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Abstract. It is shown that the solution to the Itό-Clifford stochastic differential
equation dXt = F(Xt,t)dΨt + dΨtG(Xnt) + H{Xt9ήdt, where F, G, H are suitable
Lipschitz functions and Ψt is the fermion martingale, satisfies a Markov
property.

Introduction

The concept of a Markov process plays a central role in the theory of diffusion
processes, and it is well-known that solutions of stochastic differential equations
with respect to Brownian motion are Markov processes.

We consider here the fermion analogue of Brownian motion. The Itό-Clifford
stochastic integral (the fermion analogue of the usual Itό-integral with respect to
Brownian motion) was constructed in [2], and in [3] the existence and uniqueness of
solutions to Itό-Clifford stochastic differential equations was established. We shall
show that the solutions to certain of these equations enjoy a Markov property. We
consider this to be a step towards a theory of quantum diffusion processes.

Markov properties of fermions and quantum Markov processes have been
considered by many authors [1, 4, 5, 9-11, 14]. In [7], quantum diffusions for
stochastic evolutions governed by quantum Brownian motion are discussed.

1. Notation and Definitions

We shall briefly outline some of the structure of the Clifford gage space that we shall
need. For further details we refer to [2, 3, 6, 8, 12-14].

Let Ή denote the weakly-closed Clifford operator algebra over L2([R + ); thus ^ is
the W*-algebra on the fermion Fock space Λ (L2(U+)) over L2(U+) generated by
the fermion fields Ψ(f) = C(f) + Λ{f), feL2{U+), where C( ),A{ ) are the Fock
fermion creation and annihilation operators, respectively.

For teU+9% denotes the ΐ¥*-subalgebra of ^ generated by the fields Ψ(f) with
/ = 0 on (ί, oo). For 1 ̂  p < oo, Lp(^) is the completion of <g with respect to the norm
\\x\\ =m{\x\p)1/p, where m(-) = (Ω, Ω\Ω being the Fock vacuum. Here m is a central
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state on <€. If $ is any W *-subalgebra of <&, LP(gβ) is the corresponding completion of
^ , and is a closed subspace of Lp(<%). Segal and Kunze have shown [8,12] that LP(^)
consists of certain operators on Λ (L2(U+)) affiliated to <€. Indeed, any XeLPi^) can
be written as X = Y + iZ, where Y and Z are self-adjoint operators on Λ (L2(U+))
affiliated to ζ€. It is therefore meaningful to talk about the algebra generated by
elements of L2(^)—it is that W*-subalgebra generated by the spectral projections of
their real and imaginary parts.

We recall the following definitions [3].

Definition 1.1. A map X:U+-^L2(^) is said to be adapted if XteL2(<gt) for each
teU + . A map F\L2(<g) x R+ ->L2(^) is said to be adapted if, for any teU+ and
XeL2(<#t), we have F(X,ήeL2(%t).

Definition 1.2. A map F :L2(^) x U+ ->L2(^) is said to satisfy a locally uniform
Lipschitz condition if for each T ̂  0 there is a constant K > 0 such that

\\F(X,s)-F(Y,s)\\2^K\\X-Y\\2

for all 0 ̂  5 ̂  T and all X, YeL2(V).
The following result is a special case of [3, Theorem 2.1].

Theorem 1.3. Let F,G,H :L2(^) x [ίo,oo) ->L2(^) be adapted, continuous and satisfy
a locally uniform Lipschitz condition on [ί0,oo)5 and let UEL^C(U + ). Then, for any
ZeL2(^to), there is a unique continuous adapted L2-process (Xt\^to satisfying the
stochastic differential equation

dXt = F{Xt9ήdΨt(u) + dΨt(u)G(Xt,t) + H(Xt,t)dt (1.1)

on [ί0,oo) with Xto = Z, and where Ψt(u) =
Of course, this means that Xt satisfies the stochastic integral equation

t t t

Xt = Z+\ F(Xs,s)dΨs{u) + J dΨs(u)G(Xs,s) + I H(Xs,s)ds (1.2)
to to to

where \-dΨs{μ) is the Itό-Clifford stochastic integral constructed in [2].

2. The Markov Property

We shall see that Xt enjoys a Markov property. To formulate this, we need some
more notation. For any interval / ̂  [ί0,00), let stf1 denote the W*-algebra generated
by 1 and the solution Xt of Eq. (1.2) for tel. We shall write sέ's for ̂ [ S j S ] Since the
solution (Xt) is adapted, i.e. XteL2(Ήt) for t^t0, it follows that s/j is a W*-
subalgebra of c€t whenever / c [ ί o , ί] .

Let β be the parity operator [2, 3]. Then β ^ - ^ is the spatial automorphism
implemented by the self-adjoint unitary operator Γ ( - 1 ) o n Λ (L2(U+)). (Γ( — H) acts
on an rc-particle vector as (-1)" [13].) Since j ^ / c # 9 it follows that j8(«a/j) £ ^ . Let
j / 7 = J3/7 v j8(j^7), the W*-subalgebra of ̂  generated by j ^ 7 and J8(J^7). Then j8(j/7)
= j/y, and, for any 5 ̂  ί0, ̂  ^ ^ s

Finally, we shall need to consider the algebra generated by field differences. For
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fixed ueL^c(U + ) , as in Theorem 1.3, and for s ̂  t0, let J% denote the PF*-subalgebra
of <€ generated by the field differences {^(M) - Ψs{u) :τ ̂  s}. Here stfs v &s is the
PF*-subalgebra of ̂  generated by s/s and #" s. Thus, j / s v #" s is generated by Xs,
β(Xs) and the fields {Ψ(uχ[τJ :τ^s}. We note that β(j/s v J%) = J / S v J^ s.

Lemma 2.1. Lei F,G,H :L2(^) x [ί0?oo) -•L 2^) satisfy the requirements of Theorem
1.3, and, in addition, suppose that for any XeL2{^) and τe[f0, oo), F(X,τ) is affiliated to
the unital W*-subalgebra ofΉ generated by X and β(X); similarly for G and H. Then
XteL\ds v ^s)for all to^s^t, where (Xt\>to is the solution to Eq. (7.2).

Remark. The condition that F (and G, H) be such that F{X,τ) is affiliated to the
algebra generated by X and β(X) will be satisfied if F(X,τ) is given by (possibly τ-
dependent) functions of the real and imaginary parts of X via the functional calculus
(i.e. the spectral theorem), and also if X is self-adjoint and F (and G, H) are as in Sect.
4 of [3].

Proof of Lemma 1.2. Let Xf\n = ΰ, 1, 2,... be defined inductively as in [3] by

XM = χs, Vί ̂  s, and

t t

X\n + ι) =Xs + j F(X[n\τ)dΨτ(u) + j dΨt(u)G(X\"\τ)

Then X{

t

0) = XseL\Js v ^ s ) , and from the definition of the Itό-Clifford integral, it
follows by induction that X\n)eL2(sίs v &s) for all n ̂  0, and t0 ^ 5 g ί.

But it was shown in [3] that X\n) -> Xt in L2(^) as n -> oo, and so we deduce that
^ v #-J, Vί0 ^ 5 ̂  ί. QED.

Theorem 2.2. With the notation and conditions of Lemma 2.1, the process (Xt)t>t0 is a
Markov process in the following sense: for any s^t0 and feLι{s$Vso0)), we have

[oJ (2.1)
where m( \3$) denotes the conditional expectation with respect to the subalgebra & of

Proof. By Lemma 2.1, Xt and therefore β(Xt) both belong to L2(s/S v J%) for any
t ^ s, and so we see that J / [ S > O 0 ] ^stfsv ϊFs.

Now, by continuity, it is sufficient to prove the theorem for fes/[StOQ). But, by the
previous remark J / [ S J 0 0 ) ^ J / S V # " S , and so, by linearity and the σ-weak continuity
of the conditional expectation map, we may assume that / is of the form

f = y1z1...ynzn (2.2)

for some neN and j ; e,5/s,z eJ%, XfLii^n.
Furthermore, since β(<szfs) = sfs, any element y in j / s can be written as y =

y+ +)>_, withj;± = %(y ± β(y))ej/s, and^(>^±)= ± y±. We may assume, therefore,
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that each y{ in Eq. (2.2) has definite parity (—it is here that we must use <srfs rather
than s/s). Similarly, since β(^s) = ^ s , we may assume that each z{ in Eq. (2.2) has
definite parity.

But J/S c <gs9 and for any ye%?s, ze^s, the canonical anticommutation relations
imply that yz = + zy, where the minus sign occurs when both y and z are odd. Thus
the proof of Eq. (2.1) is reduced to the case when / is of the form f = yz with ye^/s

and ze^s.
To proceed, we note that # s and <FS are independent [13] and, therefore, for

s, we have

= m(gy)m(z), since gye%9

= m(gym(z)).

Hence m(yz\sίs) = ym(z).
Similarly, for any hes/[tOtS]9

m(hm{yz\j/[to>s])) = m{hyz)
= m(hy)m(z\ since hye^s,
= m(hym(z)),

and so m(yz\ j / [ ί o >s]) = ym(z). _
We conclude that w(^z|j/[ί0)S]) = m(3;z|^s) and the result follows.
If the jtfs are invariant under β for all 5, we have the stronger (and more desirable)

result:

Corollary 2.3. // β(j^s) = stfs for all s, then

for all to^s an

Corollary 2.4. (Ψt(u))teU+ is a Markov process in the stronger sense of Corollary
2.3.

Proof. For any I9β(s/j) = stfι since β(Ψt(u)) = - Ψt(u). Furthermore, Ψt(u) satisfies
the stochastic differential equation Eq. (1.1) on [0, oo) with F(X,τ) = 11, G = H = 0,
and the initial condition Xo = 0. QED.

Corollary 2.4 can also be seen immediately either by noticing that Ψt{u) =
Ψs(u)+(Ψt(u)-Ψs(u)\ for s^t, and proceeding as in the proof of Theorem
2.2, or by noting that, for the case Xt = Ψt(u), we have β(^/s) = $4s for all 5^0, and

D : L 2 ( ^ ) ^ Λ (L2(U+)) is the duality transform [2, 6, 13]. Here es is the orthogonal
projection of L2(U+) onto the subspace spanned by elements of the form uv, where v
has support in [0, s], qs that onto the subspace spanned by the single element uχ[0>s],
and /?s that onto the subspace spanned by elements of the form uv\ where v' is
constant on [0, s].
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Clearly esps = esqs, and the result follows.

Remark. It is not clear, in general, when J / S = J / S . A sufficient condition is as
follows. Let υeL2(U+) with | | u | | 2 = l and supp u ^ [ s , τ ] , τ > s . Then, for any
/zeL 1 ^), β(h) = Ψ(v)hΨ(υ). (Using the canonical anticommutation relations, this is
easily seen when h is a monomial in the fields, and the general result follows by
linearity and continuity.) It follows that β(jtfs)^jtfs v ^ [ S f t ] for all τ > 0 , where
#" [ s τ] is the FP*-subalgebra of V generated by {Ψt(μ) - Ψs(u) :s ^ ί ^ τ}. We see that

' ) = < , i.e. s£s = j * 8 9 if < = Π
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