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Abstract. We propose a model of 1// noise based on a random walk in a
random potential. Numerical support for the model is given, and physical
applicability discussed.

1. Introduction

The frequency analysis of fluctuations in a number of physical phenomena exhibits
a remarkable feature. It is found that the experimental power spectrum (i.e.,
essentially, the frequency distribution of the squared amplitude) behaves like f~ι

at low frequency /. (This explains the name of 1// noise.) The prime example of
this type of behaviour is seen in voltage fluctuations across a conductor carrying
electric current (see Hooge et al. [1], Dutta and Horn [2] for reviews). One also
observes 1// noise (sometimes called flicker noise) in such diverse questions as
fluctuations of marine currents, or the temporal distribution of loudness in a
musical recording (see for instance Press [3]). The 1// law sometimes extends over
many decades of frequency, implying the existence of correlations over surpris-
ingly long times for the systems considered. (Since the integrated spectrum would
diverge logarithmically, one expects that there is a low frequency cutoff.)

It is easy to obtain a power spectrum ~ constant (independently distributed
events) or ~ 1 / / 2 (independently distributed increments). The 1// law is more
difficult to explain, especially that its universality requires an interpretation of
general applicability. There is no natural time scale associated with pure 1// noise.
Considerations of self-similarity therefore come naturally to mind (see Mandelbrot
[4]) but something more specific is needed. Explanations based on spatial
diffusion depend on special geometric assumptions (see Voss and Clarke [5] and
Omnes [6])1. A guide towards understanding flicker noise in conductors is
provided by the experimental fact that they are due to equilibrium fluctuations of
the resistance (see [5, 1], and more detailed results about so-called α noise in [1]).

1 Explanations using the deterministic noise associated with low-dimensional strange attractors are
also in doubt (see Arrechi and Lisi [7], Beasley et al. [8]). See however remark (b) below
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Here we shall obtain 1// noise from the study of random walks in random
potentials in JRN under natural self-similarity conditions. More precisely we obtain
a power spectrum ~|log/| k// by a n argument which is not rigorous, but is
confirmed by numerical experiments. We do not claim that our specific model is of
general applicability, but variations on the general theme of walks in random
potentials may be adequate to describe the various 1// noises seen in nature or
heard in music [see remark (c) below].

2. A Model for 1// Noise

We consider a system represented by a point x of a finite dimensional state space
IRN. A potential V is defined on this state space; we think of V as a random
function with statistical properties discussed below. The time evolution of the
system is given by a random walk ί->x(t) corresponding to a diffusion in the
presence of the potential F. We choose the diffusion equation to be

δc
— =fcV J5 J = Vc + cVF. (1)
dt

This is the continuous limit of a random walk on a lattice with the nearest
neighbor transition i-^j proportional to expf [T<— Vj].

The diffusion (1) is chosen such that it has an equilibrium distribution
c~exp[— F] in a bounded box2, corresponding to thermal equilibrium if
V = E/kT. In the landscape created by the potential V in IR ,̂ one expects that x(ί)
will occasionally go through a "mountain pass" and then rapidly relax to
equilibrium in the intermediate valleys. Mountain passes will thus dominate the
time evolution. Other things being similar, the flux through a mountain pass is
proportional to the density c at the pass (the profile Vc/c and the gradient VF are
taken to be the same). An approximate value of c at the pass is given by the
equilibrium distribution exp [ — F] normalized to already occupied valleys.

_ The above considerations permit an estimate of the long time behavior of the
raridom walk if a scaling assumption is made on the potential F at large distances.
We assume that F belongs to an ensemble which is invariant (at least for the large
distance behavior) under the transformation V-+V*, where

V*(λx) - F*(0) = λ\ F(x) - F(0)). (2)

For instance, if JV=1, potentials with independent increments correspond to
a = 1/2. (Examples with N > 1 and α φ 1/2 are discussed in Mandelbrot [4, Chap.
28].) Since only potential differences are important, (2) expresses scaling in terms
of such differences.

When distances are multiplied by λ, the height of a mountain pass is multiplied
by λa. The flux through the pass then changes from #(l)exp[— F] to
g(X)exp[ — AαF], where g(λ) is a geometric coefficient, polynomial in λ, including a
factor λ~N for volume normalization and another factor for the width of the pass.
The time scale is correspondingly multiplied by g(l)/g(/l) exp[(/lα — 1)F].

2 More generally one could take Ja = AaJVβc + cVβV) with a constant matrix (Aaβ
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Conversely, multiplication of the time by τ corresponds to multiplication of
distances by a factor λ(τ) and, for large τ,

log —
τ

In particular, for a random walk on a one-dimensional lattice in a potential with
independent increments we recover A(τ)~|logτ|2 m agreement with the rigorous
study of Sinai [9].

We define the power spectrum by

P(/)= lim -
T^oo 1

J eίftx(t)dt

where x(ή is a linear component of the vector x(ί) (or a sum over components is
taken). By scaling

P(fM= lim ±-
r-oo τT

τT

J eίft/τx(t)dt
o

T

f eift'x(τt')dtf
= τ lim —

= τA(τ)2P(/),

so that, replacing / by 1 and τ by / " \ we obtain for small /

(3)

For the random walk on a one-dimensional lattice in a potential with independent
increments we then find

for smal l/ .ψ
A numerical confirmation of this prediction is presented below.

3. Remarks

(a) Physical experiments showing 1// noise presumably cannot detect the factor
|log/|2 / α in (3). In particular the scaling assumption need not be verified very
precisely since a variation of a with frequency would not be visible. Also, scaling
concerns only valleys and passes, the mountain peaks are rarely visited and their
behaviour is indifferent.

(b) A deterministic (rather than random) walk in a random potential would
have the same scaling behavior, if ergodicity arguments can be applied, and would
therefore again lead to 1// noise.
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(c) Instead of 1RN one may consider a discrete space like ZN or the product of
N copies of the two-element set {0,1} for N large. The state space of an extended
physical system (like a conductor) presumably has a large dimension N.
Relaxation to equilibrium in potential valleys may then no longer be realistic,
because the random walk x(ή wanders without coming back to visited points. In
this situation a new analysis would be necessary.

We may however guess the answer as follows. Suppose that the system can be
approximated as the incoherent sum of N/n "small" systems with noise c/f. Then
the full system has noise c'N/f. The factor N is indeed experimentally present in
the flicker noise of conductors (see [1] or [2]).

(d) The range of distances over which approximate scaling should hold is
small (logarithmic) compared to the range of times (or frequencies) over which the
1// law will be verified.

(e) If the potential V is multiplied by β and the time t by τ, distances are
multiplied by

l/α

and therefore

J

If α = 1/2, the noise is thus proportional to the 4 th power of the temperature, but for
larger α a weaker dependence on the temperature is obtained.

If ΛΓ=1 and α=l/2, let

(AV2)= lim - | F ( x ) - F ( 0 ) | 2 ,

then there should exist a universal constant K such that

2llog///ol4

/ *

4. Numerical Simulations: The One Dimensional Case

In Sect. 2 we argued that random walk models where the average distance behaves
for large t as (\ogt)p are likely to have a power spectrum of the form (log/) 9/" 1 In
the next two sections we will describe our numerical simulations of such a model in
one dimension, and some possible extensions to two dimensions.

The class of models we are going to examine can be seen as a "randomization"
of the standard random walk. By this we mean that the hopping probabilities are
randomly distributed over the points. Let us consider a site n belonging to a
d-dimensional cubic lattice, and n = (nvn2, ...,nd)eΛ We will assume we are
working in the infinite volume limit (i.e. A = Zd). A traveller is moving randomly
on the lattice. At each time t its probability to move in direction μ depends on its
position, and is nonzero only for moving to nearest neighbour sites. These hopping
probabilities π (n) (ε= ± , μ = l , 2 , ...,d) are randomly distributed [according to
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Fig. 1. Transition probabilities from and to the site i (for d=ΐ)
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Fig. 2. A typical trapping configuration. On the lower strip the left transition probabilities: on the
upper one the right ones

some probability measure ρ(π)] and, in all the cases we will consider, the total
probability to leave the site is equal to one:

Σ Σ
ε = + μ = ί

Vn, (4)

where Πεμ(ή) is the probability to jump from the site n in the εμ direction. Let us
remark that this class of models falls in the "nonsymmetric category": Πεμ(ή) is a
priori different from Π_εμ(n + eμ). We choose them to be uncorrelated (see Fig. 1
for the d = 1 case).

If the probability distribution ρ(π(n)) is such that

(5)

in d— 1, we get the model analyzed by Sinai [9]. He proved that, with probability
one,

limx(ί)oc(lnt)2.
ί->oo

(6)

For models in which the constraint (5) is not satisfied (see [11]), and references
quoted therein. We will describe here our numerical studies of systems satisfying
the Sinai constraint: we will be concerned both with the analysis of the temporal
behavior and of its power spectrum.

We consider an infinite regular chain, and assign to each site a right transition
probability π(ή), uniformly distributed in the interval (0,1). The left transition
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Table 1. Average distance d for the one dimensional walk. Average
is over 30,000 walks, composed of 4096 time steps. The error is
defined to be ((d~2 -d2)/(N~ 1))1/2. where N is the number of walks
taken in account

t 3

2
4
8

16
32
64

128
256
512

1024
2048
4096

1.003 ±0.006
1.484 ±0.007
2.10 ±0.010
2.89 ±0.010
3.86 ±0.030
5.01 ±0.030
6.42 ±0.030
8.06 ±0.040

10.05 ±0.050
12.21 ±0.060
14.67 ±0.080
17.30 +0.100

Table 2. Same as Table 1, but for time from 2 1 3 to 2 1 9 . averaged
over 100 walks

8192
16384
32768
65536

131072
262144
524288

22.6 ±1.8
27.0±2.4
29.1 ±2.6
32.3 ±2.9
35.3 ±3.2
39.2 ±3.3
46.4 + 4.6

probability will be 1 — π(ή). We will use discrete time (for all our simulations). We
will denote with brackets < > the average over the walks (in a given configuration
of transition probabilities), and with a long bar ~ the average over the probability
distribution ρ(π).

At this point it is useful to underscore that Sinai shows that, with probability
one, x(ί)~log 2ί in the asymptotic regime. This logarithmic behaviour is essentially
produced by the presence of trapping configurations (see Fig. 2): the traveller
spends most of his time travelling through barriers. On the time scales we are able
to analyze numerically (t of the order of 104 ~106) <d(ί)X where d(t) is the distance
covered in time t by the traveller, will be strongly influenced by the particular set
of transition probabilities which has been chosen: for example in our model at a
time of order 109 (that we cannot reach) the traveller will be at an average distance
of, let us say, 100 steps from his starting point. It is clear that the details of each
randomly chosen set of probabilities will influence strongly <d(ί=109)>. The
question that has to be answered now is: if for a large but finite time T we observe
d{T) instead of <d(Γ)>, will we find the same kind of behavior? It is not trivial a
priori that an average over ρ(π) will not change the behaviour of the considered
expectation values (see [12] for a detailed discussion of this phenomenon). Let us
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Fig. 3. Square root of the average distance (see Tables 1 and 2) vs. Inί/ln2. The error is defined to be
A({dyl2) = A(d)/2(d)112. For the high statistics data (Inί/ln2 ranging from 1 to 12) the error is contained
in the drawing of the points

consider an example: we assume that for any site n the right transition probability
π(n) can take the values ε or 1—ε, with probability 1/2. A realization with all
the π(n) equal to 1 — ε, up to the time T, will have a probability

exp{-7Ίn2},

and for this particular realization

(7)

(8)

This "exceptional" configuration will than add to the leading behaviour (In T)2 a
term Te~τ, which becomes irrelevant also for T~0 (10). It should be noticed that
this conclusion does not hold, for example, for {ed(t)}. More precisely, we always
measured expectation values integrated over the probability distribution: for
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Fig. 4. (/Pr(/)//minPr(/min))1/4 vs. In//ln2

every walk contributing to our expectation values a different random set of
transition probabilities was used. This is, moreover, the numerical approach
adequate to the physical picture we have in mind: we are thinking about random
processes evolving in random environments, where the macroscopic effect is given
by the exploration of different realizations of the transition probabilities.

For the simulations we always used a chain long enough so that the traveller
never hits the boundary. For that sake only modest memory requirements are
needed in rf= 1. We analyzed 3 104 walks of 2 1 2 steps, and 102 walks of 2 1 9 steps
(see Tables 1 and 2). The asymptotic regime seems to be reached after 0 (27-f-29)
time steps. In Fig. 3 we plot (d(t))lί2 versus Inί/ln2. The behaviour is clearly linear.

We also computed

J eiftx(t)dt

for all the frequencies present in the walk of T = 2 1 2 steps, and, for the same
frequencies, for the T = 2 1 9 steps walks. In Fig. 4 we plot the quantity
( / P τ = 2 1 9 (/)) 1 / 4 versus In/. Its behaviour is compatible with the linear behaviour
guessed in Eq. (3). We should remark that observing numerically logarithmic
corrections is a very delicate matter (and the same consideration holds for true
experiments). First a log correction is hard to distinguish from a small power.
Secondly we know that the ( log/) 4 /" 1 law will set in only in the asymptotic
region. A contribution of small power corrections cannot be excluded: if we
assumed Pτ=219(f)~f~iί + Λ) we can just bound A by ;4Max~0.4. A power
correction for finite T is to be expected: we will have A = A(T\ and

lim A(T) = (9)
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Table 3. a d[t) vs. In r/ln 2 for the two dimensional k =•• 1 model. 500 walks are analyzed, b As in a. but
k = 2 and 2000 walks, c As in a, but k = Ί, and 3500 walks of 4096 time steps and 1000 walks of 8192
time steps, d As in a. but /c = 20 and 500 walks

a

In t /In 2

1
2

3
4
5
6
7
8
9

10
11
12

d(t)

1.17 + 0.03

1.73 ±0.04
2.51+0.06
3.56 + 0.08
5.21+0.11
7.25 + 0.16

10.0 +0.20
14.6 +0.30
20.7 +0.50
29.0 +0.70
40.5 +0.90
57.4 +1.40

b

In f/In 2

1
2

3
4
5
6
7
8
9

10
11
12
13

d(t)

1.22 + 0.01
1.73+0.02
2.47 ±0.03
3.47 ±0.03
4.85 ±0.05
6.79 ±0.08
9.45 ±0.11

13.45 + 0.15
18.65±0.21
26.40 ±0.3
36.30±0.5
51.40 ±0.6
73.40 ±0.9

c

Inr/ln2

1
2

3
4
5
6
7
8
9

10
11
12

13

d(t)

1.20 ±0.01
1.68 ±0.02
2.24 ±0.03
2.95 ±0.03
3.77±0.03
4.74 ±0.05
5.98 ±0.06
7.52 ±0.08
9.34 ±0.09

11.63+0.12
14.43 ±0.15

18.13+0.17
22.6 ±0.5

(1

In f/In 2

1
2

3

4
5
6
7
8
9

10
11
12

ί/(f)

1.16 + 0.03
1.61 ±0.05
2.12 + 0.07
2.49 ±0.09
2.83±0.10

3.26 + 0.11
3.48±0.12
3.76 + 0.13
4.03 + 0.14
4.29 ±0.15
4.67 + 0.16

5.12 + 0.17

5. The Two Dimensional Case

The straightforward extension to d = 2 of the model we analyzed in the previous
section can be discussed in this way: to each site we assign 2d = 4 numbers Qμ

(μ = 1,2,3,4), uniformly distributed in (0,1), and define the transition probability
to each of the Id neighbouring sites by

(10)

where

= ΣQt (ii)

In the class of models we studied

where
2ά

= ΣQl

(12)

(13)

and k is an integer power ranging between 0 and + oo. When k = 0 it reduces to the
normal random walk. In the limit k-* oo we get a deterministic model where the
moving point is localized on a closed loop: for every site we will get that for a
random μ = μ

and for all the other μ

(14)

(15)
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x(t\K=\

4.00
5.66
8.00

11.31
16.00
22.63
32.00
45.25
64.00
90.51

3.95
5.78
8.08

11.15
16.28
23.08
32.33
45.16
64.00

4.32
6.04
8.45

11.77
16.75
23.22
32.87
45.20
64.00
91.39

Then as soon as the traveller comes back to a site he already visited he starts
repeating indefinitely the same path. For fc = 1 we recover the naive extension we
just described.

We analyzed this model for several values of k: we produced 500 walks of 4096
time steps for fc=l, 2000 walks of 8192 time steps for fc = 2, 3500 walks of 4096
time steps and 1000 of8192 for fc = 7 and 500 walks of 4096 time steps for fc = 20. In
Tables 3a-d we list d{t) for these four cases.

For the d = 2 case we needed quite a big lattice to keep the moving point away
from the boundary: for smaller k a bigger lattice is of course needed. For the cases
oΐk = 7 and k = 20 we needed a 160 x 160 sites lattice, for fc = 2 a 400 x 400 lattice,
while for fc = 1 we used dynamical allocation of the memory (when the traveller
was reaching far away regions new parts of lattice were created in this given
direction).

For k = ί and fc = 2 our results clearly indicate

φ ) o c f , (16)

α~0.5, for the time regions we explored. In Table 4 we give the quantity
{tll2/d(t)) d(t\ where £ = 4096. In the case fc = l the power seems to be exactly a
square root, while for fc = 2 a slightly lower power seems to be preferable.

Another possible way of analyzing the numerical results consists in defining
the parameter

If d(t)~oc + β(\nt

= constant. This

2) we

gives

get ζ

us

α(/c =

α(fc =

J(2τ+1)-d(2τ)

d{T)-d{T~l)

WVIIIP if*
, WllllC 11

l) = 0.50±0.13

2) = 0.50 ±0.08

d(t)~A-\-Bf we get

(17)

ί(2')-2*

(18)

(19)



1// Noise 11

• Vdϊt)
5 -

4 -

3 -

J I 1 I I i I I I I I L
0 2 4 6

Fig. 5. γd(t) vs. Inί/ln2 for the K = Ί model
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Fig. 6. As in Fig. 5, but K = 20
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For k = Ί and k = 20 we plot in Figs. 5 and 6 ( φ ) ) 1 / 2 versus In tfinl. The k = l
case does not seem to show a linear behaviour of (d(t))1/2 in log scale. The ζ seems
to be constant enough to suggest a power behaviour: under this assumption we
get

α(/c = 7) = 0.30±0.09. (20)

but in this case we have again to face the outstanding problem of distinguishing
between a log behaviour and a small power one. The k = 20 walk has, in the
precision of our errors bars, a behaviour completely compatible with (logί)2.

All these numerical computations (d=ί and 2) required the equivalent of
~ 5 C P U h of CDC 7600.
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