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On GL(4,IR)-Covariaiit Extensions
of the Dirac Equation*

Jouko Mickelsson**

Mittag-Leffler Institute, Djursholm, Sweden

Abstract. Infinite component generalizations of both massless and massive
Dirac equations are constructed which are covariant with respect to the double
covering of the general linear group in four dimensions. These generalized
Dirac equations can be made co variant with respect to the full diffeomorphism
group of the spacetime manifold by replacing ordinary derivatives by co-
variant derivatives in the usual way.

1. Introduction

When ψ is a Dirac field transforming according to the complex four-dimensional
spinor representation a^S(a) of the covering group SL(2, (C) of the connected
(restricted) Lorentz group SO0(3,1), then by

(D(a)ψ)(x):=S(a)ψ(θ(a)-ίx)

one defines a representation of SL(2, (C) in the space of Dirac fields here θ is the
real vector representation of SL(2, (C). The Dirac operator ίyvdv + m commutes with
the representation D [we are used to saying that the Dirac equation
(ίyvdv + m)ψ = 0 is covariant with respect to Lorentz transformations].

A natural question to ask in a general relativistic contex is whether the
representation S of SL(2,(C) could be extended to the group G = GL(4,IR)
[universal covering of the general linear group GL(4,1R)] in such a way that the
Dirac equation would be G-covariant. What would then be the generalized Dirac
matrices? Assuming that the extension is carried out, the Dirac equation will be
covariant with respect to an arbitrary diffeomorphism J in (IR4, g) (g is a Lorentz
metric). One has only to replace dv by the space-time covariant derivative Fv,
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determined by the metric g and by the representation S, and define

(D(J)ψ)(x):=ΓίdJ

It is easy to check that D is a "two-valued representation" of the diffeomorphism
group DiffR4 in the space of Dirac fields. This is not a true representation since S
is not a representation of GL(4,R) but of GL(4,R). To make things more precise
we can define G(R4) as the group of all pairs (ω, J), where Je DiffR4 and ω:R 4->G

is a function such that θ(ω(x))= -— (J~1x) for all x e R 4 ; the composition law is
δx

(ω,J) (ω', J') = (ω", J"), where ω"(x) = ω(x)ωf(J~ 1x) and J" = J°J'. One can define a
proper representation of G(R4) by

(D(ω, J)ψ) (x): = S(ω(x))ιp(J- 1x).

The discussion above can be generalized to the case of an arbitrary space-time
manifold (M, g) which admits a principal G bundle F as the double covering of the
frame bundle F of M. If φ:F-^F is the covering map then φ(p a) = φ(p) θ(ά) for all
peF and ae G. Let Fbe a linear space equipped with a spinor representation S of
G. The associated vector bundle F x GV consists of all equivalence classes [(p,t;)],
where (p,v)eFx V and (p,v)~(p\v')9 if p' = p-a, vf = S(a~1)v for some αeG, [1,
Sect. 1.5]. Fix a basis {eve2,...} in V. Given a local cross-section x-*p(x) of F one
can define a local basis of F x GV by efc(x): = [(p(x), ej]. In particular, if χ1 ?..., x 4

are local coordinates on M then the vector fields - — , . . . , - — form a local cross-
δxι δx4

section of F and one can choose (one of two) a local cross-section p(x) of F such

that φ(p(x))= , . . . ,-— , and thus in this way to any coordinate system on M
\dxx δxj

there is associated a basis {ek} of the spinor bundle F x GV. Since the kernel of
θ: G—>GL(4, R) is Έ2 and in a spinor representation it is represented (by definition)
by the operators 1 and — 1, the second choice for p(x) leads to the basis {— ek}. In a
coordinate transformation y = y(x) the basis {ek} is transformed to {S(ω)ek}, where

dy
the function x-»ω(x)eG satisfies 0 ( ω ) = — . Thus working with a principal

G-bundle enables us to define spinors and their transformation properties in a
holonomic way, [6] : to a given set of local coordinates is always associated a basis
(unique up to the sign) in the spinor space, in a natural way. This is in contrast to
the case of ordinary SL(2, <C) spinors, where one has to choose a section of the
principal SL(2, (C) bundle and the choice of the section is not related in any natural
way to the choice of local coordinates on M (this corresponds to the fact that in
general there is no natural choice for a set of local orthonormal vector fields on M,
related to a given coordinate system).

A first obstacle to constructing G-covariant spinor field equations is that there
are no finite dimensional spinor representations of G this is due to the fact that
the three fundamental representations of the simple subalgebra sί(4,R)Cgί(4,R)
consists of the vector, covector and the natural representation in the space R 4 Λ R 4
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and these are all integrable to true representations of the group SL(4,IR). On the
other hand there are lot of infinite dimensional spinor representations of G. In fact,
"half of the principal series belongs to this class.

If we wish our G-covariant field equation to be in some sense an extension of
the usual Dirac equation, we run into a second difficulty: no irreducible
continuous representation of G contains a Dirac spinor representation of the
subgroup SL(2,(C) (or any other finite dimensional spinor representation). We
shall not prove this here it is really a simple argument based on properties of the
spectrum of a non-compact generator of SL(2, (C). There are at least two ways
around this obstacle. The first alternative is to replace the Lorentz metric by an
euclidean metric and to consider SU(2) x SU(2) spinors instead of SL(2, C) spinors
[SU(2) x SU(2) is the universal covering group of the rotation group SO(4)]. We
shall follow this route in Sects. 2 and 3. The second alternative is to work with
non-integrable representations of the Lie algebra gl(4, IR); we shall consider this in
Sect. 4.

In Sect. 2 we describe certain representations Tε

(v) (ε= ±i, ve(C4) of G in a
Hubert space Hε. The space Hε is a subspace of the space L2(K) of square
integrable functions on K = SU(2) x SU(2), but it turns out to be more con-
veniently realized as a space of homogeneous functions of degree one of a Dirac
spinor z = (z1? ...,z4) and its complex conjugate z. The vector z transforms
according to the representation Dill2'0)®Di0-ίl2) of SU(2)xSU(2). The repre-
sentation Tε

(v) contains the irreducible iC-components D{1/2'0) and D ( 0 ' 1 / 2 ) with
multiplicity one. In general, the multiplicity of D{juJ2) in Tε

(v) is equal to
(l/2)dimDijuJ2) iϊj1+j2 is a half-integer and is zero otherwise. The Lie algebra
gI(4,IR) is realized as an algebra of first order differential operators on z and z.
Simple and explicit formulas are given for a set of generators of gl(4, IR).

In Sect. 3 we shall first construct a massless G-covariant field equation
4 d

k

d
Xk -— ψ = 0 such that the field xp transforms according to the representation

fc=l

Tε

(v) of G in Hε (ve(C4 arbitrary). The vector operator X = {Xk} can be defined
simply by Xkψ = λ~lj2Rk4ψ, where the functions Rkί (1^/c, 1^4) are the matrix
elements of K in the vector representation (written as functions of z) and λ~1/2 is a
normalizing factor. It turns out that in order for the corresponding massive

equation YXk h A )w = 0 to be G-covariant, the "mass" A has to be defined as
\ δxu I

an intertwining operator between the representations T ( v ) and T(v), where
T(v).^η(v)@ T(v) a n d

(v/

1?v
/

2,v'3,v4)-(v1,v2,v3,v4 + l) .

This in turn is possible only for special values of v, which are determined. We shall
show that the massive field equations can be obtained from a Lagrangean by a
variational principle.

In Sect. 4 we shall discuss the reduction of the representations 7ε

(v) with respect
to the subgroup SL(2, C). In particular, in the unitary case v — ρ purely imaginary
[ρ is half the sum of positive roots in sI(4,IR)] the representation Tε

(v)|SL(2,(C) is
equivalent to twice the regular representation of SL(2, (C) in the non-unitary case
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the equivalence is only infinitesimal. Via the "Weyl trick" one can construct from
Tε

(v) new representations V^v) of the Lie algebra gί(4,R) [essentially ίx4 is replaced
by time ί; the generators of so(3,1) will be represented by complex linear
combinations of the generators of so(4) in the old representation]. The operators
Xk will be replaced byXfc's which transform like a vector when commuting with the
generators of sI(4,IR) in the representation V^v\ We shall show that the submatrix
of Xk corresponding to the four dimensional Dirac subspace in Hε is just the
ordinary Dirac matrix yk. Our field equations are therefore in a definite sense
extensions of the usual Dirac equation.

The group GL(4,IR) has been suggested as a gauge group for theories of
gravitation, see [2] and references therein. The use of GL(4,IR) and its semidirect
product with the translation group IR4 as a unification of gravity and strong
interactions has been proposed in [7] in this connection there has been some
activity on the spinor representations of G, especially on the multiplicity free
representations (representations of G in which each representation of the subgroup
K occurs with multiplicity 0 or 1) [7, 8].

2. On a Class of Induced Representations of GL(4,IR)

Let G L + (4,R) be the group of real 4 x 4 matrices with positive determinant and let
G denote its simply connected double covering group. In the Iwasawa decom-
position GL + (4,ΪR) = KAN the group JV consists of all upper triangular matrices
with diagonal elements = 1, A is the group of all positive diagonal matrices in
GL + (4 5 R) and K = SO(4). Similarly G = KAN, where £ ^ S U ( 2 ) x SU(2) is the
double covering of K. Let Θ:G—>GL+(4, IR) be the covering homomorphism. We

4

shall identify IR4 with the space of quaternions through x-> ]Γ χkqk, where the unit

quaternions qk are defined by fc=1

0

i

X

0

0 — 11

o
\i 01

ί 3 = 0 - i ' ί 4 =

I

0

0

1.

in the space of complex 2 x 2-matrices. By this identification the group K acts
in IR4 as

θ{g)x = axb*\ # = (α,b)eSU(2)xSU(2). (2.1)

Thus the kernel of the homomorphism θ consists of (1,1) and (—1, —1). Since
G/AN = K = S3 x S3 (as C00-manifolds; S3 is the real 3-dimensional sphere) G acts
as a Lie transformation group on the manifold S3 xS3. The differential of this
action (from the left) defines a set of first order differential operators on K which
gives a realization of the Lie algebra g = gϊ(4, IR). Explicit but complicated formulas
for the differential operators have been given in [3] in terms of the spherical
coordinates on S3. Here we shall use a different set of coordinates which gives
simple formulas and is more convenient when discussing the reducibility and
equivalence questions of representations of G in the function spaces on K.
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The elements of SU(2) = S3 can be parametrized by unit vectors z = (zv z2)e (C2,
\z1\

2 + \z2\ = l. To the vector z one can associate the element

— z^ eSU(2).

We shall extend in an obvious way the action of G on S3 x S3 CC 2 x C 2 ^ ( C 4 to the
whole space (Γ4 by demanding the action to commute with the dilatations
(z,z)^(λz,λ\z'\ where z,z'eC 2 and λ,λ' are real positive numbers. In this way the
Lie algebra g will be realized as an algebra of first order differential operators in
four complex variables z. (l^y'^4) and their complex conjugates zk. For the
generators of the subalgebra f (the Lie algebra of K and K), one gets easily the
following standard expressions (j=ί, 2,3):

Lj=[

Mj=ίz3z4

(2.2)

The commutators [Aίy, Lfc] vanish and

[LVL2] = 2L3 , ίMvM2] = 2M3 , (2.3)

and the other non-vanishing commutators are obtained by a cyclic permutation of
the indices (123).

We shall need also the corresponding differential operators U. and Mr. defined
by the right action of K on itself; they turn out to be

δz2

δ

δzΛ

(2.4)

These operators commute with Lk and Mk. We denote by etj the 4 x 4-matrix with
1 in the (i,j) place and all other matrix elements zero. The subalgebra

ϊSso(4)CgI(4,IR)

is spanned by the elements hj = eij~ejι= ~ hiΆn<^ ^ e a^ invariant complement of
ϊ is spanned by aij = eij + eji = aii. In the left realization of K we have the
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correspondence

lij^Liji =(l/2)(Lk + Mj)9 (ijk) a cyclic permutation of (123),

li4^Li4: =(1/2)^-Ml i = l , 2 , 3 .

The operators L\. are defined similarly. The commutation relations are

[L i j 9 L w ] = δjkLa - δikLβ + δuLjk - δβLίk, (2.5)

and similarly for UtJs.
By a tedious but straightforward computation from the defining relation

where ψ is a differentiable function of the variable ze(C4 and the dot means the
action of G extended from K C (C4, one arrives at

4j={ΣJy£«. (2-6)
where

- f lz j +|z2| )(|z3| +|zj ),
£/c/ R R 4- R R

J ij ίk jl il jk'

and

Thus the functions Rtj divided by the normalization coefficient | / I are just the
matrix elements of SU(2) x SU(2) in its vector representation. Because of the factor
1/λ in (2.6), the coefficient of each Ukl is essentially a function o n K c C 4 only [they
are invariant with respect to the dilatations (zvz2, z3,z4)-^{λzvλz2,λz3,λ'zj].
Instead of reproducing the computations leading to (2.6) we shall give a simple
proof that the Atj's satisfy correct commutation relations. This means that the
following relations should hold also for the AtJs and L^ 's:

Uij, 0*J = δjkau - δikaβ + δβaki - δaakj, (2.9)

ίaip akl~\ = δjkln + δiklβ + δaljk + δ βlik. (2.10)

The case of (2.9) is easy: Since λ is K-invariant we have Ltj λ = 0. Since for a fixed;
the functions Rtj transform like a vector with respect to the left action of K, the
functions ft1 (for fixed k and /) behave like a symmetric second rank tensor upon
commutation with the L's the rest follows from the fact that [L, Lr~\ = 0.

We shall now attack the case (2.10). Using the fact that the functions ft1, now
for fixed i and;, transform like a symmetric tensor with respect to the right action
of K and using the relations (2.5) for the L^'s, one gets first

a<β
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From the definition (2.8) follows that

Σ « t a ^ = Ί δ y . (2.12)
α

Inserting (2.7) in (2.11) and using (2.12) we get

+δn(RjAβ - RjβRJ+δJRjΛβ - RjflRΰ

+tj,(RiΛβ-RiβRJ']Kβ- (2.13)

Denoting by L(X) and LJ{X) the left and right realizations of an arbitrary element
Xel one has

L(X) = Π(R ~ \z)XR(z)), (2.14)

and in particular

Aj = ̂ y ) = I Σ (RixRjβ-RiβRjJL:β. (2.15)

Combining (2.15) with (2.13) one gets the desired commutation relations (2.10) for
the operators Aiy

Next we shall construct certain reducible representations of G closely related to
the principal series. Let Fbe the linear space consisting of all linear combinations
of functions of the type λ~{mΆn~ι)p{z, z), where p is a homogeneous polynomial of
degree n, n = 0,1,2,.... Elements of Fare therefore homogeneous of degree one.
Clearly Fis invariant under the action of the differential operators Ltj and Atj. Let
S be the linear operator in V defined by (Sh) (z, z): = h(iz, — iz) and let Vε C V be the
eigenspace of S corresponding to the eigenvalue ε (ε=±i,± 1). It is easily seen
from the definitions that the operators Ltj and

λk=ί

commute with S for any v = (v1? v2, v3, v J e C 4 . By (2.16) we have in fact defined an
induced representation of G in the space Vε. The inducing subgroup is PAN, where
P C SU(2) x SU(2) consists of the powers of t = {q3, q3) (thus P contains exactly four
elements). The subgroups P and A of G commute and one can define a
1-dimensional representation U(

ε

v) oϊ PAN by setting C/^v)(^)=l ϊovgeN,

Uε

v\f) = (-ή\ and l/(

β

v)(gf) = gfϊ1fifv

2V3

3Λ4

for g = diag(01? ...,g4)eA. Let Tε

(v) denote the representation of G induced by l^v).

Let dfc be the normalized Haar measure on K. Then the carrier space Hε

v) of the
representation Tε

(v) is the space of square integrable (with respect to dk) complex-
valued functions f on K such that

f(kx-1)=U?>(x)f(k) VxeP. (2.17)
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Since K is compact the space of functions Vε (restricting the domain of functions
from <C4 to S3 x S3) is clearly dense in H{;]: it is enough to note that f(kt) = (Sf) (ή.
Computing the differential dTε

{v) at atj gives just the expression (2.16). The operator
dT^Qij) is of course equal to Ltj. The representations Tε

(v) are not quite principal
series representations since the latter are induced by the subgroup MAN, where M
is the centralizer of A in K, [4]. The group P is a proper subgroup of M; the latter
consists of 16 elements (±#y, iqβ, all signs, 7 = 1,2,3,4.

Let us next consider the reduction of the representations Tj? with respect to
the maximal compact subgroup K. The irreducible representations of
K = SU(2) x SU(2) are characterized by a pair of numbers (lvl2) (highest weight)
such that the dimension of the corresponding (equivalence class of)
representation(s) D{luh) is (2/1 + l)(2/2 + l), where lvl2 can obtain the values
0,^,1,f,.... According to [5, Theorem 3.5], the multiplicity of D(luh) in Γε

(v) is
equal to the multiplicity of the restriction U(

ε

v)\KnPAN=UiJ)\P in D{hj2); this does
not depend on ve(C4 and we denote the multiplicity by χ(lvl2). In a (2/+1)-
dimensional irreducible representation of SU(2) one can define a basis v(m\
m= — ί, — / + 1 , . . . , + / , such that the action of the group element diag(eIT, e~ιγ) is
given by a multiplication of v(m) by e2ιmy thus in the tensor product basis
v(mγ)®υ(m2) f° r SU(2) x SU(2) the element (q3,q2) is represented by the multipli-
cation operator e

iπ{mi+m2\ The number of pairs (mv m2) for which eίπ{mi + mi) = - ε is
equal to ^(2/x +1)(2/2 +1) (when ε = ±ί) if /x +/ 2 is a half-integer and it is zero
otherwise; it follows that χ(lvl2) = ±άimDih'h) when lt + / 2 e N + f and χ(/ l s/2) = 0
otherwise. In particular, the sum of two lowest dimensional representations D{lull)

in T{+] is the "Dirac representation" D{ll2'0)®D{ΌΛI2\ with multiplicity one. The
carrier space of this subrepresentation is spanned by the monomials zv ...,z4 in
the case ε=+i and by z1? ...,z4 when 8=—ί. Because of the restriction
lx + / 2 G N + | , 7+vί contains no proper 1-valued representations of SO(4). Similarly
T+\ contains only proper representations of SO(4).

3. GL(4,R)-Covariant Field Equations

Let T and T be two continuous representations of G in Hubert spaces H and H\
respectively. A set X={Xk}*=1 of four linear operators Xk: =H->H' is called a
vector operator if

T(g)XkT(g-1)=Σθ(g)jkXj (3.1)

for all geG and fc= 1,2,3,4 [remember that % ) is a real 4x4-matrix]. Let
C°°(IR4,tf) be the linear space of all C^-functions ψ:]R4-+H. We can define a
representation D of G in C°°(IR4,#) [and similarly D' in C°°(lR4,irΓ] by

1x)' (3.2)

We shall consider the differential operator

4 ^
^ : = Σ A r k

F-:Cα >(lR4,fl)-*Cα >(lR4,H /), (3.3)
fc=l ^ X / c



Covariant Extensions of the Dirac Equation 559

where Xk = £ hklXι and h = (hkl) is a space-time metric. It follows easily from (3.1)
that ι

γ (3.4)

where 3) is again given by (3.3) but using the transformed metric h = θ(g)hθ(g)t. If ψ
is a solution of @ψ — 0 then @D(g)ψ = D'(g)@ψ = 0 so that D(g)ψ is a solution of the
same differential equation with respect to the metric h; therefore we shall call a
differential operator which satisfies a condition of the type (3.4) a G-covariant
differential operator. The field equation @ψ = 0 could be thought to describe a
massless particle. The corresponding massive field equation would be

{@ + Λ)xp = 0, (3.5)

where Λ:H->H' is a linear operator. If the time coordinate is x 4 and X 4 is
invertible then the spectrum oϊX^ι A would give the different masses associated to
the field xp. Assuming that

T'(g)ΛT(g-1) = Λ V#eG, (3.6)

the field D(g)ψ is a solution of (3.5) whenever ψ is a solution for all geG. An
operator A satisfying (3.6) is usually called an intertwining operator for the pair
(7; T;). In particular, if A is invertible, then from (3.6) follows V(g) = AT{g)A~1 so
that T and T are equivalent representations.

For any veC 4 and v 'eC 4 such that

v'k = vk, fc=l,2,3, v'4 = v4 + l (3.7)

we can associate a vector operator X to the pair of representations (T, T)
= (Ί*V\Ί*V>)). The carrier space of both of the representations is the same
Hε = H^ = H{p, defined in Sect. 2. We define

l (3.8)
Since K is compact and each λ~1/2Rk4 is a continuous function with maximum
absolute value 1 on K, the operators are bounded and | |XJ = 1 (with respect to the
ZAnorm in Hε). In order for (3.8) to make sense we have to show that the subspace
HεCL2(K) is an invariant subspace forX By (2.17) this is so if

for all aeK and XEP. Since P is generated by t = (q3,q3) it is enough to consider
the case x = t. Looking at the definitions (2.7) and (2.8) of the functions λ and RkA

we notice that both functions are indeed invariant with respect to the right action
by t.

Since we are dealing with differentiable representations of the Lie group G it is
sufficient to prove the infinitesimal version of (3.1). Setting g = g(s) in (3.1), where
g(s) is one of the 1-parameter subgroups of G generated by the vectors ltj and atj in
g, and taking the derivative with respect to s at s = 0 we see that (3.1) is equivalent
with

[Lij,Xk]=δjkXi-δiipCj, (3.9)
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Now for the operator Xk defined by (3.8), Eq. (3.9) follows immediately from the
fact that the functions λ~ 1/2Rk4 transform like a vector under the left action of K
(they are matrix elements of the vector representation). We shall verify (3.10) by a
direct computation.

A%>Xk-XkA$= - Σ Ur/LlpXJ + \f?*Xk
Aa<β A

_ 1-3/2 f 4 4 n , - 3/2 V focβrr JJ
- λ Jij Kk4- + λ L Jij LaβKk

v<β

Σ Λ
4α<4

4

α = l

On the third step we have used the fact that the R.?s transform like a vector under
the right action of K (for any fixed ί). The orthogonality properties (2.12) have been
used on the sixth step.

In order to be able to construct massive G-covariant field equations we have to
double the space. Here we are more interested on the spinorial case s = ± i and we
define

( ( ( H:=H+i@H_i. (3.11)

Slightly modifying Lemma 8.10.8 and using Theorem 8.10.16 in [4] we can
conclude that the restrictions of T(v) and T ( v ) to the subgroup SL(4,IR) allow an
intertwining operator if

V — ρ~σ(v — ρ) for some σeW, (3.12)

and
(v-ρ)i>(v-ρ)j for l^/</^4. (3.13)

Here W is the Weyl group of SL(4,IR) associated to the Cartan subgroup
A0 = AnSL(4,JR), and ρ is half the sum of the roots of Ao in N. Explicitly,
ρ = -|(3,1, — 1,-3) and FT acts in (C4 as a group of permutations of the coordinates.
The equivalence μ ~ μ! is defined by

μ~μ' o μ'j^μj + c, 1

for some ceC. By (2.16) Λ\f = A\f if i+j and

when μ~μ' [a simple application of (2.7) and (2.12)]. Thus the restrictions of T{μ)

and TiμΊ to SL(4,IR) are equivalent when μ~μ'.
If now v and V are related by (3.7) it is an easy exercise in linear algebra to show

that (3.12) and (3.13) are satisfied if and only if
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In this case the vector V — ρ is obtained from v — ρ acting by the permutation

d th ddi th t ^(1,1,1,1).σ0 = and then adding the vector

Lemma 8.10.8 in [4] gives an explicit formula for the intertwining operator
H~^H. Let M' be the normalizer of A in K; then MCM' is a normal subgroup

and W=M'/M. Let m0 be a representative of the class σoe Win M' for example,
1 \ . ^

mo= —^(q1-\-q3,q2 + q4)eSU(2)x SU(2) and let / denote the extension to G of a

continuous function f on K given by

f(kan):=U{v\a)f{k); fceK, aeA, neN. (3.14)

Let N0: = Nnm0Nm~1 and dή a iV-invariant measure on N/No. Then

(Λf)(k)= J f(knmo)dή. (3.15)
N/No

The vector Λfis really in H because the subspace HCL2(K) is characterized by the
eigenvalue — 1 of the operator S2 and

(S2f)(k)=f(kt2), ί2 = (-l,-l)eK,

so that the operators S2 and A commute (the element t2 commutes with AN). This
could be expected of course from the fact that no intertwining operator can mix
the spinorial representation in H with a vectorial representation characterized by
S 2 = + 1 . We can make (3.15) a little bit more explicit by first computing

V o)'
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0

0
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we can write (3.15) as

(Λf)(k)= J f(kn(x)nιo)dx12dx12dx13dx14. (3.16)

Of course, any scalar multiple of A is also an intertwining operator for SL(4, IR).
Obviously the formula (3.6) is not valid for an element g + 1 in the centre of G:

/ 4 \
iϊg = ea-l (αeIR)then T{v)(g) = exp α £ v_. - l a n d T{v'\g)AT{v\g'1) = eaA for any

operator /I when v' and v are related by (3.7). Thus we have

T^\g-ι)AT{Λg) = mgTmΛ (3.17)

for all ge G. This generalization of (3.6) is perfectly acceptable on physical grounds
since A is assumed to be related to the mass of the system and the mass is
multiplied by e~a in a dilatation x-*eax in IR4.

To complete this section we examine the Lagrangian density associated to the
field equation (3.5). Let A* denote the hermitian conjugate of an operator A in H
(with respect to the ZΛscalar product). Then g->T{v\g)*~ι is also a continuous
representation of G in H; we denote it by W{v\ Since T ( v ) |^ is unitary, we have

Wiv\k)=T(v){k) V/ceX.

On the other hand, by a partial integration from (2.6) and (2.16)

A ^ A

for any real vector v. Thus W{v)=T{ v + 2ρ) for any real v. Denote by σ1 the
/I 2 3 4\

transposition J. Then for v = ̂ ρ and v' = v + (0,0,0,1) we have

— v/ + ρ^σ 1(v —ρ). The permutation σ1 is realized through a-^m^m^1 (aeA),

where as the element mx eM' we can take for example mγ — —=.(q2 + q,, —q2 + qX
1/2

We can now define an intertwining operator Ω.H-+H such that

(3.18)

The operator Ω is given by (3.15) with m0 replaced by mv The analog of (3.16) is

(Ωf)(k)= lj(kή(x)mι)dx12dx23dxl3, (3.19)

where

ή(x) =

For a differentiable function t/):!R4->// we define the density

(3.20)
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If φ = (ΣXkdk + Λ)ψ then, by the covariance of the differential operator, φ trans-
forms according to the representation Γ ( v ) of G when ψ is transformed by T(v).
Thus for any geG [denoting x/ = θ(g)~1x],

) = (ΩT{v)(g)ψ(x'l T

It follows in particular that the functional

(3.21)

is invariant with respect to all #eSL(4, IR). The ordinary Dirac Lagrangian is

ψ(ίyvdv + m)ψ = (γoψ, (ίγvdv + m)ψ),

where now < , > is the euclidean inner product in C 4 thus the operator Ω in (3.20)
plays the role of y0. Analogously to the Dirac case the field equation (3.5) is
obtained by a variational principle from (3.20) and (3.21) through an independent
variation of ψ and Ωxp.

4. Reduction with Respect to the Lorentz Subgroup

We shall first ask the question which irreducible representations of the subgroup
SL(2,(C)CG [the double covering of SO0(3, l)cGL+(4,IR)] are contained in the
representations Tε

(v). In this section we shall keep ve(C4 arbitrary.
We cannot apply the Mackey subgroup theorem [5, Theorem 3.5], since it is

valid only for unitarily induced representations. Instead, we shall use a more direct
orbit method which gives also a concrete decomposition in the space L2(K).

The group J = SOO(3,1) consists by definition of those matrices weSL(4,IR)
which preserve the quadratic form g(x) = x\ + x\ + x\ — x\ and w 4 4 ^l (the
direction of time x4 is preserved). Let the group J act on K = GL + (4,W)/AN from
the left. There are exactly six J-orbits in X,

= J l u J fc1uJ fc2uJ.(-l)uJ (-k 1 )uJ (-fc2

where

1 0

0 1

0 0

0 0

0

0
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The orbit J 1 consists of those matrices t/eSO(4) for which the subspace F(t/)ClR4

spanned by the first three column vectors of the matrix u is space-like [i.e. g(χ) is
positive definite on V(uj] and the fourth column vector is on the side of the positive
x4-axis from the 3-plane V(u). The orbit J (— 1) is characterized in the same way
except that the positive x4-axis is replaced by the negative x4-axis. The cases
J'(±kί) [respectively J (±fe2)] differ from the first two in the way that the
restriction of g(x) to V(u) has signature + H— (respectively it is degenerate,
signature + + 0 ) . Since JnAN = {l} and Jnk1ANk^1 = {l}9 the orbits J ( ± l )
and J-(±k1) are diffeomorphic with the group J. On the other hand Jnk2ANk2~

1

consists of the matrices

1 0 0 0

o 111; a=coshξ> β=smhL

0 0 β a

for ξeΊR. Therefore the orbits J (±fc2) are lower dimensional and they are of
measure zero in K.

Let kv k2eK such that Θ(k) = kj (/= 1,2). There are again exactly six SL(2,(C)-
orbits in K, each of them containing precisely one of the elements 1, fc1? fc2, t, kxt,
k2t, where t = (q3,q3)eK as earlier, θ(t)= — leK. [Note that the kernel kerβ = Z 2 is
contained in SL(2, <C).] Let us denote Q(k) = SL(2, C) fc, fceK. The right action of t
on X defines a diffeomorphism [which commutes with the action of SL(2, (C)]
between the orbits Q(k) and Q(kt). On the other hand f(kt) = ε/(fc) for a function
feHε, therefore/is completely determined (in the ZΛsense) giving its restriction to
the two orbits Q(\) and Q(kx). The orbits Q{k2)

 a n d Q[k2t) don't count since they
are of measure zero. Denoting by dq the SL(2, (C) invariant measure on Q(l) and

dk
Q(kΛ induced by the Haar measure of SL(2,(C), let — be the Radon-Nikodym

dq
derivative of dk with respect to dq. We define a unitary isomorphism

τ :HE^L\Q(l\ dq)®L2(Q(k1\ dq),

The factor ]/2 is included since β W u g ^ ) is one half of the space K (in measure).
The subalgebra so(3, l) = sI(2,(C) in gί(4,IR) is spanned by the vectors Z12, Z23,

Z31 and α 1 4 , α 2 4 , α 3 4 . By an abuse of notation we denote the corresponding right
invariant differential operators on SL(2,C) [or on β(l) and Q(kJ] by Lip Λi4. The
mapping τ pulls the restriction of 7^(v) to SL(2, C) into a reducible representation of
SL(2,(C) in the subspaces L\Q{l\dq) and L2(Q(kvdq)) of τ(Hε). The repre-
sentation of the Lie algebra sI(2,(C) is given by the operators L 7.(/,j^3) and

Λ 4 = 4 4+ Σ / > - a > (4-2)
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where f!£ denotes the restriction of the function f™ to g(l), respectively QikJ. A
function/on Q(x) (χ = l,fe1) can be considered as a function on SL(2,C) via the
diffeomorphism g->g x (geSL(2, (C)). The weight v is shifted by — ρ because of the

(dk\112

factor — in (4.1). To proceed we need
\dq)

Lemma. For each integer l^/c5Ξ4 there exists a C00-function hk on SL(2, (C) such
that Lφk = 0(1=: i j^3) and AiAhk =f!f (1 ="ί =:3).

Pro6>/ By a simple computation from (2.6) and (2.7) we get

/J. Λ f
kk = A ,Λ fkk (A. 3)

If we set Z y = ̂ . 4 (/=1,2,3), (Z 4 ,Z 5 ,Z 6 ) = (JL12,JL23,JL31) and / . = / ^ (/=1,2,3),
/j. = 0 fory = 4,5,6 then we are looking for a function h such that Z^ /i =f. (1 ^j^6).
The Frobenius integrability conditions for this first order differential system are

Zifj-Zjfi=Σ Ctjfk, (4.4)

where Cf 's are the structure constants,

Using (4.3) and the commutation relations (2.10) it is easily seen that (4.4) are
satisfied. Thus the existence of a local solution h to Zjh=fj is clear. Since Ltjh = 0
( 1 ^ J J = 3), h is really a function on SL(2,C)/SU(2). The homogeneous space is
diffeomorphic to R + x IR2 and therefore we are effectively dealing with a
Frobenius problem on R + x R 2 . The vector fields Z 1 ? Z 2 , Z 3 are linearly

independent and thus the system Zh=fi will be equivalent to - — h { 0 ) = β 0 )

J J δyj J

(j= 1,2,3), where yvy2>y3 a r e the Cartesian coordinates on !R+xIR 2, / j 0 )

(/=1,2,3) are some functions on R, x IR2 such that - — t f O ) = f 0) Since

IR+ x IR2 is starshaped, the global existence of the solution h{0) follows from
the Poincare lemma. •

Let Hc

ε = C^iK)^ {fe Hε\Q(x)nsuppf compact ϊorx=l,x = k1} (supp/ denotes
the support of/). By the differentiability of the SL(2,(C) action on the orbits Q(x),
the dense subspace Hc

εCHε is SL(2,<C)-invariant.

Theorem. The representation of SL(2,(C) on Hc

ε defined by Tε

(v) is infinitesimally
equivalent to a direct sum of two regular representations on the space C^(SL(2,C))
f C 0 0- functions of compact support) by an unbounded operator F{

ε

v) if v — ρis purely
imaginary the operator F^ is unitary.

Proof Let hv ...s/ι4 be as in the lemma and define

A ( ϊ ) :=exp(-Σ(v- ί?)A)
\ k = ί I
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Now h{y)~1AiAh
{y) = AiAr and fc(v)"1L/_./i(v) = Li</ for l ^ / , j ^ 3 . We can set

^ ( / ) : = / z ( v ) τ(/), feHc

e.

For each fe Hc

ε we have

Clearly the multiplication by /z(v), and thus also F[v\ is a unitary operator when
v — ρ is purely imaginary. •

Next we wish to relate the field equations described by the representations Tε

(v)

to the Dirac equation. As a first step we note that using the Weyl trick one can
obtain a new (nonintegrable) representation Fε

(v) of the Lie algebra gί(4,IR) from
dTε

(v). The representation Fε

(v) has the property that it is composed from finite
dimensional spinor representations of SL(2,C). Let g c be the complexification of
the real Lie algebra g = gI(4,R). Define a IR-linear injection

for l g j , fc£3, (4.5)
f o r 1 ̂ 7 ^ 3,

If 0 = diag(l, 1,1, — 1) then the linear mapping fΓ.g->go ή(x):=η{gx), is a Lie
algebra homomorphism and the image of so(3,1) is contained in the com-
plexification of so (4). We define

V}v)(x):=dΊ<v)(ή(x)), (4.6)

where <iTε

(v) is extended from g to g c by (C-linearity. Then Fε

(v) is a representation of
g in H(J\ and there is a one-to-one correspondence between the finite dimensional
irreducible subrepresentations of so (4) contained in Tε

(v) and those of so (3,1)
contained in Fε

(v). In particular, the (reducible) Dirac representation of so(3,1)
occurs with multiplicity one in both of the cases 7+v?.

Let us define the operators Xk:Hε-^Hε,

XJ=±=RkJ, 1 ^ 3
V (4.7)

xj RJ

Then X = {Xk}*= 1 is a vector operator with respect to the representations Vε

{v) and
F ε

( v ) of g [again, V is given by (3.7)]. Let π be the projection of H±i onto the four
dimensional subspace M?

±i which is the carrier space of the Dirac representation

Dd/2,o)ΘD(o,i/2)> W e d e f i n e t h e l i n e a r o p e r a t o r s (e=±i)

yk'-^K> yJ' =4πXJ (4.8)

In the realization of Hε by functions on (C4, the space jή?+i is spanned by the
monomials zv ...,z4 and jtf'_i is spanned by zv ...,2:

4. We claim that with respect
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to these bases the operators γk are given by the matrices

0

0

"0

AA I 0
(4.9)

in the case ε = + z, and by their complex conjugate matrices in the case ε = — z. This
means that the projections of the operators Xk onto the Dirac subspace are just the
Dirac matrices. From (4.5), (4.7), and (4.8) follows that {γk} transforms like a vector
operator with respect to so (3,1), and consequently it is sufficient to verify (4.9) only
for one operator, say y4. For that purpose consider the functions R44.Zj on the
sphere |z 1 | 2 + |z 2 | 2 = |z 3 | 2 + |z 4 | 2 = 1. From (2.8) we have

+ ±(z2

1z3 + z1z2z4 + z1Έ2Z4). (4.10)

Using the explicit expressions (2.2) for the generators it is easily seen that the last
two terms in (4.10) transform according to the representation f)*1'1/2) and thus

By a similar computation we get = z4, y4z3 = zv y4z = z2 and so we are done
with the case ε = + z. The case ε = — i is treated analogously.
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