose now that S is a curve in TIP1 satisfying conditions B1-B4, i.e.
(i) S is defined by an equation

where aieH°(Pl90(2ί)) are real.
(ii) S has no multiple components and L(k— 1) is real.

(iii) The line bundle L is of order 2 on S.
(iv) #°(S,Lz(fc-2)) = Oforze(0,2).
We shall show how S defines canonically a solution of Nahm's equations,

satisfying the conditions C1-C4. First we derive some consequences of (iv).
Consider the exact sequence of sheaves

on the compactification T of T.
From the exact cohomology sequence and the Riemann-Roch theorem for T

we deduce that

dim#°(S, 0(0) - dimtf^S, 0(1))

= ^l2H2

1-^H
= l + lk-k2-

Hence for the flat line bundle Lz, by invariance under deformation,

dim#°(S, LZ(Q) - dimtf^S, Lz(l)) = k(l-k) + 2k . (4.1)

Thus in particular dimH°(S9L
z(k-2)) = dimH1(S9L

z(k-2)), and from (iv),

H1(S,Lz(k-2)) = Q for ze(0,2). (4.2)

Now let F be a fibre of T which intersects S in k distinct points [its existence is
assured by (ii)] and consider the exact sequence

V-+0S(LZ(1))-^0S(LZ(1+ l))-»0SnF(L'(/+ 1))->0.

We see immediately that

H°(S, Z/(OHH°(S, U(l + 1))
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is injecti ve and

H1(S9L*(l))-+H1(S9L*(l+l))

is surjective. Hence from (iv) and (4.2)

H°(S,Lz(l)) = 0 for l^k-2,

H\S,Lz(l)) = Q for ί^fc-2.

Using (4.1) this implies in particular that

dim#°(S, Lz(k- 1)) = fe . (4.4)

When z = 0 (or z = 2 since Lz is trivial), the line bundle 0(1) has more sections :

Proposition (4.5). If I < 2k, then every section seH°(S, 0(1)) may be written uniquely
in the form

[1/2]

s=Σ rf^c^
i = 0

where cίeH°(P1,0(/-2ϊ)) and ηεH°(S,O(2)) is the tautological section on T.

Proof. Take first the case when / is even, / = 2n, say, and consider the exact sequence

Now H°(f9(n-k)(H1-\-Ή2)) = 0 since (n-fc)<0, so we shall have

H°(T, n(H1 + H2)) ^ H°(S9 0(2n)) , (4.6)

iϊ Hi(f,(n — k)(Hΐ+H2)) = Q. But if Z is the zero section, there is an exact sequence

Now if m > 1, H°(P15 0(2 - 2m)) = 0, so

is injective and, repeating, injects into H^(T, —(Hί-\-H2)). However, Γis rational
so H l ( f 9 0 ) = Q, and as H°(f,0)-^H°(Z,O) is an isomorphism, it follows from the
exact cohomology sequence with m= 1, that Hl(f, —(Hί+H7)) = Q. Consequently
H\T9- m(H1 4- H2)) vanishes too.

Thus we have established (4.6). Restricting from T to T we have

H*(T9 n(H, + H2)) £ H°(T, O(2n)) ̂  HQ(S, 0(2n)) ,

and by the result of [8] Sect. 7 every section of H°(T, 0(2n)) is of the form s = a0η
n

+ a1η
n~1+ ... +an, so the proposition is verified.

If / = 2n + 1 we use a similar argument with the exact sequence

In this case, we need to prove Hl(T, —H2) = Q. But by Serre duality, using (3.2),

H1(f,-H2)^H1(T,H2-2Hΐ-2H2)*.

This, however, is zero by Kodaira's vanishing theorem.
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An important special case of the proposition is where / = 2. It follows then, that
if fc> 1, the space H°(S, 0(2)) is spanned by

d d d 2 d
ηdζ'dζ'ίdζ'ί dζ'

where η — - is the tautological section already introduced and the other three form
dζ

a basis for the holomorphic vector fields on K^.
As a consequence of (4.5) the vector space H°(S,Lz(k— 1)) jumps in dimension

from k to ^(/c + I)2 or ^fe(fe + 2) (where k is odd or even respectively) as z tends to 0
and 2. We can nevertheless define a holomorphic family of vector spaces over (C - a
vector bundle V- by taking the direct image sheaf π^M of the line bundle M over
C x S whose fibre at (z, w)e C x S is Lz(k — l)w. The direct image sheaf is torsion free
on the 1 -dimensional space C and hence is locally free. Since H°(S,Lz(k — 2)) = Q
generically [it vanishes for ze(0,2)], the bundle V is of rank/c and its fibre at
ze(0,2) is simply Vz = H°(S,Lz(k- 1)). We shall investigate the fibres at the
endpoints later on. The principal object we shall consider in this section is the
product map :

if °(S, 0(2))®#0(S, Lz(k - 1)) -̂ U if °(S, Lz(k + 1)) , (4.7)

and in particular its kernel.

Proposition (4.8). Let Kz denote the kernel of m in (4.7). Then the map h:Kz-+Vz

defined by

is an isomorphism if ze(0,2).

Proof. The sections of 0(2) embed T into a quadric cone in IP3 :

{(z0, z1? z2, Z3)|z0 = η,zί = 1, z2 = C, z3 = C2} .

Let us denote by H the hyperplane line bundle on IP3, then H\T = O(2).
There is an exact sequence of vector bundles on IP3 (the Euler sequence):

0-»ί2£(Ή)^(C4^H^O, where Ωl

p is the cotangent bundle, and

(C4 ̂  H°(P3, H) ̂  H°(T, O(2)) ̂  if °(S, 0(2))

by (4.5). Thus restricting to S and tensoring with Lz(k— 1), we have an exact
sequence

0-^β£Lz(/c+ l)->if°(S, O(2))®Lz(k- l)-*Lz(k+ 1)^0. (4.9)

The exact cohomology sequence of (4.9) gives

We shall show that m is surjective and identify its kernel.
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Consider (z0, z1?z2, z3)eIP3. The tangent plane to the cone touching the line
(= oo is zt =0. On the complement of this we have trivialization of Ωp given by:

ω3 -

On the complement of the tangent plane along ζ = 0 we have a trivialization

ώ1 = Φ0/z3) ώ2 - d(z2/z3) ώ3 = d(zjz3) ,

and so

Hence on 7J with respect to the standard covering U0, U v Ωp is defined by the
transition matrix

(4.10)

In particular, we may consider the map f:Ωp-^Ω^Ωp = 0( — 2), where Ωp is the
cotangent bundle along the fibres of T. Since ω1=dη and ώ^ are local triv-
ializations of £2*, the kernel of f:Ωp^Ωp is the extension of 0(— 2) by 0( — 4)
given by the transition matrix

<-2 Q

Γ3 -Γ

which (since [ζ~1]eJ[/1(IP1,0( —2)) is non-trivial) is the non-trivial extension on
Pr Hence

(4.11)

Consider then the exact sequence

From (4.3)

and

Hence from the exact cohomology sequence of (4.11),

/ : if °(S, Ql

PL
z(k + l))-*iί0(S, Lz(fc - 1))

is an isomorphism and H1(S,ΩpLz(k+l)) = Q if ze(0,2). Consequently m is onto,
with A -dimensional kernel isomorphic to H°(S,Lz(k— 1)) under the map /.

It is straightforward to see that / is the map h in the Proposition, which is thus
proved.
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From Proposition (4.8) the sections S1?s2,s3 are all determined linearly by s0.
Thus there exist well-defined endomorphisms A0(z)9Aί(z),A2(z)EEndVz for
ze(0,2), such that

(η + A0 + ζAi+ζ2A2)s = Q. (4.12)

The endomorphisms At almost define the solutions to Nahm's equations but they
are not yet matrices - we have to trivialize the vector bundle V over (C in order to
obtain such a form. We shall define a connection in order to obtain such a
trivialization.

Recall that one approach to connections is the notion of covariant derivative
of a section of a vector bundle. Suppose then that s(z) is a local holomorphic
section of V. We can represent 5 by a pair of holomorphic functions /0 : C/->(Cfe,
/! : l/'->Ck (where U= U0nS, [/'= L^nS), such that f0 = e

zη/ζζ(k-ί)fί on C/nl/'. If
we now naively differentiate with respect to z, we obtain

- .

dz~ζo dz9 '

which clearly does not transform as a section of V. However, by virtue of (4.12) we
may write

and then

- ° . _ ? 7 / _(

~ ^Z C °

(4.14)
ί/nl/'

Since ^A^s + ζA^ is regular in U and ζ~ίA0s + ̂ Aίs is regular in £/', we have a
well-defined connection on V over (0,2), whose covariant derivative is defined by

We now take a basis s19 ...,sk of covariant constant sections along (0,2), and we
may then represent the endomorphism At by the matrix At.

Nahm's equations come from the following proposition:

Proposition (4.16). Let A0 = T1+iT2, Aί = -2iT3, A2 = T1-iT2, then T15 T2, T3

satisfy Nahm's equations

?=iΣ%[η >7;] for ze(0,2).
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Proof. Let us write A = A0 + ζAί + ζ2A2 and A+=^A1 + ζA2. Then from (4.12)

(η + A)s = 0, (4.17)

and since V was trivialized using covariant constant sections, from (4.15)

-+A + S = Q onU. (4.18)
oz

Hence from (4.17), (η + A)^- + ̂ s = 0, and from (4.18), -(η + A)A + s+ — 5 = 0,
oz dz dz

dA
hence — A + ηs — AA + s-i -- 5 = 0, so by (4.17) again

dz

. (4.19)
dz

Now take a fibre F of T for which SnF consists of k distinct points. If F is the
divisor of a section u of 0(1) on T, consider the exact sequence

Since H°(S,Lz(k-2)) = H1(S,Lz(k-2)) = Q, then from the exact cohomology se-
quence, the restriction map ρ:H°(S,Lz(k—l))->H°(SnF,0) is an isomorphism,
hence there is a basis of sections s1? ...,s fc of H°(S,Lz(k— 1)), such that 5^x^ = 0, if
iΦ7 but 5 (χ.)φO, where {x1? ...,;xJ=SnF.

dA
Now Eq. (4.19) is independent of η, hence we have a matrix J3 = [,4 + ,4] + — -

αz

such that Σ5ίΛ ίχ/) = 0' V ί > ? > and so 5ij = 0» V ίΛ Thus

j
Λ j
— =[Λ,ΛJ. (4.20)
dz

Since the property of the fibre we chose is generic, Eq. (4.20) is true for all ζ, and
equating coefficients we obtain

Ί ~ 2 L 0 ' 1 J ' 7 ~ O' 2- > i — i i ' l '

and substituting for 7], we immediately obtain Nahm's equations.

Remark. Equation (4.20) is in Lax form. It follows immediately that -—TrA" = 0,
dz

Mn _• 0, and hence that the spectrum of the matrix A is independent of z. We may
write this as det(τy + .4(0) — 0, which is a curve in T9 a conserved quantity of Nahm's
equations.

From Eq. (4.12) it follows that if (f/,QeS, then det(f/ + A(Q) = 0.
Since dQt(η + A) = ηk + bίη

k~1+ ... +bk defines a divisor of |0(2fc)| just like S,
and S has no multiple components, it follows that S = {(//, C)6 Γ|det(// + ̂ 4(0) = 0}.
Thus 5 is the invariant curve of our solution, and it is clear that the general
solution to the equations is obtained by essentially the same procedure as above.
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The next problem is to determine the behaviour of our solution to Nahm's
equations at z = 0.

5. Boundary Conditions

We first identify the fibre V0 at z = 0 of the vector bundle V.

Proposition (5.1). Let V0CH°(S,0(k- 1)) be the fibre of V at z = 0. Then

Proof. We know that F0, like H°(S*V O(k— 1)), is fc-dimensional. The proof consists
of showing that any section of 0(k— 1) on S which is pulled back from IP1 may be
extended locally to a section of Lz(k— 1) over C x 5. If there is such an extension,
then there exist power series expansions

s'(η, C, z) = s'0 + zs\ + zV2 + ... ,

on Wx U and Wx U' respectively, where W is a neighbourhood of OeC and
U=U0πS, Uf = ί/jΠS, from the standard covering of T by two open sets, such
that s = ζk~ίezηl^sl on UnU'. Thus, equating first the coefficients of z, we have

s1=ζk~1-s'0 + ζk~1s'1, so that the class [tySo/Qefί1^, 0(fe— 1)) comes from a

coboundary and thus vanishes. There are analogous obstructions for higher order
extensions, all lying in the group H1(S,0(k—l)\ whose structure we investigate
next.

Lemma (5.2). Every element ceH1(S, 0(k— 1)) may be written uniquely in the form

k-l

i = [k+2/2]

where cίeH1(WvO(k-l-2i)).

Proof. The proof is similar to (3.1). By Kodaira's vanishing theorem and the
Riemann-Roch theorem, Hp(f, —H2 — kH^ = 0 for all p, hence the restriction map

ρ:H\T,(k-l)H2)^H\S,0(k-l)) (5.3)

is an isomorphism. Next, the map

is injective if — 2/ + (fe— 1)^0, by considering the exact sequence for the curve at
infinity C.

We now consider an element

fc-l

a= £
ί = [k+2/2]



172 N.J.Hitchin

If this vanishes, then restricting to C we have ck_l =Q [cf. (3.4)]. However, since ξ
is injective, then

and repeating we find ct = Q for all i. This provides, taking into account (5.3), a
space of sections of 0(/c— 1) on S of dimension

ϊ- l

hl= Σ 2m, if k = 2l,
m = l

/ - I

- Σ 2m- 1, if /c = 2/-l.
m = l

However, by the Riemann-Roch formula (4.1), h° — hί = k, and from (4.5),
[fc-l/2]

*°= Σ (*-20.
ί=0

It follows that h1=h1 and the lemma is proved.
We consider next the higher order obstructions. An extension of a section of

0(k— 1) on S to a section of Lz(k— 1) to the mth order can be defined, relative to the
open sets u and u' by holomorphic functions

... +zχ, s;eH°(l7',0),

such that

s = ζk~1ezη/ζsfmodzm+1 on C/nCΛ

One particular type of extension is to consider functions 5 and 5' which are
functions of zη on U (and zη/ζ2 on [/'), since the transition function ezηlζ is itself of
this form. We then seek

zΎ pm, PieH0(U090(k-l-2ί»9

where !P1 = ϊ70uC71 is the standard covering, such that p = ezη/ζp'moάzm+1 on
l/onl/j. This, replacing 217 by fy, is the condition for extending a section of 0(fc— 1)
on the zero section Z of TΠ>

1 to a section of L(k—i) on the mth formal
neighbourhood. We have the following lemma :

Lemma (5.4). Every section of L(nί) on ZC TIP1 can be extended uniquely to the mth

formal neighbourhood, but no section can be extended to the (m + l)th neighbourhood.

Proof. A section of L(m) on the mth neighbourhood of Z consists of sections

PieH°(U0,0(m-2i)) and p(eH\UvO(m-2ϊ}l such that

+ ι
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In other words, we seek functions p. on U0 and p'. on t/1 such that on [70nC/19

/ r o o ... o ^ ̂  /Po\
r-ι r-2 0 ... 0
l r m - 2 rm-3 ^m-4 Q

\ m! (m-1)! / W W

(5.5)

Now

nPθ
1 i

V /
=

Cm-ί

\ ' /

is a solution if

m-l

ΣcJ(n-i)\=Q for (5.6)

However, a determinant of the form

1 1

ml n\

A= •

1

n\

1

(2n-m)\

where n^

is always non-zero. Indeed, clearing the denominators and dividing the zth column
by (i— 1)!, A vanishes if and only if A vanishes, where

A =

But a linear relation amongst the rows of A implies, by the binomial theorem, that
m

there exist A.eIR, such that q(x)= X λjtl+x)1 is divisible by xm~n+1. But q(χ)
ί = n

= (1 + x)πr(x), where degr^m — n, hence x divides (1 + x)", which is absurd.

1

1

M
U/

(n\

(l)

ίm\ 1 m \
...

U; \m-n)

ln\u -
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Thus, up to a constant multiple, there exists a unique solution to (5.6) and
furthermore c0 and cm_k are non-zero.

Adopting a slightly different point of view, the column vectors produced above
provide a trivialization of the vector bundle Em over W1 defined by the transition
function which is the matrix in (5.5). We then have an exact sequence

0->Em_ ί(— l)-^Em-£Q-^0(m)-^Q of vector bundles on IPr Since Em_ 1 is trivial and
Hp(P190(—ί)) = 09 we obtain from the exact cohomology sequence the
isomorphism

(5.7)

Thus any section of 0(m) has a unique extension to a section of Em and hence a
section of L(m) on the mth formal neighbourhood.

An extension to the (m+ l)th order is given by pulling back a section of 0(m) in
the following exact sequence

However, since Em+1 is trivial JEf°(lP1,£OT+1(— 1)) = 0, so there are no such
extensions.

We shall call this extension s of seH°(]Pί9 0(m)) to the mth neighbourhood the
canonical extension. In the language of formal neighbourhoods it defines an
isomorphism H°(P1,L

(m)(m)) = H°(IP1,0(m)), which is, by uniqueness, invariant
under SL(2,(C), the group of biholomorphic transformations of TIP1 which
preserves the zero section Z.

Now if we consider the exact sequences, 0-»0(m— 2fc)-+L(fc)(w)-^L(fe~1)(m)-»0,
it is clear that the SL (2, (C)-module Sm^H°(P19 0(m)) occurs with multiplicity 1 in
H°(lP19L

(k\m)) for k^m. Hence we may recognise the restriction of the canonical
extension to the /cth neighbourhood as the unique SL (2, (C)-in variant extension.
The group invariance also shows that from the exact sequence

the coboundary map δ:HQ(P19L
(m\m))-+Hl(P190(-m-2)) defines an SL(2,C)-

in variant homomorphism h from H°(P190(m)) to H1(IP1,O(-m-2)) by

hs = δs. (5.8)

By Lemma (5.4) this is non-zero, and since both spaces are irreducible repre-
sentations, h must be an isomorphism.

We may now complete the proof of Proposition (5.1).
Let s be a section of 0(k— 1) on F15 and take the canonical extension as defined

by (5.4) of π*seH°(S,0(fc-l)) to the (/c-l)th order as a section of Lz(k-l) on
S x <C. The obstruction to extending to the /cth order is the element

c = ηkπ*hsε Hl(S9 0(k - 1)) . (5.9)

However, on S we have the relation ηk + a1η
k~1+ ... +αfe = 0, so (5.9) may be

written as
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or

c = Σ>/ f c- ίπ*Λ/, (5.10)

where hiEH1(P1,0(2i-k-l)).

By (5.8) each term ηk~iπ^hi is the obstruction to extending the canonical
extension of a section π*sfe H°(S, 0(k — 1 — 2z)) to the (k — 2/)th order as a section of
Lz(k — 1 — 2z). Equivalently it is the obstruction to extending the canonical
extension oϊηiπή:sieH0(S,0(k- 1)) to the (fc-2z)th order, or of extending z2iηiπ^si

from the (k- l)th order to the kth order.
Hence, if s denotes a canonical extension,

s-z2ηs^-z4η2s2- ... -z2lηlst (5.11)

extends from the (fe— l)th to the fcth order in z.
A further extension will be obstructed by some element c'eH1(S90(k—l)).

However, from (5.2) and (5.8), c' canonically determines sections s'ί9 ...,sj such that

c^Σ^W,). (5.12)

Hence, modifying the section to the kth order by multiples of the s't terms as in
(5.11) we may remove the obstruction, and continue. Note that, since each term in
(5.12) is the obstruction to extending a section to at most the (k — 2)th order, the
modifications to (5.11) necessary to extend to the (fe+l) t h order will all be
multiples of z3. Thus, proceeding as above, each coefficient of zn requires a finite
number of modifications, and we obtain a power series in z which defines a formal
extension.

We may now appeal to the theorem of Wavrik [14] which shows that if a
formal extension exists, then an actual (i.e. convergent) one does also.

Consequently, in the notation of the proposition, π*H°(V190(k—ί))CVQ.
However, since both are fc-dimensional spaces we obtain equality and (5.11) is
proved.

We shall next investigate in a similar fashion the behaviour of the kernel
KzCH°(S,0(2))®H°(S,Lz(k- 1)) of the product map m of (4.7), as z tends to 0.
From (5.9) this is equivalent to considering which sections of the vector bundle
Ωp(k+i) over S extend to sections of ΩpLz(k+l). Since the direct image sheaf
π^Ωl

PL
z(k+ 1) over (C is locally free, and from (4.8) dimKz = k if ze(0,2), then there

is a well-defined /c-dimensional subspace X0C//°(S,0(2))(g>70, which extends.
From (5.1) and (4.5), K0CH°(TlP1,0(2))®π*ί/0(IP1,0(/c- 1)). Now ΐίηs0 + sl + ζs2

+ C2s3=0 for siEπ*H°(Pί9O(k-ί))9 it follows from (4.5) that s0=0. Hence,
K0Cπ*(H°(V190(2))®HQ(V190(k-l))). Let XQ9Xi9X2 be a basis for the Lie

algebra of SL (2, C), dual with respect to the Killing form to the basis ~Ίf^~^^2~^-

Each X. acts as an endomorphism of H°(1P1,0(k— 1)).

Proposition (5.13). Every element seK0 can be expressed uniquely in the form

5 = π*

for some sεH°(lPί90(k-l)).
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Proof. If we consider the action of SL(2,<C), then H°(IP1,0(2))(x)H0(IP1,0(/c- 1)) is
the representation space S2®Sk~ΐ^Sk+1@Sk~1®Sk~3. The proposition says that
K0 is the unique submodule isomorphic to S*"1.

We seek local sections s0, s1? s2, s3eH°(S,Lz(/c — 1)), such that

From Proposition (5.1) s0 = zt0, hence ηzt0 + sί

As in the proof of (5.1) we try first extensions which are functions of ηz, which
we may relate to the formal neighbourhoods of the zero section Zc TJP^

Lemma (5.14). Let s be an element of

Sk- 1 c H0(pi9 0(2))®H°(V19 0(k- 1)) .

Then there is a unique extension of s of order (k— 1) to the kernel of m in

H°(Z, 0(k~ 1)(2))®H°(Z, L(k~ 1}(/c- 1)) ,

where L(k~ 1}(k— 1) is the restriction of L(k— 1) to the (k— l)th formal neighbourhood
0/zcτπγ
Proof. From [8], //°(Z,0(k-1)(2))^H°(TIP1,0(2)) if j f c > l , and from Lemma (5.4),
H°(Z,L(k-1\k-l))^Sk'1 as an SL(2,<C) module. Hence as SL(2,<C) spaces,

3. (5.15)

Now restricting Ωp to TlP^ClP^ we obtain an exact sequence of vector bundles
0-»Λr*->Ω*->Ω*->0, where N*^0(-4) is the conormal bundle and Ωj, the
cotangent bundle of TΊP^ Hence on the (k— l)th formal neighbourhood, we obtain
a sequence O^H°(Z, L(* ~ υ(k - 3)H#°(Z, ̂
->.... But from Lemma (5.4), ff°(Z, L(/c-1}(/c-3)) = 0, hence H°(Z, Ω1

pL
(k~1\k + 1))

is a subspace of H°(Z,Ω^L(k~1}(k+l)). Next restricting to the fibres of TIP^ we
obtain an exact sequence 0->0( — 2)-»ί2^-»0( — 2)^0, and hence a cohomology
sequence 0-»#°(Z, L(k~^(k- 1))->H°(Z, ^L(fc'1)(fc+ 1))->H°(Z, L(k~l\k- 1))

Now from (5.4), H^Z^*'1^-!))^*"1, so H*(Z,Ωμ,(k-l\k+l)) is a
submodule of Sk~10Sk~1, and in particular has no irreducible components of
type Sk+1 or Sk~3. Hence in (5.15) the kernel of m is a subspace of S*"1®^"1.

If s is the canonical extension ofseH°(W19 0(k- 1)) to H°(Z,L(k~1}(k- 1)), then
^seH°(Z,L(fc~1)(/c+l)) is non-zero, hence one of the S*"1 components in (5.15)
maps non-trivially under m. Hence, as an SL (2, (C)-module, kerm = 5k~ 1, or is zero.
It cannot, however, be zero as from Lemma (5.4) we have
H°(Z,L(k-1\k+l))^Sk+1®Sk-1®Sk-3, which contains S*'1 only once.

Thus kerm^S^"1. If we restrict now to the 0th order neighbourhood, then the
S*"1 component in (5.15) of the form η®s vanishes, hence the remaining one,
kerm, maps non-trivially and hence isomorphically on the Sk'ί component in
//°(IP1,0(2))(x)//0(IP1,0(fc-l)). This then is the required extension.
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We can now find canonical extensions of s1,52,s3 and ί0, such that

ζs2 + C2s3 =0modz f c, (5.16)

so long as
To proceed further we make modifications to s. as in (5.11) to extend each to

the kth order. Since each modification is of the form zηu we simply subtract zηu
from st and add u to ί̂  to obtain an extension to kih order satisfying (5.16).
Proceeding this way, we obtain a formal extension. This defines a formal section of
ΩpLz(k+l) and so, applying Wavrik's theorem again, there exists an actual
extension. This proves (5.13).

Let us now take an element seH°(1P190(k—l)) and extend
s = π*(l®X0s + ζ®X1s + ζ2®X2s\ according to Proposition (5.13). To make the
formal extension it was necessary to perform modifications to each Xts but these
were all of degree ^ 2 in z. Thus the first order term of the formal extension is the
same as the canonical extension. To obtain an actual extension from the formal
extension, modifications may be necessary, but we can always find a convergent
extension which agrees with the formal extension up to order n, for any given n.

We shall compute the first order term next. From Lemma (5.4) it is equivalent
to determining the ratio c0/c1 for

"' \ Λ r
-o*

Cl

which satisfies (5.5). We shall, however, use the alternative description of the
canonical extension as the SL (2, (C)-invariant extension.

We require, then, from (5.5) the SL(2, C) invariant splitting of the space of
sections of the bundle over IP1 defined by the transition function

= /rι o
°oi \Γk~2 Γ f c~ 3

and defining the invariant extension given by the class [C~1]e//1(IP1,0( —2)).
A model for this extension is provided by the 1-jet extension J^k— 1) of

0(k- 1), 0-»0(fc- 3)-> Jjίfc- l)->0(fc- 1)->0. In this case, the invariant splitting is
simply the derivative or 1-jet map:

The transition function for 0(k— 1) is ζk~ 1 so the derivative of a section f0 = ζk~ 1f1

transforms as fQ = ( k — l ) ζ k ~ 2 f l - \ - ζ k ~ 1 f ! L , and defines J ^(k— 1) by -the transition
function

=01 - * - 2(fc-i)ζ*
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Thus, for a monomial section ζl€H°(PvO(k—ί)), we have

relative to T01. Changing the basis for the transition function S01 gives the
canonical extension, in the notation of (5.4), as

>° 1. (5.17)
Pit

\k-l*

Now the basis {XQ9X^X2} of the Lie algebra sl(2,C) dual to j-^, C^, C2-^j is

,_ ΛΛ 1 r2 d v i rd π ^ d

easily seen to be X 0= —-ςz-—, X1 = -ς—, ^2

=~o7j?' an<^ ^e actlon °f

XQ,Xί9X2 on C/eH0(P1,0(fe— 1)) is

Hence if we take pQ = ζl, then from (5.17) and (5.18) we find

AVPι+£*ΓPι+£*2 Pι=KZ

Thus, in (5.16), we have

ί0=-^smodz, (5.20)

where s^Z^^.
We now evaluate the endomorphisms Aί(z)eEnάVz as z->0. From (4.12),

putting s0 = zί0, z^4 ί0 = s ί+1. Thus z^f is regular and from (5.20)

\imzAi(s)=-2si+ί(0)=-2Xi'S. (5.21)
z-*0

Thus A. has a simple pole at z = 0 with residue given by (5.21).
To obtain the matrices Ai we must consider the behaviour of the connection on

V as z-»0. From (4.15) the co variant derivative is defined by

Now from (5.21) and (5.18),

(5.22)

where B is holomorphic in a neighbourhood of z = 0.
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The matrices At(z) are defined by taking a trivialization of V along (0, 2) by
co variant constant sections s , 1 ̂  i :g fc, and setting

K^z)*.. (5.23)

From (5.22) the sections f.^z ( f c~1 ) / 2s. are regular and so from (5.23), the matrix
At(z) has the same pole and residue as the endomorphism A - because the residue
of the connection is a scalar. Hence we finally obtain the required boundary
conditions :

Proposition (5.24). Let S be a curve in TΊP1 satisfying conditions B1-B4. Then the
matrices Tt produced from Proposition (4.16) have simple poles at z = 0 and z = 2,
whose residues define an irreducible representation of SU (2).

Proof. From (5.21) the residues oϊAQ9A1,A2 define the standard representation of
SL(2,C) on H^P^Oίfc-l)), which is" irreducible. Setting A0 = Tί+iT29

A1 = — 2ιT3, A2 = Tί — iT2 as in (4.16) gives for the residues of 7], the representation
restricted to SU (2), which is still irreducible.

Condition B3, that L2 is trivial on S, implies that at z = 2, the behaviour oiAt(z)
is identical to z = 0.

6. Reality Conditions

It remains to check the reality conditions on the matrices 7], that is,
ci. η*(zH-τχz),
C2. Ti(z)=-Ti(2-z).

For Cl, we must define a hermitian structure on the vector bundle V. Recall that
for ze (0,2), Vz = HQ(S,Lz(k- 1)).

The real structure on S defines an antilinear isomorphism
σ:H°(S,Lz(k- l))->H°(S,L~z(fc- 1)). As in the proof of (3.7) we shall denote this
conjugation operation by σ(s) = s*. Now consider s, tEH°(S,Lz(k— 1)), and
st*eH°(S,0(2k-2)). From Proposition (4.5) we can write this uniquely as

st* = c0ιj*-1 + c1ιj*-2+ ... + c k _ l s (6.1)

(6.2)

where c eπ*//0^, 0(2ΐ)}.
We define a hermitian inner product on V by

This clearly has the correct anti-linearity. It is not obvious yet that it is positive
definite.

Now from the definition of A we have

Apply the real structure σ, and we find

-ησ(s) + ζ2σ(A0s)-ζσ(Aίs) + σ(A2s) = 0, (6.3)

using the real structure on f/°(P150(2)). On the other hand we have

ησ(s) + A0(σs) + ζA^σs) + ζ2A2(σs) = 0 . (6.4)
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Hence adding (6.3) to (6.4) and using Proposition (4.8) we obtain :

σAQ=-A2σ,

σA2=-A0σ, (6.5)

σAi=A1σ.

Now consider the inner products <^4.s, £>• We have ηs + A0s + ζA1s + ζ2A2s = Q,
and hence

ηst* + (A0s)t* + ζ(Ais)t* + C%42s)ί* = 0 . (6.6)

Similarly,

and applying the real structure to this,

-ηt*s + ζ2(A0t)*s-ζ(A1t)*s + (A2t)*s = 0. (6.7)

Now adding (6.7) to (6.6) we find

)*m (6.8)
Now from the exact sequence [see (4.5)], 0-^Ot^Of(k(H1 + H2))-^Os(2k)-^Q we

see, since H1(T, 0) = 0, that every section of 0(2fc) on 5 can be written in the form
1 + ... +cfc, and the only linear relation among the sections is the

vanishing of a multiple of ψ.
Hence, since (6.8) involves no power oϊηk, and hence no multiple of φ, we may

deduce by considering the coefficient oϊηk~1

9 that

<i05,ί>=-<5,i2ί>,

<A1s,ί> = <s ϊ^ιί>.

Thus, if we write y40 = 7i+/T2, A1=2iT3, A2 = T^-if2, then each 7J is skew-
adjoint with respect to the hermitian form.

We investigate next the effect of the connection on the hermitian form.
Consider 5ί* = c0(z)f// c~1+ ... , and restrict to the open set £70nS. Then

£ ̂ -£«~-
Now

dz \dz

from (4.15), and similarly

~rf7
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Hence, substituting in (6.10),

(Vzs)t*

and from (6.5)

Hence, equating coefficients of ηk l, we have from the definition (6.2)

4-<s,t>, (6.H)

and so the connection preserves the hermitian structure.
Thus, trivializing V with the connection, we obtain a hermitian inner product

for which the matrices Tt are skew-adjoint. In particular, the residues at z = 0,2 of
the 7]'s are skew-adjoint with respect to this inner product. However, since they
define an irreducible representation of SU (2), there is, up to a scalar, a unique non-
trivial hermitian inner product for which they are skew-adjoint, and in particular it
is positive definite. Thus <(s, ί) is either zero or definite.

Let seH°(S,Lz(k— 1)) be a section which vanishes at only (k— 1) points of the
fibre π"1^) as in the proof of (4.16). Suppose <s,s>=0, then ss* = c±ηk~2

+ ... +^-1, and for ζ = ζ0 this vanishes for (fe— 1) values of η. This means that
C1(ζ0) = c2(ζo)= ... =c k_ 1(Co) = 0, and so ss* vanishes for all k points in the fibre.
But then s vanishes on the fibre, which is a contradiction. Hence the inner product
is non-zero and so is definite.

Thus the matrices 7](z) satisfies Cl.
The reality condition C2 involves the triviality of L2. Let aeH°(S,L2) be a

trivialization, and consider the real constant function c = aσ(a\ and the antilinear
map

σ':H°(S,Lz(k-l))->H°(S,L2-z(k-l)),

defined by σ' = aσ. Then σ'2(s) = aσ(a)s = cs.
Hence after normalization by |c|, σ' defines a real structure if c>0, and a

quaternionic structure if c<0 on the bundle V. However, by hypothesis
σ': H°(S, L(k- 1))->H°(S, L(k- 1)) is real, so V has a real structure. It is easy to see
that this is compatible with the connection, so if we trivialize V with covariant
constant sections which are both real and unitary, then condition C2 follows
directly.

Hence the solution of Nahm's equations generated by the curve S satisfies all
the required conditions for Nahm's construction.

7. The Spectral Curve for Nahm's Construction

We have now shown that a solution to Nahm's equations determines a monopole,
that a monopole determines an algebraic curve, and that an algebraic curve
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determines a solution to Nahm's equations. To complete the circle of ideas, we
shall show that if we solve Nahm's equations as in Sect. 4 from an algebraic curve
S, and then produce a monopole by the procedure of Sect. 2, then its spectral curve
is S itself.

Recall, then, from Sect. 4 the characterization of S in terms of the matrices Tt.
The curve S is the divisor of ψeH°(P19 O(2k)\ where

Without loss of generality let us suppose that (η, ζ) = (0, 0) is in S, and then

det(T1 + iT2) = 0 for all ze(0,2). (7.1)

Now the oriented straight line in IR3 corresponding to (η, ζ) = (0, 0) is

(0,0,ί). (7.2)

We must show that (0,0) lies on the spectral curve, that is that there is a solution to
(P3 + /Φ)s = 0 on this line which decays at both ends. The method we use was
suggested by Nahm.

Note first that Nahm's equations imply in particular that

-Γ-ίT3>τι + ίT2 =0. (7.3)
dz J

Hence T1+zT2 acts on the full /c-dimensional space of solutions to — = i T 3 f ,
dz

/:(0,2)-><Cfc, with no boundary conditions. Since this is a first order equation, at
each point ze(0,2), the values of a basis of solutions/α(z) are linearly independent.
However det(T1 +zT2) = 0 for all ze(0,2), so there is a solution/+ such that

(T1 + ίT2)/+=0, Vze(0,2). (7.4)

Similarly since (^ + iT2)* =-Tί + iT2, there is a solution /_ of j- = - iT3f, such

that

(T1-iT2)/_=0. (7.5)

Now consider Nahm's operator (2.2): Δ* = x + ί-—*Σ7X Along the straight
dz J J

line we are considering, Δ* = — te3 + i- i Y T e. . If we decompose <CΛ®C2 into
dz J J

eigenspaces of e3, then the null space of J* is described by the equations

- + τΛf2=i(-τl+iT2)fl.
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Thus

(Λ,/2) = (e-tz/_,0),

(Λ,/2) = (0,eίz/+),

are two linearly independent solutions to A*f=Q. They are also J2?2 solutions, as
we shall see next.

Since T3(z) = α3/z + S(z), where S is regular near z = 0,

d^ = ί^f++iS(z)f+. (7.8)

The residue ίa3 comes from an irreducible representation of SU(2), and so is
diagonalizable with distinct eigenvalues, (essentially the weights of the repre-
sentation) λ^ ...,λk. From the theory of ordinary differential equations there exists
a basis of solutions {/α} to (7.8), such that z~Aα/α->eα, as z-»0, where ea is a unit
eigenvector corresponding to the eigenvalue λa.

Now in the representation Sk~ *, the matrix a1 + iaΊ acts on the eigenvectors of
α 3 b y

(aί + ia2)eΛ = nΛeΛ+19 (7.9)

where πα is non-zero unless α = /c and the eigenvalues λf are ordered so that
λi<λ2< ... <λk. Now

where U(z) is regular in a neighbourhood of z = 0. Hence from (7.4) (a1 -Hα9)/+

= -zE7(z)/+ and if /+ = Σ cα/α, then
α = l

Σ c.ίfl! + iα2)/β = - zl/(z) Σ cα/α . (7.10)

Multiplying by z~λl and letting z->0, we see that qrc^^O, hence ^=0. Now
multiplying by z"A 2 and repeating we find cα = 0 for l^α</c. Hence z~Ak/+->cβk,
and as Λ,Λ is positive, /+ is certainly in <&2 near z = 0.

By a similar analysis near z = 2 we find /+ (and analogously /_) are square
integrable.

Thus the solutions (7.7) provide a basis, in Nahm's version of the ADHM
construction, for the fibre Ex of the vector bundle on which we define the solution
of the Bogomolny equations.

Now take an arbitrary section 5 of £ along the line x(t) = (0, 0, t). We may write
this, by the discussion above, as

The connection on E is given by orthogonal projection of the ordinary derivative
and the Higgs field by projection of i(l — z) (see Sect. 2). Thus

Λ ' V A "/ | " | I' ϋ/
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Now

~ + (1 - φ = ((α': + (1 - 2z)α>-<2/_, (α'2 + a2)e'zf+).

So taking α2(t) = 0, s gives zero in (7.11) if

(α'1+α1)je-
2ίz||/_(z)||2ί/z = 2αjze-

2ίz||/_(z)||2rf2. (7.12)
0 0

We may rewrite this as

and so

Thus

o

is a solution to (F3 — z'Φ)s = 0. Moreover,

aι=ce-' le-2*\\f_\\2dz.
/ 0

and this [see (2.12)] tends to zero as ί-> ± oo. Hence the line we are considering is
indeed a line belonging to the spectral curve.

Thus S is contained in the spectral curve, but they have the same degree and
the spectral curve has no multiple components. Hence S is the spectral curve.

The conclusion we draw from this is that any monopole may be constructed by
Nahm's method using the spectral curve to generate a solution of Nahm's
equations.

8. Remarks

1. It has been pointed out several times to the author that Nahm's equations (2.4)
are essentially Euler's equations for a spinning top in the case k = 2. Equations of
this type have been studied intensively quite recently, and in fact the linearization
by a flow on the Jacobian of a curve, which we described in Sect. 4 is contained in
Theorem (1) of Adler and van Moerbeke [1]. The author is indebted to P. Griffiths
for pointing this out. It is perhaps interesting to note that the linearization of
Sect. 4 arises from the monad construction of vector bundles on IP3, which forms
the algebraic geometric foundation of the ADHM construction.

In this paper we were considering the module structure of

M= 0 H°(S,L*(m))
m = k- 1
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over the ring ^
#=0tf°(S,0(2m)).

m-O

However, we have the coboundary map

δ:H°(S,Lz(m))^H1(ΊlP19L
z(m-2k))9

and the inclusion

and the pull-back map

(recall that Lz is trivial on P^VJ.
Composing these we see that M is a subspace of

0 H'opj^.
l=-l

and the ring R is the subring of

m = 0

which is invariant under the action of C on IP3\1P1, whose quotient is TIP1. This is
the standard monad set-up of Horrocks and Barth [2] restricted to ff^ΠY

2. There is a hierarchy of equations like Nahm's equations corresponding to
linear flows in other directions of the Jacobian (again treated in [1]). From our
point of view, any direction in the Jacobian corresponds to an element of Hί(S9 0\
and from Proposition (3.1) this is of the form

where ciεHί(Vί90(-2ϊf).
Using the standard open covering of IP1, ci is represented by a cocycle

Ci = [pi(0/Cl]> where p.(ζ) is a polynomial of degree (21 — 2).
Following the procedure of Sect. 4, we define A(ζ) = A0 + ζA1 + ζ2A2, and

and then express B(ζ) = A + (ζ) + A_(ζ~1), where A + (ζ) is the polynomial part of
B(ζ). The arguments of Sect. 4 then show directly that a linear flow on the Jacobian

in the direction of c i.e. replacing Lz by the flat line bundle with transition

/ k~l Λ \
function exp z Σ Pf(0 (η/ζ)1 leads to the matrix equation:

\ i=l / /

dA
— +[A + ,A]=0. (8.1)
dz

Comparing coefficients of C, we obtain a higher order system of equations for Tt.
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It is important to note that the flows on the space of matrices

(T1?T2,T3)eIR3(χ)su(n),

defined by (8.1) do not necessarily commute, although clearly the linear flows on
the Jacobian torus do. This is because, as in (4.15), we use A+ and A_ to define a
connection on the vector bundle V (over the complement of the theta-divisor in the
Jacobian), defined by VL = H°(S,L(k- 1)) for a flat line bundle L.

The matrix flows (8.1) are obtained by lifting the linear flows on Jac(S)
horizontally relative to the connection. However, the connection is easily seen to
have curvature which is an obstruction to the commutativity of horizontal vector
fields. This connection does, however, appear to depend on the choice of covering
of 1P1 and it may be that a more intelligent choice would lead to more invariant
equations giving the higher order flows.

3. S. Katz has pointed out that Nahm's equations are closely connected with
the equations studied by W. Schmid concerning the variation in Hodge structure
of a degenerating family of algebraic varieties [13]. The only difference is one of
real structure - Schmid's equations arise from a curve S in TIP1 which is real
relative to the real structure (η,ζ)-+(η9ζ). The linearization of these equations
appears not to have been studied in this context.

4. Perhaps the most useful result of the circle of ideas presented here is the
condition on the spectral curve which assures regularity of the monopole. This is
condition B4 : H°(S, Lz(k - 2)) = 0 for ze (0, 2). In general, this may still be a difficult
condition to determine, depending as it does on the geometry of the theta-divisor.
However, as an illustration of the power of the result, we prove finally that the
axially symmetric solutions of Prasad and Rossi [11] are non-singular.

Theorem (8.2). Let S be the curve in TW1 defined by ψ(η,ζ) = Q, where

Ψ = ηfl(η2 + I 2 π 2 ζ 2 } for k = 2n+l,
1 = 1

or

V > = Π f a 2 + (/ + i)2π2C2) f°r k = 2n + 2.
ι = o

Then S is the spectral curve of a non-singular solution of the Bogomolny equations.

Proof. We must verify that S satisfies conditions B1-B4. The first two are clearly
satisfied, so we must consider just B3 and B4.

Now the curve S is reducible and has singularities at (η, Q = (0,0) and (0, oo), so
in order to consider holomorphic sections of line bundles on 5, we must
understand what is a holomorphic function in a neighbourhood of a singularity of
S. This will be a local section of the sheaf 0/J> on TΊP15 where J> is the ideal
generated by ψ, thus of the form

A local section of Of J near (0, 0) may then be represented uniquely by a function

0+ +^~W0> (8-3)
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and on each component η = a£, we obtain a function

Now, given k holomorphic functions /;(£), we wish to know what conditions to
impose in order that they define a local section of the sheaf O/*/. Clearly from (8.3)
this is

(8.4)

Now if the αf's are distinct, the Vandermonde matrix V is invertible, where

(1 a ak~^

i O1

k ''' k i
Hence by taking g. = ζk~ihi for suitable holomorphic functions ft. in (8.4), it is clear
that the condition depends only on the (fc — 2)-jet of ft. Thus, if

then the condition (8.4) becomes :

.e.

/y = ΣK.Gy, (8.5)

where Gfj. is a fc x (fc— 1) matrix with Gtj = Q if ί
Consider now the condition that L2 be trivial on S. A section of L2 is described

by a holomorphic function f on U and /' on U\ such that (see (5.1)) j=e2ηlζf on
C/n L/'. On each component η = atζ, we then require (constant) functions /., //, such
that

ft = e2«fί, (8.6)

but also satisfying the compatibility condition (8.5) and the analogous one at
(f7,C) = (0, oo ). This implies

Λ = Λ = . .=Λ.
Λ'=/2=. .=Λ'.

and so L2 has a section on S if and only if e2aί — e2aj, l^i, j^fe, i.e. ai — aj = mίπ,
meTL. Clearly this is satisfied by S above, so L2 is trivialized by a section a.

We require also that L(k— 1) be real. If k is odd, this is equivalent to L being
real, and if k is even to L being quaternionic, and this (see Sect. 6) depends on
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whether c = aσ(a) is positive or negative. Now if we take a to be defined by the
functions (Ji = e2aί,fl = l) on η — aiζ = Q, then (recalling that the real structure
interchanges U and 17') we have

φ) = (/. = l,// = β2*) on ιy- f l ίC = 0.

Thus

aσ(a) = e2at

= e2ilπ = l if k is odd

) π = _ 1 if /c

Hence the reality condition is satisfied and condition B3 holds.
To verify the nonsingularity condition B4, we shall consider a section of

L~z(k — 2) on S. On the components of S this defines polynomials /. of degree
(k — 2) such that (8.4) is satisfied and

f' —

is a polynomial in C"1 which satisfies a condition analogous to (8.4), namely

/A

/'Jk/ L

for holomorphic functions gf. of C"1.
We obtain then a matrix equation

u = ΣWtj, (8.7)
/ I

where Dtj = 0 if iΦ; and Dίi = ezaι and G^ is a fcx(fc-l) matrix with G|7. = 0 if
/c-j<z.

Thus, from (8.5) and (8.7), L~z(k — 2) has a non-zero section if and only if we
can find non-zero matrices G and G as above with

DVG=VG', i.e. V~1DVG = G f . (8.8)

Now if G (and hence G') is not identically zero, the/h column of G must be non-
zero for some 7. Since Gtj = Q for i>j, only the first j entries of that column are non-
zero. On the other hand G^ = 0 for k—j<ί^k, so if (8.8) is satisfied, the; x j minor
of V~1DVin the bottom left hand corner must be singular.

Hence the condition that L~z(k — 2) should have no sections on S is that all the
minors of V~1DV leading in from the bottom left hand corner should be non-
singular.

The columns of V~l are the coefficients of the polynomials p1? ...,pk of degree
(k— 1) which satisfy p^α^O, iφj, Pi(a^ = 1. Hence the columns of F~1Z)Fare the
coefficients of the polynomials q.(ζ) of degree (/c— 1) defined by

/=!
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Thus qQ(ζ) is the Lagrange interpolation polynomial which satisfies qQ(ζ) = ezζ at

... +c k_ 1,

then F"1DFis the matrix

Ic c' r -
lLk-l Lk-l Lk-l

(8.9)

...0

where c' = dc/dz.

Now at ζ = 0., —— = ate
zai = ζq0 hence,

dz
(8.10)

ί = l

(JC
Thus —- — ci+1=(— I)ίc0σί+1(β1, ...,<%), and so each c\ is a linear combination

with constant coefficients:

(8.11)
1 = 0

Thus the determinant of the 7 x 7 minor we are seeking is, from (8.9) and (8.11)

...c,(2j-2)
0

,, X -(7-1)
CQ CQ . . . CQ

and this vanishes at z = z0 if and only if there exist constants μt such that

(8.12)
1 = 0

vanishes with multiplicity 7 at z0.
Now the Lagrange polynomial g0(Q is given by

k ίr_n\

SO

S.I 3)

If fe = 2n+l, this is

π2"(2n)!
•(sinzπ/2)2", (8.14)
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and if k = 2n + 2

<8 15)

Now from (8.12), (8.14), and (8.15)

r£τ = (smzn/2)2"-2j+2P(cotzn/2),

where P is a polynomial of degree (/ — 1). But if ze(0, 2), then sinzπ/2 φO, hence if
/(z) has a zero of order j, then / vanishes identically. It is impossible however, for
c0 to satisfy a linear differential equation of order <2n since it vanishes with
multiplicity 2n at z = 0. Thus all the relevant minors of F - 1DFare non-singular
and condition B4 is satisfied.

Hence S gives a non-singular monopole via Nahm's construction.
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