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Abstract. We exhibit a class of quasi-periodic unbounded potential in the v-
dimensional discrete Schrόdinger equation, for which the spectrum is only
pure point, with exponentially localized states and a dense set of eigenvalues in

Introduction

In a recent paper Fishman et al. [7] gave a solution of the Schrόdinger equation

9 (1)

where ω is an irrational number, xeIR and λ>0. Actually, provided ω satisfies a
diophantine condition, they gave an explicit expression of the eigenfunctions
which turns out to decrease exponentially, and an implicit expression for the
corresponding eigenvalues, leading to a dense set in the spectrum.

This result was interesting both because the solution was complete and also
because there is no continuous part in the spectrum. Examples of discrete non-self-
adjoint operators with only pure point spectrum were already known by Sarnak
[11]. However in the self-adjoint case, with a bounded quasi-periodic potential we
expect in general that aside from the pure point part there is a singular continuous
spectrum. This seems to be the case for the almost Mathieu equation :

(n-l) + 2λcos2π(x-nω)Ψ{n) = EΨ{n), (2)

where it has been proved by Bellissard et al. [2] that if λ is big enough, and ω
satisfies a diophantine condition

-~, σ>l, (3)
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most of the spectrum is pure point. However if x is chosen very close to the set
{nω + rn n, me Έ}, namely if there is an infinite sequence qn, pn of integers such that

\x-qnω-pn\<—, n = l , 2 , . . . , (4)

a tunneling effect may occur which may give extended states.
The same phenomena is observed if ω is a Liouville number such that an

infinite sequence exists for which

kω-pJ<j^p rc=l,2,..., (5)

In this situation Gordon [8] and Avron and Simon [1] proved that there is no
eigenvalue, all the states are extended, and the spectrum is singular continuous.

It is therefore interesting to find a class of potentials for which only pure point
spectrum arises.

The existence of such potentials was recently proved via the inverse spectral
method and solving the small divisor problem by Craig [5].

In a sense the inverse method allows an easier control of resonances at large
distance, but the price to pay is that the potential itself is not explicitly known,
even though the method is constructive. In the same way Poschel [9] using the
Craig method is able to construct a large class of limit periodic potentials with
pure point spectrum, and dense family of eigenvalues in a set which can be
essentially a Cantor set of zero Lebesgue measure, or a full interval.

In our work we consider the direct problem. We construct a class & of quasi-
periodic functions having singularities, containing the Fishman et al. and the
Sarnak examples for sufficiently large coupling, for which the Schrodinger
operator:

ε Σ Ψ{n-e)+V(x-ωn)Ψ{n) = EΨ{n), neT (6)
1*1 = 1

has only pure point spectrum at small ε with exponentially localized states, and a
dense set of eigenvalues in the real line. In Eq. (6), V is a function in the class 0>
and is periodic of period 1, x is a real number, and if n = (nv . . .,n v)e2 v, then

\n\= Σ K\,
(7)

V

ω n = Σ ωμ nμ.

Here ω is a v-dimensional vector obeying a diophantine condition:
σ>v \ωn + m\^-r^- \fmeZ, neΊL\ (8)

\n\σ

Of course the diophantine condition is essential. Otherwise we expect a singular
spectrum to occur [1,7].

As in [2] we use essentially techniques based on the Kolmogoroff, Arnold
Moser method, see also [6, 10].
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It has also been used by Craig however we can perform estimates for the direct
problem because of the properties of the potentials in the class 0*.

Essentially F e ^ has the property that

\V(x-ωn)-V(x-ωm)\-ι^K\n-m\σ. (9)

This diophantine estimate is exactly the condition needed in a perturbation theory
to avoid a tunneling effect at large distance.

The paper is organized as follows. In the first section we describe the class &
and its properties. In the second one, we introduce the technical machinery,
namely an algebra of holomorphic kernels. A wider algebra has already been used
by Craig [5], but these algebras occur naturally in almost periodic Schrodinger
operators as pointed out by Bellissard and Testard [3]. The third section is
devoted to the precise exposition of the results. The last section concerns the proof
of the main theorem.

I The Class &>

If R>0, 2tfR denotes the set of period 1 holomorphic bounded functions on

@R = {ze<£,\J^z\<R}, (LI)

equiped with the sup-norm

| | / | | Λ = s u p | / ( z ) | . (1.2)
ze2)R

Then Θ>R is the set of period-one meromorphic functions don 2)κ such that there is
a constant C > 0 with

\d(z)-d(z-a)\^C\\a\\, VαelR, Vze@R (1.3)

with the notation:

| |fl | |=inf|α + m|. (1.4)

Then \d\R is defined as the biggest possible value of C in (1.3). 0* is then (J 0>R.
R>0

Examples of elements of 0 are the following:

Example 1 (Sarnak [11]).

Then

|d 1 | J ι ^4exp(-2πR). (1.5)

Example 2 (Fishman et al. [7]).

with

) " 1 . (1.6)
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The set 3PR is not a linear space, however, we get immediately:

Lemma I.I. Ifde^R then λde0>R, VAeC, λ + 0 and

\λd\R = \λ\\d\R.

On the other hand 0> is stable under some perturbations:

Lemma 1.2. Let d be in 0>R and g be in J^R. IfR>ρ>0is such that

\\g\\R<Q\d\R,

then d + ge0>

R_ρ and

Proof.

never

By (1.8),

vanishes.

the function

φ(z) = d(z)-d(z-a) + g(z)-c

For

\g{z)-g(z-a)\
II II ' — P
\\a\\ ze@R dz

l(z-a)

z) ->

using the Cauchy formula, if ze3)R_ we get

dz

1

2iπ{z'-z)

where y is any path contained in $)R and enclosing z. Thus:

dgivι ^

" 2πdist(z,y)2

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

Since ze3)R_ρ, we get dist(z,y)^ρ and choosing y as the circle of radius ρ around z
we get:

d9 ^ 1 n ιι

Thus, if |l6f|[Λ<|ίί|Λρ, φ{z) never vanishes. On the other hand

inf - inf
\d(z)-d(z-a)\

(1.14)

(1.15)
Λ - ρ

which gives (1.9)
If/is holomorphic in some domain of C we note:

Lemma 1.3. Let f be holomorphic on 2>e. We assume f=f* and

\f(z)-j(z')\^C\z-z'\, Vz,z'e$β, (1.17)

where C>0. Then ifde^R, d = d*, there is Re>0 such thatf°de^>

Rg and

\fod\Rβ^C\d\Rβ. (1.18)
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Proof. Since lmd(z)->0 as Imz-»0, there is Rρ>0 such that if \lmz\<Rρ then
|Imd(z)|<ρ. Therefore if ze@Rρ,fod(z) is well defined and meromorphic.

Now:
\fod(z)-fod(z-a)\^C\d(z)-d(z-a)\^C\d\RQ\\a\\. (1.19)

Example 3. Taking/(z) = z + fz 3 and d2 as in Example 2, we get:

/od(z) = tanπz + ftan 3πz

and

\f°d\R>0 for K small enough.

Lemma 1.4. Ifde&R, d = d*, there is a unique xe[0,1[ such that the real poles of d
are: {x + n, neΈ}. Moreover d is strictly monotonic in each interval [x + n, x + n+\\_
and the set of values of d(z), zeIR is the real line IR

Proof. If d had no pole on IR, then its restriction on IR would be c€1. Since

\d{x)-d{x-a)\~^\d\R\\a\\, VαeIR, the first derivative —-d on IR would be strictly

monotonic. But this is impossible because d has period 1. Thus d has real poles.
Since d is meromorphic, there is only a finite number of them in each interval of

length 1. Let 0^x1^x2^...^xN<l be the poles in [0,1[. We claim that ΛΓ=1.
For d is certainly strictly monotonic in each interval ]x f ,x i + 1 [ (with the

convention xN+1=x1 + l). Then, for a given selR, there are yv y2,...,yN;
j;.e]χ.,χ.+ 1 [ such that d(y^) = s and clearly if N> 1, \\y. — yi+ί\\ > 0 for some ί. This
is contradictory with (1.3).

II. The Algebra of Holomorphic Kernels

For r>0, R>0 and veN, we denote by ^Rl%v (or tyR r if no confusion arises) the
set of kernels m = (m(z,n))neZv, ze@R, where for each neZv, the map zκ>m(z, n)
belongs to Jf^ and

N I Λ , Γ = S U P ΣMZ'fc)!*1"1*1 ( Π i)

is finite. Then <ΆR γ is a Banach space.
Let now ω be a v-dimensίonal vector

ω = (ω1 ?...,ω v)eIR v. (II.2)
V

For n = (n 1 , . . . ,n v )eΓ, we denote by ω n the inner product ^ ωμnμ, and
μ = l

\n\= Σ NJ
The vector ω is rational if there is n + 0 in Z v such that ω-neΈ. Otherwise it is

irrational. In the later case the set of points {ω-n + m; neΈ, meZ} is dense in Rv.
There is a set of full-Lebesgue measure of vectors in IRV for which there are
0, σ>v
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In this case ω is called diophantine. On the other hand, ω is called a Liouville
vector, if it is irrational and if there is an infinite set {nk)k>0 in Zv for which

\nk\

Giving ωeIRv, we define in 91^ r an algebraic stucture by:

(m1 m2)(z,n)= ^m 1 (z,/)m 2 (z-ω/ 5 n-/). (II.5)

A simple calculation shows that

l l m r m J λ ^ l l m i l l λ r i m 2 l l κ , r (π-6)

An involution is given by

m*(z, n) = m{z-ωn,~ή). (II. 7)

If we define a new norm by

then 9ίR r becomes a Banach *-algebra denoted by 2ί£ r.
Of course 2ί^ r increases when R and r decreases.
Examples of elements of 9ί^ r are given as follows:
(i) if #e^fR, then g can be considered as an element of 91^ r by putting:

Such a kernel is called diagonal
(ii) If eeZv, ue is the kernel

ue(z,n) = δn>e. (11.10)

One can easily see that

(a) u0 = 1 is an identify,

(b) u*ue = ueιi* = l , VeeZ\ (11.11)

(iii) the Laplace kernel is then given by

A= Σ uβ (Π.12)
e;\e\ = l

A canonical set of representations of 5ί^ r in 12(ZV) is given by

Πz(m) Ψ(n) = Σ m(z - ωn, I - n) Ψ(l), (II. 13)
/eZ"

where fe l 2 (2 v ) , ze3>R and m ε 3 t ^ .
We can check immediately:

(i) ||7I,(m)||^||in||RiΓ, Vze® κ,

(ϋ) Πz(m1 inz) = i7z(in1)77z(m2), (11.14)

(iii) Πz(m*) = Π-(m)*.
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In particular, any diagonal element of 91^ r gives rise to a multiplication operator,
i.e. a diagonal matrix on Έ.

In view of our problem one will extend Πz to 0>R by means of unbounded
operators. Namely, if de^R, we define @z(ύ) to be the set of vectors Ψe\2(Έv) such
that Ψ{n) = 0 whenever z-nω is a pole of d, and Σ\ά(z-nω)Ψ{n)\2< + oo.
Then if

Πz(ά) Ψ(n) = d(z - nω) Ψ{n) (II. 15a)

if ά(z — ωn) is finite and

Πz{ά)Ψ(n) = O otherwise. (II. 15b)

If d = d*, then Πz(ά) is self adjoint when z e R
We remark that for all z except on a countable set, ^ z(d) is a dense subspace of

/2(Z). Whereas if z is such that for some n0, (which is unique by Lemma 1.4), z—ωn0

is a pole of d, @z(d) is dense in the hyperplane Ψ(n0) = 0. In this latter case, it is not
difficult to see that if Pno denotes the projection on this hyperplane, it commutes
with any operator of the form Πz(d + m) me 91^ r, and the results of the next section
have an obvious extension to this case.

We shall consider the set ?l£ r obtained from SΆR r adding the elements of 3PR.
In this set-up, if Ve@*R the Schrδdinger operator given by Eq. (6) of the

Introduction can be seen as the operator ΠX(A + V).

III. The Main Results

Theorem 1. Let given R>0, r > 0 , ωe!Rv satisfying the diophantine condition:

l|ω rc||^-p- with y>0, σ>v MneΈ. (III.l)

// Ve 0*R, there is a positive constant εc, depending on R, r, y, σ and \ V\R only, such

that i f m e ^ , . , | |m||Λ r<εc there exists an invertible element ue$I^ r and
with

(1)

(2)

(3) V-VE3^RI2 and " " " " ' " " "

If in addition m + Vis self-adjoint, then u is unitary and V— V*.

As a first consequence we note:

Corollary 1. Let m and V as in the previous theorem. Then the operator
Hz = Πz(m+ V) has a complete set of eigenvectors which are exponentially localized.
The corresponding eigenvalues are the set

{V(z-ωn);neZv;z-ωn is not pole ofV}. (III.3)
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Remark. The completeness of the set of eigenvectors may be understood in the
hyperplane defined by @z(ά). The domain does not depend on m.

Corollary 2. Let m and V as in Theorem 1 with in addition m = m*, V=V*. Then
VxelR, Hx — Πx(m + V) is self-adjoint its spectrum is 1R, and it is only pure point. All
its eigenvectors are exponentially localized.

Some Applications

1) If one considers one of the examples treated by Sarnak where V(z) = exp 2iπz,
the operator

Hz Ψ(n) = εΔΨ + e2ίπ(z~ ωn) Ψ{n) (III.4)

has only point spectrum for ε\\A\\R r<εc, with exponentially localized eigenstates.
The special case y = 1 and

where α is a diophantine number in IR, is interesting because, Sarnak, [10], proved
that if ε < 1 the spectrum is pure point with exponentially localized eigenstates,
whereas for ε > 1 we have only an essential spectrum, with eigenfunctions being of
Block wave types. Moreover, if ε< 1 the spectrum is the unit circle S1, whereas if
ε > l it is equal to |β|S1.

One could also prove (Bellissard [4]) that if ε= 1 the spectrum is the unit disk.
Sarnak's result is now a consequence of Theorem 1 (Corollary 1).

2) The Schrόdinger operator of Fishman et al. belongs to the class described in
Corollary 2 provided s\\A\\Rfr<εc.

Proof of Corollaries ί and 2. Corollary 2 is an immediate consequence of
Corollary 1 and Lemma 1.4. Let us now prove Corollary 1.

By Theorem 1, there is an operator Uz = Πz(u) such that (at least formally):

Clearly Vz is a multiplication operator, and therefore the eigenvalues are

{V(z-ωn),neZ\z-ωn is not a pole of V}. (III.7)

We remark that since V~ Ve^Rj2, the poles of Vcoincide with the poles of Fin
9Kίl. ^

Since Ve^R/2 one gets

and therefore each eigenvalue has multiplicity one. The corresponding eigenstate
is given by

Ψβ) = U;"δβ) = vΓ\z-\ω,n- I) (III.9)

[here <5n(Q = <5ΛJ. Since U ~ 1 G 9 I ^ r we get an exponential decreasing
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However, (III.6) is not well defined. Indeed the left hand side is defined only on the
domain \J~ιQ)z{y\ Clearly 2Z(V) and 2Z(V) coincide thanks to Theorem 1, (3),
and from (III.6) one gets:

z z z V), (III.ll)

because Uz is bounded. Thus:

In much the same way one gets Hz= UZ

1VZUZ on U β)z(y) and one finds:

Uβz{ V) = Uβz{ V) C ®z( V). (III. 13)

Thus @Z(V) is invariant by Uz. Therefore the eigenstate given by (III.9) belongs to
2>Z{V) and since Uz has a bounded inverse, they are complete [dense in the closure
of @Z(VJ].

IV. The Proof of Theorem 1

Let Km be as in Theorem 1. Without loss of generality we can assume

m(z,0) = 0. (IV. 1)

For otherwise the function m(z, 0) can be absorbed in V.
We define a kernel w as follows:

if n = 0, w(z,0) = 0,
(IV.2)

if nφO, w(z, « ) = — — — -.
V(z)-V(z-ω-n)

Lemma IV.l. For any <5>0, w e ^ r__δ and

Moreover, if m = m*, V= V*, then w = — w*.

Proof. It is enough to estimate ||w||^ r_δ. We get [thanks to VegPR and Eq. (III. 1)]

Σ \w{z,n)\e{r-δ)\n^~\- Σ \n\σe-δ{nl\m(z,n)\erW. (IV.4)

Since

one gets immediately (IV. 3). The end of the lemma is easy to check.

Lemma IV.2. One has

eyv(V+m)e-yy = V+m, (IV. 6)

L^s, V(5>0 and
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Proof Using Definition (IV.2) of w one sees that

Thus,
00 GO

ew(F+m)β~w=F+ Σ AkJV)lk\ + Σ Ak

yv~\m)l{k-\)\
k — 1 h — 1

oo

k=ί

Since weSΓjJ r_δ and me 21^ ,-^^-κ r-<5> *** belongs to 91^ r_δ once it is proved that
the series converges. But this is easy to check since:

M w ( m ) | | Λ f r _ ^ 2 | | w | | R f r _ J | m | | Λ i r _ , , (IV. 10)

and therefore

l|m|| =

We now define V and m as follows:

F(z)=F(z) + m(z,0),

m(z, n) = m(z, n) if n φ 0,

= 0 otherwise. (IV. 12)

Then, thanks to Lemma 1.2 we get:

Lemma IV.3. If R>ρ>0 is such that

\\mR-r-6<Q\V\R9 (IV.13)

then VE& ciΐiύ \\n\\\

The strategy now is very simple. Starting from Ve&R and meϊ l^ r satisfying (IV.l),

we get Ve0*R_ρ, ihe2X^_ρ r_δ satisfying again (IV.l), provided the estimate (IV.13)

is true. We thus proceed recursively by defining a sequence {Vvmz)ί = 0 x with:

J/̂  = J/Jmo = m, and Vι+ί = Vι,mι+1=ήιι. (IV. 15)

Since at each step estimates must be checked we introduce the following
parameters :

r ~
( I V 1 6 )

r R
This choice is given to get Σ^ι= ~-> Σ@ι= ~~

o 2 0 2
Now we define rt, Rι by:

r r _ _ R R



Localization 475

We assume that if / ^ L we have been able to construct Vι,mι using (IV. 15) with

We want to construct VL+vmL+1 using (IV. 15). First of all, wL + ί is constructed via
Eq. (IV.2) and we get (Lemma IV. 1):

σ(L + 2)

From Lemma IV.2:

C{σ)2σ{L+2\2\l2C{σ)^
<

L

s" ( i + 2 )εL . (IV.20)

In view of the Lemma IV.3 we need the constraints

fiL+1<^, (IV.21)
2L+2 '

and
2 L + 2

dL+1*dL-εL+ι-—. (IV.22)

In order to solve this set of recursive estimates let us introduce the sequence

1

A T
ηo>O, A>0, ηι= Λ , ί + 3 ) (η0S

σA)2'. (IV.23)

We check immediately (the proof is left to the reader).

Lemma IV.4. ηt satisfies the recursion relation:

ηι+1=A2^ + 2^f. (IV.24)

Lemma IV.5. (i) lfηoύ(%σA)~\ then l i m ^ = 0.
Z-> oo

(ii) // in addition η^4~σ, then

2σil + 2)ηtSl, V/^0. (IV.25)

Let us define εc as the maximum value of η0 such that:

(i) ,o*(8Mr, ,0^4- , ( i v 2 6 )

(ϋ) Σ?+\^d0.
ί = 0 Z

We shall choose A by:

Lemma IV.6. Assume that ηo=εo<εc, and that if ί^l^L, one has:

(i) εz = >7/>
(IV.28)

(ϋ) ^H-U2"1^
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Then, εL+1 and dL+1 satisfy again (IV.28).

Proof Since εL^ηL, using Lemma IV.5 one gets:

2σ{L+2)εL^l. (IV.29)

Moreover, by (IV.28) and (IV.26) we have:

dL>^-. (IV.30)

Thus from (IV.20), (IV.24), (IV.27) we obtain:

From (IV.22) we get :

^ i^L-V^i^o" Σ 2i+1^- (IV.32)

As a conclusion if β<εc the sequence (V^m^ exists and since

, ^ | , r^r-, V/, (IV.33)

lim||m ; |fK / 2 i,./ 2=0, (IV.34)
l—> GO

ι ^ i ι m , Ml, (IV.35)
i = 0

and F— F=limgfz exists in ̂ Λ / 2 . For each ίeN

(IV.36)

with

W; W7 1 \V i /TXT T7\

Ul = e"le ί " 1 . . . β > 1 . (IV.37)

If F* = V, m* = m, ux is unitary.

Thanks to (IV. 19) this product converges as /-»oo to ue9I£ / 2 j r / 2 and

(IV.38)

Finally, the estimate (IV.26)~(IV.28) gives :

\V\Rί2^\\V\κ. (IV.39)

This achieves the proof of Theorem 1.
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