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Abstract. We consider a measure defined on a complex contour and its
associated orthogonal polynomials. The action of a polynomial transfor-
mation on the measure and the transformation laws of the corresponding
orthogonal polynomials are given. Iterating the transformation provides an
invariant measure, whose support is the Julia set corresponding to the
polynomial transformation. It appears that, up to a constant, the iterated
polynomials generated by the initial mapping form a subset of the invariant set
of orthogonal polynomials, which fulfill a three term recursion relation. An
algorithm is given to compute the coefficients of this recursion relation, which
can be interpreted as a linear extension of the iterative procedure.

I. Introduction

The connection between dynamical systems and iterative maps has received a
great deal of attention in the past ten years, initiating a new approach to
turbulence [1]. The present situation is best summarized in a review article by
Eckmann [2]. In particular one dimensional mappings display intriguing proper-
ties under iteration [3], as was already noticed by May [4]. Universality
properties of one dimensional mappings have been emphasized by Feigenbaum
[5], and the corresponding effects observed in experiments [6]. Although more
general mappings display also some universality properties [7], the most useful
transformations are those who behave in a regular way in the vicinity of their
critical point. Special examples of this situation are provided by polynomial
mappings.

On the other hand, iterations of rational mappings have been considered sixty
years ago by Julia [8] and Fatou [9], and studied extensively by Brolin [10]. The
quadratic polynomials have been considered by Myrberg [11], and recently by
Douady and Hubbard [12]. A complete understanding of the iterations of a
polynomial mapping seems to require the extension from real to complex analysis.
There is in fact a relation between mappings and invariant measures [13], and it is
therefore interesting to study polynomial transformations on measures.
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In a paper devoted to a completely different problem, namely the classifi-
cation of measures having integer moments [14], were considered some properties
of polynomial mappings [15], which lead to a connection between iterated
mappings and orthogonal polynomials. More precisely, a close algebraic relation
between orthogonal polynomials with respect to a measure, and iterated quadratic
mappings has been established [16,17]. The measure is simply associated to a
contour integral on the Julia set [18] linked to the quadratic transformation.
Besides the unexpected algebraic relation between iterated maps and orthogonal
polynomials, the recursion relation between three consecutive polynomials be-
longing to the same orthogonal set provides a linear extension of the nonlinear
iterative procedure [17]. This linear extension is interpreted as a difference
equation of order 2, that is a discrete version of a second order differential
equation with variable coefficients [23]. Of course the difficulty is now to study the
properties of these coefficients, an analysis which has been completed in the
quadratic case [17].

The aim of this paper is to give a generalization of these results to arbitrary
polynomials. The paper is organised as follows: In Sect. II, we recall some
properties of orthogonal polynomials, in a somewhat unusual way, the integration
being now along a contour in the complex plane of the variable v, with a
"measure" γ(v) analytic on the contour. In Sect. Ill, we perform polynomial
transformations on the measure. In Sect. IV, we establish the relation between two
sets of orthogonal polynomials, the second being orthogonal with respect to a
measure obtained after a polynomial transformation on the measure of the first
set. In Sect. V, we introduce the iteration of the transformation, and give the laws
of transformation of orthogonal polynomials under these iterated mappings. In
Sect. VI, it is shown that an infinite iteration procedure leads to an invariant
measure with respect to the polynomial transformation. By contour integration
deformation one reaches the Julia set corresponding to the considered polynomial
mapping. Section VII is devoted to the invariant orthogonal polynomials, and it
is shown that the iterated polynomials generated by the initial mapping are, up to
a constant, a subset of the invariant orthogonal polynomials. In Sect. VIII we
briefly recall our preceding results for the quadratic polynomials case, showing
that, in this special case, a simple relation exists between isotropic orthogonal
systems, that is systems which admit zero norm for some polynomials, and
mappings with superstable fixed points. In the conclusion, Sect. IX, we discuss
how the recursion relation between invariant orthogonal polynomials appears as a
linear extension of the nonlinear iteration procedure. Finally, technical details
relevant to Sect. IV are given in an appendix.

Throughout this paper, we shall call "monic" a polynomial of degree d having
its highest order term equal to zd, and we let Sd denote the set of monic
polynomials the sum of whose roots is zero, i.e., those with no zd~ι term.

II. Orthogonal Polynomials on a Complex Contour

We consider a function g(z) which is assumed to be analytic in an open domain
containing z = 0. We can draw a contour Γo encircling z = 0 and contained in
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For any point z interior to Γo, we can write, using the Cauchy theorem:

The contour Γo has been, as usual, oriented counter-clockwise. Now changing u
1

into v= -, we get:

(Π.3)

9(n)=7p~ § y{v)vndv, (II.4)

where y{v) is defined by:

1 / 1 \

(II.5)

Now Γ^ is a contour near infinity, also counter-clockwise oriented, contained in

the image of <3) through the transformation υ=~~, and z is supposed to lie outside
u

the contour Γ^. Therefore g(z) can be considered as the generating function of the
gn, which appear through (II.4) to be nothing but the moments of the measure y(υ)
on the contour Γ^. The analyticity properties of g(z) allow us to move the contour
as long as no singularity is reached. This extension of the moment problem is a
straightforward generalization of the standard moment problem of a measure on
the real line: when g(z) is real analytic and has all its singularities localized on the
real axis, a small interval containing 2 = 0 excluded, the contour Γ^ can be moved
in such a way that it encircles the real axis where all singularities of y(v) lie. We get:

where now:

σ(v) = — lim {y(υ - iε) ~ y(v + zε)}. (II.8)
2iπ ε^o

Going back to the general case, we introduce the set of polynomials Pn(z)
orthogonal with respect to the following scalar product, defined as a contour
integration on Γ^:

Here Pn(v) is a monic polynomial of degree n, which means that the highest degree
coefficient is equal to 1:

Pn(υ) = υn + a(ΐ)vn-1 + .... (11.10)



506 D. Bessis and P. Moussa

Equations (II.9) and (11.10) define in general a unique set of polynomials [19],
which have the following explicit representation in terms of the moments gn:

We use Z) defined for n > 1 as:

(11.11)
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(11.12)

Using these definitions, we have the following expression [19] for the "norm"
parameter hn:

Λ « = % 1 ' ho = 9o- (Π.13)

Existence and uniqueness for the set of polynomials are guaranteed as long as all
determinants Dn are different from zero, which is the generic situation. The
polynomial Pn can equivalently be defined as the unique monic polynomial of
degree n, which is orthogonal to all monomials vp, for p less than n. In fact we have
for any p^n:

1
(p vpy=— & Pn(v)vpγ(v)dv = hnδnD. (Π.14)

The set of polynomials Pn satisfy the well known three term recursion relation

[19], for n ^ 2 :

Pn(v) = (v-Bn)Pn_1(v)-RnPn_2(v). (11.15)

In order to establish this relation, we expand vPn_ 1 as a linear combination of the
polynomials Pm(v):

The orthogonality properties show that:

However:

(11.16)

(11.17)

which shows that α^} is equal to zero if m<n — 2. On the other hand, comparison
of highest order terms in (11.16) shows that:

vPny, (11.19)
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and

(11.20)

K- 2αί"- 2~(υF\ι- V Λί-2) = <\υ^n-2^n-l) ' (11.21)

In view of (11.19), we get:

Introducing the notations

Bn = <n-^ K = *n-2> ( I L 2 3 )
we get (11.15) with

Bn = <t; J P w _ 1 , J P n _ 1 > (11.24)

and

Rn = J—^1- = (p
 n\l - (11.25)

Of course these equations make sense only in the generic case where all hn are
different from zero, and they generalize to a contour Γ^ the classical three term
recursion relation for orthogonal polynomials on the real line. Finally note that
the generalized scalar product considered here is not the usual hermitian one and
it is not assumed to define a positive norm.

III. Polynomial Transformation on a Measure

Given an arbitrary polynomial F(z) of degree d, we propose to investigate the effect
of a change of variable defined by F on the measure γ(v). We first consider the
transformation: g(z)-+gF(z) defined by:

1 M / 1 \

(III.l)

In this equation, Fr(l/z) must be understood as — F(w) taken for the value u=l/z.
du

The reason for introducing expression (III.l) becomes clear when reexpressed on
the measure density γ(v):

(ΠI.2)

We get from (III.l):

γF(v)=-jF
t{v)y(F(v)). (III.3)

d

Setting now

dv dv
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we get

GF(υ) = \ G(F{v)) + const. (III. 5)
a

This last equation requires a comment: we have already assumed that g(z) is
analytic in the vicinity of zero, then Eq. (III.l) shows that gF(z) is also analytic in

the vicinity of zero, because the mapping z-+——— preserves zero. If g(z) is
expanded around zero: ' 'z'

g(z)= Σ gnz\ (III.6)
Λ = 0

We get a corresponding expansion of γ near infinity:

Integrating (III.7) shows that G(u) has a logarithmic singularity at infinity:

As a consequence, the additional constant in (III.5) depends on which sheets both
sides of the equation are considered. It is possible to clarify the situation when v is
large enough in modulus. Assuming F{v) to be monic, the constant in (III.5) can be
chosen as if G{v)~ — golnv, F(v)~vd when z -^oo. More precisely, we define the
logarithmic function as:

\nv = \nρ + iθ when v = ρeiθ with -π<θ^π. (ΠI.9)

With the previous convention, we get

ln^ln^H^, (111.10)
a a

where k is an integer satisfying

-π<dθ-2kπ^π. (ITI.il)

With this definition of fe, we can fix the determination of G(υ) such that for \υ\ large
enough, we have

GF{)G(F{)) (HI12)

while (III.l) insures that g(0) = gF(0) = go. The validity of (111.12) can be extended to
any domain containing the point at infinity, but containing no roots of F and no
singularity of y(υ). We shall need a modified form of (III. 12). Let us define the d
inverse functions:

FJι(v), j=U2,...,d,

as the d roots of the algebraic equation:

F(FJι(υ)) = υ. (III. 13)
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Replacing υ by FJι(v) tells us that there exist integers k- such that:

o , (111.14)

which gives

) - — (Σkj)go (ΠΠ5).
a \ I

Asymptotically in υ, G reduces to — \nv, and FT 1(v) to the different determinations

of v1/d. A short calculation shows that (Σ^j] vanishes when d is odd, and is equal

to ± 1 according to the sign of θ when d is even [see (IΠ.9)]. We summarize all this
by writing in the neighborhood of infinity:

Theorem 1. For \υ\ large enough:

d 2iπ
j y (111.16)

j=ι a

where
η = 0 if d is odd

^ = sign{Imz;} if d is even.

Equation (III. 16) displays the transformation laws of the integrated measure.
In addition we have:

GF(FT !(„))- GF(Ff \v)) = ~(k, - k)g0 . (III. 17)

This last equation expresses the symmetry properties of Gb under the exchange of
determinations of the inverse of F. The ambiguity removing terms appear to be
particularly useful when it is possible to squeeze the contour of integration on the
real line, as discussed in Eqs. (II.6) and (II.8).

Going back to the measure density transformation, we rewrite (III.3):

γF(v)=^F'(υ)γ(F(υ)).

Replacing v by Fj 1(v) yields

yF(Fj\v))= ^F'(FT\v))y(v), (111.19)

which can be written as

y^FT'iv)) = ^γ~ - — - . (111.20)
- 1 /

This last relation enables us to perform a change of variables in a typical contour
integral: for arbitrary functions φ(v) and ψ(v) analytic around infinity, we have:

-ί- § Φ(F(υ))ψ(v)yF(v)dv= -ί- j Φiv^JΣψiFT^y^dυ. (111.21)
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This equation is obtained by first changing v into FJx{v), for a given), in the left
hand side, and then observing that the contour has to perform d turns around
infinity, but to each turn corresponds a different determination of the inverse.
Therefore one can express the result as given in (III.21).

IV. Transformation Laws for the Corresponding Orthogonal Polynomials

We want to establish a connection between the polynomials Pn(v) orthogonal with
respect to γ(v)9 and the polynomials Pζ(υ) orthogonal with respect to yF(v).
Consider the integral :

where p is any integer smaller or equal to dn. According to (111.21), this integral can
be equivalently written as:

We set

We need the following lemma:

Lemma 1. The arithmetic mean Sn(v) of the p ί h power of the roots of the algebraic
equation in u : F(u) = v, is a polynomial in v of degree k, where k is the largest integer
smaller than or equal to p/d. When p/d is integer, Sp(v) is monic, assuming F{v) to be
monic.

In order to prove the lemma, we start from the identity

χ ) ^ = ? F 7 » ' (IV 4)

changing u into 1/M, we get

1 F'(l/«)
( I V 5 )

from which we get:
00 1
% p dd udF(l/u) udv

udF(l/u)

However, ud~ιF'(l/u) and udF(\/ύ) are polynomials and the latter does not vanish
at u = 0 since F(u) is of effective degree d. Without computing explicitly, one sees
that in the expansion of the right hand side of (IV.6) in powers of w, each power of υ
will arise together with ud. This tells us that in Sp(v\ powers of v of order r such that
dr^p can only occur. Therefore the degree of Sp(v) is the largest integer smaller
than or equal to p/d. If p = dr, with r integer, there is only one term in upυr = (udv)r in
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the expansion, obtained considering the values of udF(l/u) and ud~ 1F'(l/u) at u = 0.
If F is monic, udF(l/u) tends to 1 and ud~1F'(l/u) to d when u tends to zero,
which proves that Sdr(v) is itself monic, hence completes the proof of the lemma.

In the sequel we shall assume that F(v) is monic. We now come back to (IV.2),
and using the previous lemma taking into account (11.14), we get:

I = 0 if p<dn9
P (IV.7)

Ip = hn if p = dn.

Therefore we have the following:

Theorem 2. Let F(υ) be a monic polynomial of degree υ, and let Pn(v) (respectively,
Pζ{v)) denote the sequence of polynomials orthogonal with respect to y(v)
(respectively, yF(v)J. Then:

The situation can be summarized as follows: starting from y(v), we generate the
set of polynomials Pn(v). Through (IV.8) we obtain a subset of polynomials PF(v)
orthogonal with respect to yF(v\ namely those for which n is a multiple of d. We
want to sketch a procedure for computing the missing polynomials and in order to
achieve our goal, we will show how to compute the recursion relation coefficients
relevant to the polynomials Pζ(v). This recursion relation can be used to compute
the missing polynomials.

In fact, we first establish a linear three term relation between Pnd + d, Pnd, Pnd-d,
which are three orthogonal polynomials belonging to any arbitrary complete set
of orthogonal polynomials. Starting from the usual relation (11.15):

we introduce a few notations:

We define M(p, q) as the truncated Jacobi tridiagonal matrix, with the following
properties:

i) M(p9 q) is a square matrix of dimension q,
ii) The diagonal elements are:

[Λφ,4)],, = Λ(p + 0 , i = ί,2,...,q, (IV.ll)

iii) Elements of M belonging to the nearest lines parallel to the diagonal are
given by:

iv) All other matrix elements of M(p, q) are equal to zero. We also define the
determinant

)]. (IV. 14)
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Here A(p,q) is a polynomial of degree q in the variable v. Exceptional cases are

Δ(p,ί) = Ap+1, (IV. 15)

A(p9O) = l. (IV. 16)

With the previous notations, we have the following:

Theorem3. Given d^2 and n^l, a three term linear relation holds between the
polynomials Pdn+d, Pdn, Pdn-d > belonging to a complete set of orthogonal
polynomials:

« » PAn + P) = βn(v) PJv) + γn(υ) Pdn _ d(v), (IV. 17)

where αn, βn, yn are monic polynomials in v of respective degrees d—1, Id— 1, d—1,
the explicit expression of which are given by :

ocn(v) = A(dn-d+ld-l), (IV. 18)

βn(v) = A(dn- d+ Id- 1) A(dn,d)- Rdn+1 A(dn- d+ I d-2)

(IV. 19)

d-l). (IV.20)

Equations (IV. 17) and (IV.20) can even be extended to the case d=\ provided
we perform the identification Δ(p, — l) = 0. The proof of Theorem 3 is given in the
appendix, and it will make use of the following identity, which results from the
definition (IV. 14):

Consider now the two sequences of polynomials Pn(v) and Pζ(v\ introduced at
the beginning of this section. We have

pn(v) = AnPn _1(vj — RnPn _ 2(v), (I V.22)

K(v) = ΛF

nP
F

n_ M - RF

nPn_2(v). (IV.23)

Now changing v into F(v) in (IV.22), and using (IV.8), we get

Pζ + (v) — {F(υ) — B + )Pζ(v) — Rn+ Pζ _ (v). (IV.24)

An expression for the set of polynomials Pζ similar to (IV. 17) can be written by
replacing all A by AF, where the superscript F means that in (IV. 11), (IV. 13), and
(IV. 15), An, Bn, asd Rn have to be replaced by the corresponding A*, Bζ, and Rζ.
The expression of PF

d + d thus obtained can be equated to (IV.24) and we get the
relation

Q(2d-l)Pdn(V) = S(d-l)Pdn-d(υ)^ ( I V 2 5 )

where

-AF(dn+ί,d-ί)AF(dn-d+ί,d-2)RF

dn+1, (IV.26)

S(d.1)(v)=-Rn+1A
F(dn-d+ί,d-ί)

+ Rί-d+2R
F

dn-d+ι-Rί+1A
F(dn+ί,dn-ί). (IV.27)
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The degrees of the polynomials Q{2d-i) a n c ^ S(d-i) a r e respectively (2d— 1) and
(d—1). Therefore the degrees of both sides of Eq. (IV.25) do not match, and
cancellations have to occur. More precisely the right hand side is of degree at most
(dn — 1), and in the left hand side Pdn is monic and has degree dn. The only
possibility is that S(d_1) and Q{2d-i) vanish identically. Therefore we have

Theorem 4. The coefficients of the three term recursion relation satisfied by the
polynomials Pn(υ) and PF(v) are connected through the set of polynomial identities in v

AF(d(n- 1)+ Id- l) = ΔF(dn+ 1J- 1), (IV.28)

Rn + ί= Rnd-d+ 2Rnd- d + 3 ' Rnd + 1 > (IV.29)

F(v)-Bn+ι=AF(dn,d)-AF(dn-d+ld-2)RF

dn+1. (IV.30)

Indeed S(d_1) = 0 gives (IV.29) and (IV.28) because the Δ polynomials are
monic. Equation (IV.30) is obtained from <2(2ij-i) = 0- Equation (IV.28) is inde-
pendent of the coefficients Bn and Rn, and expresses a periodicity law of period d
for certain combinations of Aζ and Rζ, obtained in expanding (IV.28) in powers of
v. We set

p 0

(IV.31)
So we have from (IV.28) the theorem:

Theorem 5. The coefficients B^ and RF satisfy the following periodicity properties:
Γp is invariant under the change of n into (n+ 1).

This periodicity law is related to the exchange of the roots FT1^) in the
contour integral (IV. 1).

In the d = 2 case, Eqs. (IV.28) and (IV.30) are valid provided we set AF(p,0)= 1.
In this case we have:

Rn+1 =R2nR2n+l'

τ>F r>F

B2n+l+B2n+2= ~ α '

B2n+lB2n+2~R2n+l ~ R2n+2= β ~ Bn+1 '

with

(IV.32)

(IV.33)

Equations (IV.32) permit the recursive computation of the coefficients BF and RF:
knowing RF

2n and BF

2n9 we get RF

2n+v BF

2n + 2, BF

2n+v and RF

2n + 2 using the values of
Rn+ί and Bn+V We initialize the system by setting:

BF2=-^RF

2=-β+~+Bi (IV.34)

Initial values BF and RF

2 have to be computed directly from (11.11), (11.12), (11.24),
and (11.25) using (Π.l) and (III.l).
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This recursive algorithm for computing Bζ and Rζ, is not limited to the
quadratic case, as is shown by the following theorem, the proof of which is given in
the appendix.

Theorem 6. The system of Eqs. (IV.28)-(IV.3O) permits the recursive computation of
all coefficients BF and RF from those contained in ΛF(\,d — 1). The latter ones must
be computed directly from (III. 1) and (III.2). The recursive procedure is linear, except
for Eq. (IV.29) which is used to compute RF

n+ί in terms of lower order coefficients.
The recursion breaks off if any of the RF

p happens to vanish.

We want to emphasize this last result: the computation of the coefficients RF

and BF is always made through unambiguous linear or homographic relations
which define a unique solution, provided no RF vanish. In Sect. VII we shall give
examples where this is not the case. However in the generic case, the RF will not
vanish and we can reconstruct the complete sequence Pζ(v) from the initial
sequence Pn(v) using the recursion relations.

Before ending this section, let us give an operator version of Theorem 2, as
already mentioned in reference [23] for quadratic polynomials. Consider the
infinite Jacobi matrix defined by Eqs. (IV.11)-(IV.13), where we let q go to infinity.
We define:

H = M(0,oo). (IV.35)

Let us denote ψ(v) as the infinite dimensional vector with components

ψn(υ) = Pn(v), n = 0,l,2,.... (IV.36)

By the three term linear recursion relation (IV.9), ψ(v) is an eigenvector of H:

Hψ(υ) = υψ(v). (IV.37)

Clearly one can define, in the same way, the infinite Jacobi matrix HF and its
corresponding eigenvectors ψF(υ\ related to the transformed polynomials Pζ(υ).
We also need the decimation operator D of order d, defined as

W " = 0,1,2,.... (IV.38)

Using this notation, we can rewrite Theorem 2 as

(DF(HF))ψF(υ) = (HD)ψF(v), (IV.39)

which leads us to the operator valued equation

DF{HF) = HD. (IV.40)

It is valid in the topological space spanned by the vectors ψF(v) when v varies, with
a suitable closure condition. It is not necessary to be precise for our purpose here.

V. Iterations of Polynomial Transformations on a Measure

In Sect. Ill we have introduced the transformation:

\
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To any complex polynomial F of degree d (V.I) associates a transformation TF

acting on the set of analytic functions g(z) in the vicinity of zero:

g^>gF; {TFg){z) = gF(z). (V.2)

With the above notations, we have:

Theorem 6. Consider two arbitrary polynomials F 1 and F2 of respective degrees dί

and d2, and the corresponding transformations TFί and TFl. Then:

rrF2oηrFi __ rp(FίθF2) ί\MΪ

where

Theorem 6 can be visualized as:

\TF2

In other words TF is an antirepresentation of the composition law of polynomial
mappings. The proof of Theorem 6 can be achieved by straightforward calcu-
lation, but Theorem 6 is in fact included in (III. 12). As an application, we consider
successive iterations of F:

1\z)).

The corresponding iterated transformations, starting from an initial function
gi0\zl are:

g^ = TFg^
(V.6)

g(n)=TFg("-ί\

From Theorem 6, we deduce the identity:

which can be written as

1 Fin)'(
y w zdn F{n\l/z)'

or equivalently

9 V) dn z{dn)F{n\\lz) 9 \zmFin\l/z))' [ ]

From (V.9) we see that the expansion in powers of z of g{n) coincides up to order
z(dn) excluded with the expansion of the rational fraction Rfn){z) defined by

R F ( ) { } ίVIO)
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multiplied by the constant g(0)(0). Apart from this constant the dn first terms of the
expansion of g{n\z) do not depend on the initial function g{0\z). More precisely,
these terms are determined by the following result:

Theorem 7. The expansion of g{n\z) coincide up to order z{dn) excluded, with the
series expansion #°°(z) which is the unique solution, in the sense of formal power
series, of the equation

with the additional condition

g<°(O) = g{°X0). (V.12)

In order to prove the result, we write the formal power series:

oo

0ro(z)= Σ ί C A (v.i3)
n = 0

and we expand both sides of (V.ll):

oo | oo an

Σ :" /-'FWI) Σ (V14)

Since -zd~1F'(\/z) takes the value 1 when z goes to zero, the equation (V.14) does
d

not fix g™ which is thus arbitrary. In the right hand side, g™ enters only in co-
efficients of powers zp with p^dn. Therefore knowledge of g^ allows us to com-
putegf,g%,...,g™_1. Knowing gf permits the computation of gd,gd*+ι,...,g

<?(l_v

and an obvious recursive argument completes the proof of uniqueness of the
solution of (V.ll) and (V.12). On the other hand, we could have initiated the
recursion (V.7) and (V.9), with g{0\z) replaced by the formal series g™(z) already
obtained. Equation (V.9) remains satisfied in the sense of formal power series at
least, when in both sides g(0)(z) and g{n\z) are replaced by ^°°(z). Therefore the
expansions of #°°(z) and #°°(0) R(n)(z) coincide up to order z{dn) excluded. As a
consequence, the expansion of g{n\z) coincide with g(0)(0) Rfn){z) and g°°(z) up to the
same order, which establishes the theorem. We also have obtained:

Theorem 8. The expansions of R*n)(z) and R^n + p)(z) for any p coincide up to order
z(dn) excluded.

We now let Sd denote the set of monic complex polynomials of degree d the
sum of whose roots vanishes. We shall see that it is possible to restrict ourselves to
the class Sd, and get more precise results than Theorems 7 and 8.

Consider a linear transformation L(z) and its inverse L~1(z)

such that
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To any polynomial F(z) we associate Φ(z) through a linear Mobius transformation

which makes

)
\0ί OL

(V.I 8)

Φ(αz + jS)
( ) ( j )

a a

These relations can be iterated, and we get

Φ{n\z) = uF{n) ( - - - ) + β. (V.20)

Given an arbitrary polynomial Φ(z) it is convenient to choose α and β in order to
set the highest order term of F equal to 1, and cancel the term or order zd~1.
Setting for large z:

() φ d φ d 1 d 2 )
and using

0o dΨo
we get

F(z) = zd + 0(zd-2). (V.23)

Equation (V.22) can always be satisfied when α is allowed to be complex. If we
want to restrict ourselves to the real case, assuming φ real, we can only, keeping F
real, ensure that:

F(z)= sign(φo)zd + 0(zd-2) (V.24)

when d is odd. There is no restriction when d is even. Therefore we have the
following:

Theorem 9. Given any complex polynomial Φ(z) of degree d, there exist F(z)eSd such
that

)β, (V.25)

with

α = 0 o " ^ π , β=-]j^, (V.26)
dφ0

and we have

Φ{n\z) = ocFin) (---)+β. (V.27)

The properties of φ{n\z) can then be easily deduced from those of F(n\z) with
FeSd. Notice that all monic odd or even polynomials belong to Sd.
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We now assume FeSd, and we consider the associated transformation TF

introduced (V.I) and (V.2) as well as the rational fraction already introduced in
(V.10), which we rewrite as:

which means that we apply F to the constant function equal to 1. We also consider
0°°(z) as the unique solution, in the sense of formal power series, of:

g*' = τF ga>>

(V.29)
oo v '

nco __ y co n /7°° — 1
n = 0

Then we have the following:

Theorem 10. When FeSd, the following properties hold:

ii) the expansion of R^ coincides with g°° up to order z{2dn) excluded,
iii) the expansion of R^n) and Rfn+p) coincide up to order z{2dn) excluded for any
O
iv) R?) is a [dn—l/dn] Fade approximant to the formal power series g°°{z),
v) R L is a [dn-l/dn~] Fade approximant to the function g(n) = T(F(n))g(0)

= (TF)ng{ , where g{0) is an arbitrary analytic function in the neighborhood of zero —
or eguiυalently a formal power series expansion - such that:

CO

0(O)(*)= Σ fΓΛ 9?=±, g[0)=o.
« = 0

Let us prove the theorem: g™ is obtained by expanding to first order
ĉo = jFg<°^ which has the same expansion up to order z{dn) than RF

ly This gives
immediately gf=O, since the terms of order zd~λ vanish in F(z). Using gf=O
shows that RF

n) and g™ have to coincide now up to order z{2dn\ as seen from (V.9).
The same properties occur immediately for the expansion of RF

n) and R(n + p). Now
(V.28) or (V.10) shows that RF

n) is a rational fraction whose numerator and
denominator have respective degree dn—l and dn. Since coincidence between
expansion of RF

n) and #°° occur up to z{2dn) excluded, RF

n) is a [dn—l/dn~] Pade
approximant [20] to g"°. Item v) of the theorem goes on through a similar
argument, observing that if g(

0

0) = l and g(°]=0, we have: g(0\z) = l +0(z2). Hence
the theorem is proven.

Before closing this section, we shall give another algebraic theorem, concerning
arbitrary polynomials i7, not necessarily belonging to Sd :

Theorem 11. To any formal power series g(z\ let us associate the {.p—ί/p]g Pade
approximant defined for small z by

g(z)~lp~l/pl(z) = 0(z2η, (V.30)

where \_p— 1/p] denotes a rational fraction in z with numerator and denominator of
degree, respectively, (p— 1) and p. Then for any polynomial F of degree d, we have the
following identity:
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zd

The proof starts from (V.30), in which we change first z into l/F(l/z) =
Then we multiply both sides by RF

{l)(z) defined in (V.10) and we get:

gF(z)-ψ(z) = 0(z2dη (V.32)

with ψ(z) defined by

i W i i (V 33)

In order to complete the proof we only need to check that the rational fraction ψ(z)

has the required degrees in z:dp—l for the numerator, and dp for the de-

nominator. Writing [p— l/p~]g(z)= p~1 , we get

zdpDp{F{l/z)) '

where Dp(z) = zpDp(ί/z) and Np_1(z) = zp~1 Np_ι{l/z\ which shows that ψ has the
required degrees.

VI. An Invariant Measure Associated to a Polynomial Mapping

In the previous section, we have defined a transformation TF acting on the set of
analytic functions in the neighbourhood of zero. If we consider now TF as acting
on the set of formal power series, we have shown that assuming g(0)(0) = 1, (TF)ng{0)

tends to g°°(z), unique solution of (V.29). Still in the sense of formal power series,
the sequence RF

n)(z) tends toward g°°(z) when n tends to infinity.
We will now make the connection with classical results on iteration of

polynomial mappings [10]. For this, we observe that since the expansion of 0°°(z)
is obtained as a limit of rational fractions, analyticity of g°°(z) will follow from
Vitali's theorem [21] in any domain D in which we can establish a bound for
RF

n){z) uniformly in z and independent of n, for at least an infinite subsequence of
integers n. But RF

n) has a special form

R(n)^ = ΊFz ~dnzF{n\i/z) = Jn i-; l - σfz' ( V L ^

where the σ are the dn roots of the iterated polynomial F{n\z). Therefore we get

1 (VL2)

Since F is a polynomial of degree > 1, there is a constant σ > 0 such that, if \z\ > σ
then \F(z)\ ^ σ. Hence for any n all the roots of F{n) must have modulus smaller than

σ:|σίw ) |<σ, for all /, and n. Therefore \RF

n)(z)\^2 as long as \z\< — , and we can

apply Vitali's theorem to the sequence RF

n)(z), n going to infinity, since we have
already shown the convergence in the sense of formal power series. We have the
following:
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Theorem 12. The function g°°(z) defined in Theorem 7, Eq. (V.ll) is analytic in the
vicinity of zero.

To 0°°(z) corresponds: y » = -#°° (-), (VI.3)

which has the following important properties deduced from (V.ll):

(y°°)F(ι>) = 7 » , (VL4)

which shows that y00 is invariant under the polynomial transformation F(v). This
property is best expressed by Eq.(111.21) which now reads:

- ί - § Φ(F(υ)Mυ)γ°>(υ)dv= ~ § Φ ( ^

where Φ and ψ have the required analyticity properties in the vicinity of the point
at infinity. Now the contour of integration can be moved until the singularities of
y°°(V) are reached. But the argument given above in the proof of Theorem 12
makes it almost evident that the singularities of y°°(V) are accumulation points of
the orbit of 0 under iterates of the multivalued inverse function F~1(z). Another
classical result, given by Brolin [10] shows that such sequences of iterations will
accumulate towards the Julia set associated to the polynomial F(v). All delicate
proofs being contained in the classical papers [8-10], we shall not reproduce them
here, but notice that for our argument we will only need analyticity of g°°(z) in the
vicinity of zero, and it is clear that the contour integration can be deformed
towards the Julia set which in some sense "supports" the measure y00^). The use of
the word "measure" may at first slight look improper here and should have been
replaced by "boundary value of an analytic function". However in Eq. (VI. 1),
the rational fraction has only simple poles, even when the roots of the de-
nominator are multiple. Using ί/z as a variable, we see that all the residues in
R(n)(z) are real and positive, their total sum being equal to one. These observations
are essential ingredients to maintain control of the limiting process in the
approach to the boundary of the analyticity domain and they suggest that the
boundary value of y°°(ι;) is actually a measure. Of course a complete proof requires
additional information on the boundary, i.e. the Julia set. We do not intend to give
it here. The connection of our arguments with the classical works mentioned
above is made more explicit by considering y°°(ι;) as the logarithmic derivative of a
function ψ(v)

There ψ(v) is a solution of the Bottcher equation considered in references [8,9]:

VII. The Orthogonal Polynomials Generated by the Invariant Measure

Consider a polynomial FeSd:F is monic and the sum of its roots vanishes. Then
Theorem 10 applies and we see that Rfn) defined in (V.10) is a [<f- l/ ί f ] Pade
approximant to #°°(z) defined in (V.ll) with 0°°(O) = 1. Therefore zidn)F(n)(l/z) is the
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denominator of the [dn—l/dn^ Pade approximant to g°°(z), and, according to a
classical lemma of Pade approximant theory, belongs to a family of orthogonal
polynomials. The lemma is the following:

L e m m a 2. Let n~ι— be a[n — 1/ή] Padέ approximant to a function g(z) analytic

in the vicinity of zero, then the polynomials znSA-j form a set or orthogonal

1 /1\ ^
polynomials with respect to γ(z) = - g - and we have

z \z

z = Cnδmn. (VII.1)

The proof follows from the definition of Pade approximants [20] :

Sn(z)g(z) -Rn-ι{z) = z2nΦn(z), (VII.2)

where Φn(z) is analytic in the neighborhood of zero. Consider the following
contour integral around zero:

/ = 4 - $ Sn(z)Sm(z)g{z) J*+ί . (VII.3)

Using (VII.2) we get

~2iπf0

 mZ n~lZ

 z

n + m+1 2iπf0

 mZ »z 2r~n+1'

It follows immediately from the residue theorem that the first integral always
vanishes, and similarly the second when n > m. Symmetry insures that / vanishes
also when m>n, and we have

Changing z into - in the integral / gives (VII. 1) which proves the lemma. Using
z

Lemma 2 and remarks given at the opening of this section, we get the following :

Theorem 13. When FeSd, Fin\z) is a polynomial of degree dn, belonging to the set of

orthogonal polynomials with respect to the measure yco(υ)= -g00 I-I.

A straightforward application of Theorem 9 allows us to extend the result in
the following:

Theorem 14. Consider any complex polynomial

Then the polynomials

Φ{"Φ\β + ocy), α Φ , β J ^
α α dφ0
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belong to a family of orthogonal polynomials with respect to a measure y°°(ι;)
generated by FeSά and defined by

1

F ( )

This last theorem is connected with Theorem 2, Sect. IV in the following way.
From (IV.8) and (VI.4) we see that the orthogonal polynomials with respect to
y™{v) fulfill the relation

which by iteration gives

Pp(Φ^(v)) = Pdnp(v). (VII. 10)

However for p= 1, we have

Pϊ(φ("Xv)) = Pdn(v). (VII. 11)

It is easy to see that if

Φ = zd + Φ1z
d~1 + ..., (VII. 12)

then

P1(ϋ) = ϋ + i φ 1 , (VII. 13)

which shows that

in agreement with Theorem 11.
We now come to the family of orthogonal polynomials P™(v) with respect to

the measure y°°(ι;), and we know already a subset of this family, namely those of
degree dn. In order to study the whole family, we analyse the properties of the
coefficients of the three term recursion relation (11.15), and we have the following:

Theorem 15. The coefficient of the three term recursion relation (11.15) satisfied by
the polynomials Pn(υ) orthogonal with respect to a measure y°°(u) invariant under a
monίc polynomial transformation F, fulfill the following system of equations:

d -d+2

A(dnJ)-A(dn-d+ld-2)Rdn+1=F(v)-Bn+ί,

where the polynomial A(p, q) of degree q in v is defined in Eq. (IV. 14). These equations
allow us to compute recursively the coefficients Rn and Bn.

This theorem is a straightforward consequence of Theorems 4 and 6, using
(VI.4). In order to initialize the recursion relations (VII. 15), we need those Rn and
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Bn which are contained in A(l,d— 1), that is B2, B3...Bd, and R3, R4...,Rd. They are
computed from the series expansion of g(z). It is however useful to observe that
these coefficients are also contained in the continued fraction expansion of gco{z):

(l-Bpz)-Rp+1z
2

(VII. 16)

In fact the situation is simpler when FeSd, because in this case, the coefficients Bv

B2...Bd, R2...Rd can be computed from the continued fraction expansion of

<1)V ' dz F(ί/z '

which is the [d— i/d~\ Pade approximant to 0°°(z). Of course in the continued
fraction expansion of RF

iy we must replace Rdn+1 by zero. More generally, the
continued fraction expansion of:

"<»>w d"zFM(l/z)

has the same coefficients as (VII. 16) up to order dn which means that in R*n), Rdn+1

is replaced by zero.
The continued fraction approach allows us to clarify the question we have left

aside at the end of Sect. IV: our arguments are valid as long as no Rp vanish. When
some Rp vanish, the system of orthogonal polynomials can either be complete, or
some polynomials are missing. Some Pade approximants to g™(z) may also be
missing. Here we know that the \_dn — l/dn~] Pade approximants always exist, and
this is an indication that in the generic situation no Rp will vanish. In fact one can
solve the system (VII. 15) formally in expressing the coefficients Rp and Bp as
functions of the external parameters, namely the coefficients of the polynomial
F(v). Thus Rp and Bp turn out to be rational fractions in these coefficients. The set
of orthogonal polynomials will become singular when the denominators of Rp

vanish. But as meromorphic functions of the coefficients of i7, the system of
equations always makes sense.

VIII. An Illustrative Example: The Quadratic Case

We consider the polynomial transformation:

F(z) = z2 + λ, d = 2.

The function gf°°(z) is the solution of

( V I I L 2 )
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to which corresponds the measure

υ \v
which satisfies

Between the orthogonal polynomials Pn(v) with respect to y°°(ι;) and the iterated
mappings F(n\v\ we have the relation

P2n(v) = F(n)(υ).

The polynomials Pn satisfy

Using Theorem 15, we get

The Eqs. (VIII.7) permit the recursive computation of the Rp starting from

R2=-λ, £3 = 1, (VIII.8)

The preceding results are equivalent to those already obtained in [16] and [17]
from the polynomial map (v — q)2, with the slight modification that the present Rn

is equal to Rn-ι in the above references. We have used in the present paper
notations following Szegδ's classical prescriptions [19], for the recursion relation

Since all Bn vanish, the Pn are alternatively odd or even according as n is odd or
even. The case of A real and less than — 2 was treated in detail in [17]. (Here what
we call λ corresponds to — q in that reference.) In this case, the Julia set is a real
Cantor set made of the accumulation points of the sequences

(vπi.io)

and the values of Rn(λ) have the following properties established in [17]:

Theorem 16. For λ real < — 2, we have

i) 0<R2n+1<Rn+1 and 0<R2n+1£l, (VIII.ll)

ii) \imR

iii) lϊmR{p2k+s)=Rs. (VIII.13)

These results allow us to determine the set of values Cλ taken by the Rn{λ) for
varying n. Each point of Cλ is an accumulation point, and Cλ is made of disjoint
pieces.
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We also mention

Theorem 17. The mapping v2 + λ has a superstable cycle of order k when λ is
solution of the polynomial equation

Π K 2 Λ(Λ) = 0 . (VIII. 14)

The proof starts from an argument due to Myrberg [11] the mapping has a
superstable cycle of order k if λ is such that

= 0) = 0, (VIII. 15)

which reads
P2k{0) = 0. (VIII. 16)

However we see from (VIII.9) that

Pk(0)=-RkPk_2(0). (VIII.17)

Therefore we get

This proves the theorem. Notice that a priori Rp is a rational fraction in λ, but
cancellations occur and (VIII. 18) shows that (VIII. 14) is actually a polynomial
equation in λ. We see that in the quadratic case, superstable cycles are associated
with singular orthogonal polynomial sets, having some vanishing Rn coefficients.
We do not know how to generalize Theorem 17 to higher degree polynomial
mappings.

IX. Conclusion

Our Theorem 13 and 14 establish a rather unexpected connection between
polynomial mappings and orthogonal polynomials on a complex contour encir-
cling the Julia set. We think that one of the most promising consequences of this
connection is the three term recursion relation associated with the orthogonal
polynomials

Pn(υ) = (υ-Bn)Pn^(v)-RnPn_2(v). (IX.1)

Now we interpret this recursion relation in n for fixed υ. This is a linear relation,
permitting the computation of Pn(v) from lower order polynomials. The question
is: what is the asymptotic behaviour of this recursion relation when n tends to
infinity? If we knew the answer to this question, we would immediately obtain the
behaviour of the iterated mapping, by now considering n in (IX. 1) as being equal
to 2P. The difficult problem, of course, is the knowledge of the dependence on n of
the Bn and Rn. This is the reason for the importance of Theorem 15 which allows us
to compute recursively these coefficients, through a product of linear and
homographic transformations. We understand (IX. 1) in some sense as a discrete
analogous version of the classical inverse scattering method for solving nonlinear
partial differential equations [22]. We are looking forward to studying in detail
the behaviour of the coefficients Rn and Bn which play in some sense the role of a
potential in the usual second order differential equation. The connection with the
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one dimensional Schrodinger equation has recently been made in reference [23]
for the quadratic case, producing an interesting, almost periodic Schrodinger
operator with singular continuous spectrum and chaotic extended states. Note
also that the Jacobi matrix H, defined as in (V.35) for the set of orthogonal
polynomials assocated with y00, satisfies an algebraic equation similar to (V.39)

DF(H) = HD. (IX.2)

As noticed in [23], this equation may lead to a promising interpretation in the
framework of renormalization group theory.

After our work was completed, we received a paper [24] devoted to invariant
measures on Julia sets. Although some of the results presented there are parallel to
ours, we noticed the following differences: they consider orthogonal polynomials
with respect to a hermitian scalar product, which does not allow contour
deformations in the complex plane. Here we consider general polynomial transfor-
mations on measures and not only their fixed points. Of course, the results of both
approaches coincide when the Julia set is real.

Appendix

Proof of Theorem 3. We rewrite Eq. (IV.9) for k = nd + 1, nd + 2,..., nd + d, in matrix
form (for d^3):

Σ [_M(dn+ Id- l)\ιVtn\v)=W<n\υ)9 (A.I)
1=1

where
Kn)(v) = Pdn+ι(υ), (A.2)

W[n\v) = Rin + 2Pdn(v), (A.3)

Wί-)

1(«) = 'Pd» + » . ( A 4 )

Wln)(v) = 0 for lc = 2,3,...,d-2. (A.5)

But (A.I) can be inverted, and we get

ψ(v)= ΣίM(dn+l,d- I)],;1 W£\υ), (A.6)
m

which allows us to express Pdn + ι in terms of Pdn and Pdn + d exclusively, due to the
particular form Wln\v). We are especially interested in computing Pdn+1 and
Pdn + (d-iy However, expressing the inverse matrix elements in terms of minor
determinants gives

Δ(dn+ί,

1

Δ(dn+ί,

Rdn+3Rdrι

Δ{dnΛ

Δ(dn+ί,

A(dn+ί.

d-ιy

d-ιy

-ί,d-ί) '

d-2)

d-iy

(A.7)

(A.8)

(A.9)

(A. 10)
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from which we get

^ + d - l W Δ(dn+l,d-l) d ι X H A(dn+hd~l)Fdn + d{V)' ( A J 2 )

Now using (11.15) and (IV. 10), we have

Pdn+M = Adn+1PJv)-Rdn+1Pdn_1(υ). (A.13)

We use (A.11) to express Pdn+ v and (A.12) to express Pdn_ v after changing n into
n—1. Thus we get from (A. 13)

Δ{dn-d+l,d-l)Pdn + d{v) = {Δ(dn-d+l,d-l){Δ(dn+l,d-ί)Adn+ί

-A(dn + 2,d-2)Rdn + 2)

-Δ(dn-d+l,d-2)Δ(dn+l,d-l)Rdn + 1}Pdn(v)

Now using (IV.21) we get (IV. 17) and (IV.20) which proves Theorem 3.

Proof of Theorem 6. Given all Bn and Rn Φθ, as well as the polynomial F(v), we shall
show that a recursive procedure permits the computation of all Bζ and Rζ starting
from those for which n ̂  d. Suppose that we have been able to compute B^ and R^
up to order m = nd included. Then the polynomial Δ(nd — d+l,d — 1) is built only
with known quantities. From (IV.29) we get Rζd+V and from (IV.28) and (IV.30)
we see that ΔF(dn+l,d — 1) and ΔF(dn,d) become known polynomials in v: more
precisely, we have to solve the following equations:

1. (A. 16)

The unknown BF

n+v BF

n+2,...,BF

n+# RF

dn + 2, RF

dn + 3, •• ,RF

dn + d are only present in

the left hand sides. The right hand sides of the preceding equations (A. 15) and
(A. 16), are made with known quantities. Since Δ(p,q) is a monic polynomial of
degree q, there are in fact (d—1) constraints in (A. 15) and d constraints in (A. 16)
so, in principle we can solve for the (2d— 1) unknowns. However we can multiply
(A. 15) by —ΛF

n+ί and then add the result with (A. 16) and we get

AF(dnJ)-ΆF

dn+ίA
F(dn+ld-l)

From (IV.21) the left hand side of (A. 17) is equal to -ΔF{dn + 29d-2)Rd

7

n + 2, a
polynomial of degree (d—2). Then the terms of degree d and d—1 have to cancel in
(A. 17). The terms of degree d cancel automatically because ΔF, F, and Λdn+ ί are all
monic polynomials. The term of degree d—1 allows us to compute Bdn+1 in terms
of the previously computed quantities. Therefore we also express as a function of
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the previously known quantities the combination

-A(dn + 2,d-2)RF

n + 2 = AF(dn-d+l9d-2)RF

n+1-F(υ) + Bn+1

-(v-BF

dn+ί)AF(dn-d+ld-l). (A.18)

The term of degree (d—2) of the preceding equation allows us to solve for Rdn + 2.
Simultaneously we express the polynomial AF(dn + 2, d— 2) in terms of known
quantities provided RF

dn+2 does not vanish. The situation is now as follows. We
have expressed in terms of known quantities AF(dn + 2, d— 2) and AF(dn + l,d—l)
which are expressions containing now (2d— 3) unknows, namely: Bdn+2,
Bdn + 3> -->Bdn + d> Rdn+3> Rdn +4" Rdn+d-

 W e h a v e f o r t h e s e e q u a t i o n s a s y s t e m of t h e

following from:
[AF{dn + 2,d-2) = known, (A. 19)

\AF(dn+Ud-l) = known. (A.20)

Therefore we are back to the same system of equations as (A. 15) and (A. 16) with
the following modification: the indices of AF in the left hand side have been
increased by one for the first and decreased by one for the second, the number of
unknowns has been decreased by two. Clearly the procedure applied to the
systems (A.15) and (A.16) can be repeated to the systems (A.19) and (A.20), which
will solve for BF

n + 2, Rζn + 3, and get AF(dn + 3,d-3) and AF(dn + 2,d-2\ decreas-
ing once more the number of unknowns by two. Clearly the procedure can be
repeated until we get BF

n+d from AF(dnΛ~d— 1,1). The procedure will break down if
any R^ vanishes: we have thus completed the proof of Theorem 6.
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