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Abstract. Caustics formed by timelike and null geodesics in a space—time M are
investigated. Care is taken to distinguish the conjugate points in the tangent
space (T-conjugate points) from conjugate points in the manifold (M-conjugate
points). It is shown that most nonspacelike conjugate points are regular, i.e. with
all neighbouring conjugate points having the same degree of degeneracy. The
regular timelike T-conjugate locus is shown to be a smooth 3-dimensional
submanifold of the tangent space. Analogously, the regular null T-conjugate
locus is shown to be a smooth 2-dimensional submanifold of the light cone in the
tangent space. The smoothness properties of the null caustic are used to show
that if an observer sees focusing in all directions, then there will necessarily be a
cusp in the caustic. If, in addition, all the null conjugate points have maximal
degree of degeneracy (as in the closed Friedmann—Robertson—Walker
universes), then the space-time is closed.

1. Introduction

Gravitational focusing plays an important role in general relativity both obser-
vationally through the discovery of the gravitational lens effect (Walsh et al. 1979
[1]) and theoretically in the proofs of the singularity theorems (Hawking and Ellis
[2]). A non-uniform gravitational field gives rise to tidal forces which tend to have a
converging effect on a bundle of light rays. It is the attractive nature of the
gravitational force which causes a bundle of rays to converge and focus rather than
diverge. An observational effect of focusing is that objects are magnified as in a lens.
In general, the magnification depends on the transverse direction. This means that
images will be distorted; for example, a circular galaxy may appear elliptical.
The points where geodesics refocus are called conjugate points [2, Chapt. 4]. The
geometric locus of such points, the conjugate locus, is said to be a caustic. The proofs
of the singularity theorems depend on the existence of a pair of conjugate points
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along some geodesic. However, there is evidence that information on the global
structure of space-times can also be gained from the global structure of caustics. In
Rosquist [3], [4], properties of the conjugate locus were used to obtain restrictions
on the topology of the universe under certain conditions. In some cosmological
models (the rotating space—time homogeneous Class III models [6] with the well
known Godel model [2] as a special case), the conjugate locus of null geodesics is
related to the causal structure through the existence of a closed null curve in the
caustic In this paper we investigate general properties of caustics formed by
nonspacelike geodesics in a space—time.

We deal with pseudo-Riemannian manifolds which are Hausdorff, paracompact,
C* and has a C® non-degenerate metric. We adopt the usage that a Lorentzian
manifold or space-time has metric signature (— + ... + ) while a Riemannian manifold
is characterized by a positive definite metric. The conjugate locus of a Riemannian
manifold has been extensively investigated in the past. A high point was reached in
1965 when Warner [5] showed that the regular conjugate locus (characterized by
constant degree of degeneracy) in the tangent space is dense in the conjugate locus
and that it is a smooth submanifold with the induced topology in the tangent space.
Warner also gave canonical coordinates for the exponential map near regular
conjugate points. Our goal is to obtain Lorentzian analogues of Warner’s theorems
(excluding canonical coordinates). As a result, two new global theorems for space-
times will emerge.

The outline of the paper is as follows. The fundamental properties of conjugate
points are reviewed in Sect. 2. The timelike conjugate locus in the tangent space is
discussed in Sect. 3 and the null conjugate locus in the tangent space is examined in
Sect. 4. Finally in Sect. 5, we treat the manifold conjugate locus, the caustic.

All manifolds will be n-dimensional unless otherwise specified. We follow the
notation of Hawking and Ellis [2] as closely as possible. In particular, the
differential of a map f will be denoted by f,.. We always parametrize geodesics by an
affine parameter. Unlike [2], however, the tangent vector field along a geodesicy will
be denoted by y’. We write covariant differentiation of a vector field V along yas V.
We also deviate from [2] in our notation of scalar products which are written as
{ , »>.Throughout the paper we concentrate our attention on geodesics emanating
from a fixed point p in a manifold M and denote the exponential map at p by exp.
The tangent space at p is denoted by T, or T,(M) when we wish to emphasize the
manifold. We will often consider tangent spaces of 7, considered as a manifold in its
own right. Thus if K is an element of T, then the tangent space at K is written as
T(T,).

2. Conjugate Points and Jacobi Fields

In this section we review the basic properties of conjugate points and Jacobi fields.
Our arguments will apply both to the Riemannian and Lorentzian cases unless
otherwise stated. Let y:[a,b]— M be a geodesic with y(a) =p and y(b) =g. Then
y(v) = exp((v — a)W), where W=1y'(a). In the literature, a conjugate point could be
either an element of the tangent space or a point in the manifold. Since we want to
differentiate between these two aspects we say that V = (b —a)WeT, is T-conjugate
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if exp is singular® at V. Further, if V is T-conjugate, then g = exp(V) is said to be M-
conjugate to p along y. Conjugate points are related to solutions of the geodesic
deviation equation or Jacobi equation

Z' +R(Z,K)K =0, 2.1)

where K = 9" and R denotes the Riemann tensor. Such solutions are called Jacobi
fields. Equation (2.1) is a second order linear differential system. Therefore, the space
of all (smooth) Jacobi fields along y is 2n-dimensional. For future purposes we define
1.(y) to be the space of continuous piecewise smooth vector fields along y which
vanish at p and y(¢). In particular, if t = a then a vector field is in y, (y) if it vanishes at
p. Let J,(y) denote the space of smooth Jacobi fields in y,(y). Then dim J,(y) =n.
Also, let J,(y) be the space of smooth Jacobi fields in i, (y). The T-conjugate locus,
denoted by T'(p), is the set of all T-conjugate points in 7, and the M-conjugate locus
is the set of all points in M which are M-conjugate to p along some geodesic. The T-
conjugate locus, being the set of singular points of exp, is a closed set. Sometimes
when there is no risk of confusion we will drop the prefixes 7- and M- for conjugate
points.

The conjugate order or multiplicity or degree of degeneracy of a T-conjugate point
V. denoted by ord(V'), is the dimension of the null space of exp at V. It can be shown
that the order is equal to the dimension of the space of Jacobi fields along y which
vanish at both p and exp(V) (Cheeger and Ebin [7, Corollary 1.18]). Therefore,
Jacobi fields can be used to study conjugate points. Since dim J,(y)=n, the
conjugate order is at most n. Let K =v’. Then (v — a)K is a Jacobi field in J,(y) which
does not give rise to conjugate points. Hence the maximal conjugate order is n — 1.
This limit cannot be further reduced in general. For example, on the n-sphere, the
antipode is a conjugate point of order n — 1. If ord(V) > 1, then we say that the T-
conjugate locus is degenerate at V.

Arayin T,isaliner:[0,00) » T, with H(u) = uV for ue[0,00), where Ve T, Ifrisa
ray, then u —exp(r(u)) is a geodesic. There is always a first T-conjugate point along
any givenrayin T,. This follows from the fact that T'(p) is a closed set. If J is a Jacobi
field and K =9, then < J,K>»" ={J",K) = —{(R(J,K)K,K ) =0, where a prime
denotes covariant differentiation along y. Hence there are constants ¢ and d such
that {(J,K» = cv + d. Therefore, if J is smooth and { J,K) vanishes at two points,
then (J,K) =0. We have proved the following lemma:

Lemma 2.1 (Cheeger and Ebin [ 7], Proposition 1.12). Let y :[a,b] - M be a geodesic
and J a smooth Jacobi field in J,(y). Then {J,y"> =<{J,y"> =0.

Define J} (y) = {Je J,(y):{J,y"> =0}. By Lemma 2.1, only Jacobi fields in J; (y)
(i.e. only Jacobi fields perpendicular to y) can give rise to conjugate points. Another
useful lemma is:

Lemma 2.2 (Cheeger and Ebin [7], Proposition 1.13). If q is not conjugate to p along
Y, then a Jacobi field along y is uniquely determined by its values at p and q.

1 If Nand M are n-dimensional manifolds, thenamap f: N — M issaid to be singular at a point ¢ in N if
the linear map f, is singulai at ¢, that is if f, :T,(N)— T,.,(M) is not an isomorphism
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Let ce(a,b) be a number such that y(c) is not conjugate to p along y. Then, by
Lemma 2.2, any Jacobi field in J}(y) is uniquely determined by its value at y(c).
Therefore, there is a one-one correspondence between J*(y) and the orthogonal
complement of y’(c) in T, . But the orthogonal complement of a non-zero vector K
is always (n — 1)-dimensional. This applies both to Riemannian and Lorentzian
space. The argument shows that dim J; (y) = n — 1, so that we again have the result
that the order of a conjugate point is at most n — 1. If K is a null vector, then K is
contained in its own orthogonal complement. Thus for a null geodesic y(v), J - (y)
contains the Jacobi field (v — a)K, where K =y’. But (v — @)K is not in J, (7). Hence
the maximal order of a conjugate point along a null geodesic reduces by oneton — 2.

We shall need the analogue of Lemma 2.2 for Jacobi classes along a null geodesic
(see Appendix 2 for the definition of Jacobi classes).

Lemma 2.3 (Beem and Ehrlich [13, Lemma 8]). If y:[a,b] — M is a null geodesic,
and y (b) is not conjugate to y(a), then a Jacobi class along y is uniquely determined by
its values at y(a) and y(b).

3. The Timelike 7-Conjugate Locus

Following Warner [5] we say that a timelike T-conjugate point Ve T, is regular if
there is a neighbourhood B of V' such that every ray in T, contains at most one 7-
conjugate point in B. The set of all regular T-conjugate points will be denoted by
R(p). A T-conjugate point which is not regular is said to be singular. Roughly,
singular conjugate points occur at intersections in the conjugate locus.

We wish to prove space-time analogues of the following two theorems:

Theorem 3.1 (Warner [5]). Let M be a Riemannian manifold. Then the regular
conjugate locus of a point p, R(p), is a (n — 1 )-dimensional submanifold with the relative
topology. Further, R(p) is an open dense subset of T(p) and for all VeR(p),
Ty(T,) = Ty(R(p)) @ Ty (r) where Ty(r) is the tangent space of the ray v—r(v) =vV
at V.

It follows from the last statement of Theorem 3.1 that R(p) cannot be parallel to a
ray in T,.

Let N(V)eT,.(T,) be the null space of exp at V. If VeR(p) we let T(V) be that
subspace of N(V) which is tangential to R(p) at V, i.e. T(V) = N(V)nT,(R(p)). If
ord(V) =k, then T(V) has dimension k or k — 1.

Theorem 3.2 (Warner [5]). Let M be a Riemannian manifold. If VeR(p) and
ord(V)=k> 1, then dim T(V)=k.

That is, if V is a regular T-conjugate point of order > I, then the null space of
exp, is tangential to the conjugate locus at V.

Warner also gave canonical coordinates for exp near all regular conjugate points
which have neighbourhoods in which the null space is everywhere tangential to the
conjugate locus. We make no attempt to construct canonical coordinates in this
paper. However, it should be remarked that Warner’s construction is independent of
the metric and therefore applies to the timelike case. Special problems arise in the
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null case because the null vectors do not form an open set in the tangent space.
Warner’s theorems do not depend on the Riemannian structure as such but only
on the following properties of the exponential map:

(RI)exp:T,—M is C* and exp, (' (v)) # 0 for all v, for every ray r(v) in T, (here
¥'(v)eT,,,(r) denotes the ray tangent).

(R2) The regularity property* of conjugate points: For any VeT,, T,,w is
spanned by exp, (T, (T,)) and (9/dr) exp, (N(V)), where d/0r is a radial derivative.
Explicitly, put F =exp and let (x',...,x") be coordinates on a neighbourhood of V
such that r = x" is a radial coordinate. Then exp,, can be represented by the matrix
(OF'/0x’), where the F' are components of exp in some coordinates at exp(V). Also,
(0/0r) exp,, has the matrix representation (0*F'/drox’).

(R3) The continuity property of conjugate points. Roughly, this means that
conjugate points depend continuously on the initial direction of the geodesic. (An
exact statement is given in Proposition 3.4.)

When formulating Warner’s theorems for Lorentzian manifolds, the causal
character of the geodesics is crucial. Indeed, as will be seen later on, (R2) and (R3)
cannot be proved for spacelike geodesics with the methods used for nonspacelike
geodesics. It could well be that (R2) and (R3) do not hold in the spacelike case (cf.
discussion of how conjugate points vary with initial conditions in Penrose [14,
p. 64]). Furthermore, since the maximal order of null conjugate points is one unit less
than the maximal order of timelike conjugate points and since the nonspacelike rays
do not form an open set in T, we have to treat the null and timelike cases separately.

We will show that (R1)—(R3) are valid in the nonspacelike Lorentzian case. The
only exception concerns the first part of (R1), namely the domain of definition of exp.
In the timelike case one must consider the restriction of exp to future (or past)
directed timelike vectors in T,. However, this does not in any way affect Warner’s
argument. In the null case, exp must be restricted to N, (or N, ), where N,
(respectively N ') is the set of future (respectively past) directed null vectors in T,,.
Warner’s argument still goes through, however, provided that one works with
neighbourhoods in N instead of in the full tangent space T, and that one makes
necessary dimensional changes. For example, the dimension of the regular null
conjugate locus is n — 2.

Therefore to carry out our program of proving theorems analogous to 3.1 and
3.2 for space-times it suffices to establish the validity of the second part of (R1)
together with (R2) and (R3) in the nonspacelike case.

Starting with (R1), we note that in the Riemannian case, the second part of (R1)
follows from the fact that the tangent vector of a geodesic has constant length. The
same argument applies to timelike and spacelike geodesics, so that property (R1) is
valid in those cases too. Now consider a null geodesic. In this case the length of the
tangent vector is always zero. Hence the length cannot be used to determine whether
the tangent vector vanishes or not. Instead (R1) follows from the observation thatifa
tangent vector y' is zero at one point then there would be an infinite proportionality
factor beween the affine parameter v and another affine parameter u with d/du # 0 at

2 This term 1s introduced here by the present author
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the same point. To see that, suppose that y (v) is a geodesic and that y'(a) = 0. Let K
be a non-zero null vector at y(a) such that the geodesic u— exp(uK) is the same
geodesicas y(v) and exp(0K) = y(a). Then u = Av where A4 is a constant. But then also
K =(d/du) (a) = A~ *(d/dv) (a) = A~ 'y’ (a) = 0 which is a contradiction. Hence (R1)
applies to null geodesics as well. Finally we note that the second part of property
(R1) can also be expressed by the statement that the null space of exp,, is never
parallel to a ray in 7.

Now we turn to property (R2). We prove the regularity property for the
Riemannian and the Lorentzian nonspacelike case together to indicate where the
differences arise. Warner showed that (R2) is equivalent to a property of Jacobi fields
which is expressed by the following proposition:

Proposition 3.3 (Regularity Property). Let y:[a,b]>M be a geodesic in a
Riemannian manifold or a nonspacelike geodesic in a Lorentzian manifold. If y(a) = p,
then T,, the tangent space at q = y(b), is spanned by the values at q of the J acobi fields in
J () together with the values at q of the derivatives of the elements in J (7).

Before proving the proposition recall that J, (y) is the space of Jacobi fields which
vanish at both p =y(a) and g =7y (b). Also k = dim J,(p) is the order of g as an M-
conjugate point to p along y. Further we define

A, ={VeT,:V=J'(b) forsome JeJ,(y)},
B,={VeT,;:V=J(b) for some JeJ, )}

Then B, is the subspace of T, which is spanned by the values at g of the Jacobi ficlds
in J,(y) and A4, is the subspace of T, which is spanned by the values at g of the
derivatives of the Jacobi fields in J,(y). Proposition 3.3 states that A, @B, =T,.
Note also that the proposition is trivial if g is not conjugate to p along 7.

Proof of Proposition 3.3. Let Z,eJ,(y)(i=1,2,...,k) be a basis for J,(y) and choose
Weld (y)i=1,2,...,n—k) such that {Z,} and {W,} together form a basis for
J,(y). Then the W, are not in J,(y).

We assert that the Z/(b) are linearly independent. For suppose that there exist
numbers a,(i =1,2,...,k) such that ) ¢, Z{(b)=0. Put Z =) a,Z;. Then Z(b) =
Z'(b) =0, whence it follows that Z and hence all the q; are identically zero. Thus
dim 4, =k and {Z/(b)} is a basis for A4,

Further, {W(b)} constitutes a basis for B,. For suppose that there exist b,(i = 1,
2,...,n—k) such that Y bW, (b)=0. Put W=} bW, Then WelJ(y) implying
that W and hence all the b, are identically zero. Hence dimB, =n—k and
dimA4, +dimB, = n.

It remains to establish that 4, " B, = {0}. For that purpose we show that 4, and
B, are orthogonal complements. First we observe that the scalar (Z;,W;) —
(Z,W}) is a constant along y (see Cheeger and Ebin [7, p. 25]). But Z,(a) =
Wia)=0 implies that the constant is zero. Since Z;(b)=0, we obtain
(Z{(b),W;(b)) = ( Z,(b), W;(b) ) = 0, showing that 4, and B, are indeed orthogonal.

In a space with positive definite metric orthogonal complements span the entire
space. Hence the proposition now follows for Riemannian manifolds. In the
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Lorentzian case, on the other hand, orthogonal complements do not necessarily
span T,.

We proceed by assuming that 4, and B, have a common non-zero vector V and
derive a contradiction. Since V is orthogonal to itself it must be a null vector. There
exist numbers g; such that V=) a,Z/(b)eB,. Put Z =13 a,Z,. We will show that
Z =0. By the definition of Z we have Z'(b)=V. Further ZeJ,(y) and by
Lemma 2.1, (Z',K) =0, where K =v'. Thus, at g we have

(1) (z.z") =0,
2 (Z,K)=0.

If K is timelike, the relations (1) and (2) together imply that Z’(b) =0 which in
conjunction with Z (b) = 0 implies that Z = 0. Now suppose 7 is a null geodesic. For
simplicity we work in four dimensions. The generalisation to n dimensions (n = 3) is
obvious. Choose a frame E, (a =0, 1, 2, 3)obtained by parallel transport along y asin
Hawking and Ellis [2, p. 86] where E, =K, E, = L is a null vector with (K,L) =
— 1 and E, and E; are unit spacelike vectors, orthogonal to each other and to K and
L. Then if J is any Jacobi field in J, (y), J* = — J, = — (E,,J ) is a constant. Since
Z(a) =0 we obtain Z* = 0. The length of a vector in the parallel frame is given by
(V,Vy==2VV1+(V??+ (V3> Then since Z' =0, Z'* = —(E,,Z'> and Z
and Z' are null vectors it follows that Z2=2Z3*=2Z2=2'3=0 at q. Hence Z =
Z' =0 at . When Z! =0 the Jacobi equation in the parallel frame becomes
(see [2]).

(d*/dv¥)Z° = R, 02",
(d?/dv*)Z" = = R,0,0Z".

The 1-equation becomes an identity. Note that the 2- and 3-equations decouple
from the rest. Hence the 2-vector Z™ obeys a homogeneous second order linear
differential system. The initial conditions at g then imply Z? = Z* =0 for all v. Thus
Z =Z°K and the equation for Z° gives Z° = cv + d where ¢ and d are constants.
Since ZeJ,(y) we must have ¢ =d =0. Hence Z =0. Then g, =0 for all i implying
V=0 in contradiction to our assumption that V' is non-zero. Consequently, the
assumption must be wrong and 4, and B, have no non-zero vector incommon. [ ]

Next we discuss (R3). The continuity property is well known for Riemannian
manifolds. However, no easily available proof seems to exist in the literature. Here,
we give proofs for the timelike and null cases. Our proof of the timelike continuity
property can easily be carried over to Riemannian manifolds. The precise statement
in that case is:

(m,n=2,3) (3.1)

Proposition 3.4 (Continuity Property of Conjugate Points) (Morse [9, Lemma 13.1,
p. 235]). Let M be Riemannian manifold. If Ve T,(M) is the j'th T-conjugate point
along theray v — vV, then there is a convex neighbourhood D of V, such that the number
of T-conjugate points (counted with multiplicities) in rn\ D, for each ray r which
intersects D, is constant and equals ord (V). Moreover, the first T-conjugate point on
each segment r N\ D is the j'th T-conjugate point along r.

Our convention for ordering conjugate points is that V' is the j'th T-conjugate
point along the ray r:v—vV in T, if there are exactly j— 1 T-conjugate points
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(counted with multiplicities) preceding ¥ on r. To prove the continuity property one
uses index theory (see Appendix for a brief sketch of timelike and null index theory).
It follows from the Morse Index Theorem that conjugate points are isolated along a
geodesic. There is no index theory for spacelike geodesics. The reason is that any
spacelike geodesic can be approximated by curves with both longer and shorter
length than that of the spacelike geodesic itself. That is, unlike the Riemannian and
timelike cases, a spacelike geodesic is neither minimal nor maximal.

We use ideas from Patterson [10] in our approach to the proof of the continuity
property. As the proof is rather long we break it up by first proving two lemmas.
First, we make the following standard definition: Let y:[a,b] - M be a geodesic
with y(a) = p and y(b) = q. Then a k-parameter geodesic variation of y is a smooth
mapping h:B x [a,b] - M, where B is a neighbourhood of 0e R¥, and h(0,v) = y(v)
for all ve[a,b] and the curves v — h(x,v) are geodesic for all aeB.

For convenience, we denote a k-parameter variation by y,, where y,(v) = h(o,v).
Following Patterson [10] we define a normal sequence {t;}f_,, a=1t,<t, <...
<t,_,; <t,=t, for y|[a,t] by the requirement that the intervals [¢,,¢;, ] have no
pairs of conjugate points.

Lemma 3.5. Given a k-parameter geodesic variation vy, of y, there exist neigh-
bourhoods D of 0e R* and U of beR and a sequence {t;}I'";' such thata=1, <t, <...
<t,_, <t,=tis a normal sequence for y,|[a,t] for all (o,t}eD x U.

Proof. The compact set y([a,b]) can be covered by a finite number of normal
neighbourhoods N; We may choose a finite sequence {U,j5_, of compact
overlapping intervals (U;, ; " U, has non-zero length for all j=1,...,s — 1) such that
the geodesic segments y(U;) cover y([a,b + 6]) and (U ;) = N; for all j, and where
6 > 0 is a number such that y([b —,b + 6]) is contained in one of the N;. Then, for
any j, there is a neighbourhood D; of 0e R* such that {y,(1):teU,,aeD;} = N;. Put
D = N D;and let de(0, 6) be a number which is less than the minimum of the lengths of
U;n U, when U;n U, is nonempty. Since the intervals U; have an overlap (if any)
which is at least d, the conditions te[a,b] and 0 < ¢’ — t < d guarantee that, for all «,
the set y,([t,¢']) is contained in one of the N; and hence that y,(¢') is not conjugate to
7,(¢) along 7,  Next choose a sequence a=t,<tf; <...<t,_; <b such that
[t;s; —t]<d/2 for i=0,1,....k—2 and d/3<b—1t,_,<d/2. Define U=
{t:]t — b| <d/3}. It is now straightforward to check that D, U and {t;}{Z satisfy the
requirements of the lemma. [ ]

Note that the above proof does not depend on the metric. Therefore we may use
the lemma for variations of both timelike and null geodesics.

Lemma 3.6. Let M be a Lorentzian manifold. If Ve T (M) is timelike and V is not T-
conjugate, then there is a neighbourhood of V in which the index is constant and equal
to the index at V.

Proof. Let y be the geodesic defined by v—y(v) =exp(V). Define a (n—1)-
parameter geodesic variation y, of y such that y,(0) = p for all a. Then all geodesics
v—7,(v) are timelike for « in a sufficiently small neighbourhood B of 0eR"~ 1. A
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neighbourhood of V now corresponds to a neighbourhood (0,1)eB x R. For any ¢
(such that the geodesic is defined) and « we can define the index form I =1, , for

74100, ¢] by (A.L1)
IX,Y)=— f(<X', Y’ + <R(X,K)Y,K))du, (3.2)
0

where K =7y, and X, Yey,(y,). We wish to show that I, , depends continuously on
(2, ) in a neighbourhood of (0, 1) in R"~! x U where U is a neighbourhood of 1€ R.
We do that by showing that I, , can be regarded as a family of forms, depending
continuously on « and ¢, defined on a fixed finite-dimensional vector space. This is
the same technique (slightly extended) which is used in Cheeger and Ebin [7] for the
proof of the index theorem itself.

The first step is to decompose y,(y) in two subspaces x! and y* such that y* and 2
are orthogonal with respect to I, I is negative definite on y! and the dimension of 2
is finite. As a consequence ind(I) = ind(I]y?) < c0. In the proof of the index theorem
one shows that I depends continuously on the endpoint y(¢) in a neighbourhood of
t =1 if g isnot conjugate to p along y. Here we must show that I depends continuously
on the endpoint if variations of y are also allowed.

By Lemma 3.5 there are neighbourhoods D of 0eR""! and U of 1eR and
a sequence {f,}f=4 such that 0=t,<t, <...<t,=t is a normal sequence for
v.1[0,t] for all (x,t)eD x U. Given (o, t) in D x U we define

1t ={Xey(y,):X(t)=0 for all i}. (3.3)

Then I, ,|x" is negative definite. For let I; be the index form on 7,|[t,,t,, ,] so that
I,,= Zli. By [8, Theorem 9.22] and Lemma 2.1, I,| ' is negative definite. Hence so
is I, Iz

Now let x* = J,{t;} be the subspace of x,(y,) consisting of broken Jacobi fields
which break only at the t;. Then ' and y* are orthogonal with respect to I, ,. To
show that, let Xey! and Yey?. Since Y is a broken Jacobi field it follows by (A.1.2)
that

L (X, Y)=3 ALY, X). (3.49)

But X vanishes at the jumps of Y'. Hence 1, (X, Y) =0 showing that y*' and y* are
indeed orthogonal. Together with the negative definiteness of ¥' this shows that
I=1|

Since {t;} is a normal sequence for 7, it follows by Lemma 2.2 that a Jacobi field
on y,|[t;, ;. ; ]is uniquely determined by its values at the end points. Hence for any
value of « there is an isomorphism

TAt} = Ty ®... O T, (- 3.5)

Letus choose a basis frame E, along y. In fact, it is possible to extend the frame to
7, in a neighbourhood of y such that E, depends smoothly on (a,t)eD x [0, b, ],
where D is a neighbourhood of 06 R”~* and b, > 1. We may now identify the spaces
x* =J,{t;} for different values of o. Explicitly, we consider their elements as equal if
the components in the E, frame are equal. This is possible because of the
isomorphism (3.5). We can now regard I, , as a family of forms on the fixed finite-
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dimensional space y* =J,{t;}. Also, for any interval [¢,,¢,,,J(i=1,...,k —2), the
Jacobi equation can be regarded as a differentiable system on the fixed vector space
spanned by the frame vectors E, and depending on the n — 1 parameters o. On
[#._.,t] it depends on the n parameters («, t). Therefore, by the standard theory of
ordinary differential equations, the derivatives X '(t;) depend continuously on (o, t)
for fixed X(t)(i=1,...,k—1). Since I, x> is given by (3.4), it too depends
continuously on (a, t).

Now suppose g = y(1) is not conjugate to p along y. Then the null space of I is
zero or, in other words, I is nondegenerate. Let y* be a subspace of x? such that I is
positive definite on ¥ and dim ¥y * =ind(I). Let x ~ be the orthogonal complement
of y* with respect to I. Then I is negative definite on x~. Since I depends
continuously on («,¢) and ¥* and y~ are finite-dimensional, there is a neigh-
bourhood C of 0 R"~ ! such that I, , is positive definite on x * and negative definite
on x~ respectively for all eC. Therefore the index is the same for all geodesics
Y.:[0,t] > M with (o, t)eC x U.[ ]

We are now in a position to prove the continuity property for timelike geodesics.

Proposition 3.7 (Timelike Continuity Property). Let M be a Lorentzian manifold. If
VeT,(M)is a timelike vector which is the j'th T-conjugate point along the ray v—vV,
then there is a convex neighbourhood D of V such that the number of T-conjugate points
(counted with multiplicities) on r 0 D for each ray r which intersects D is constant and
equals ord(V). Moreover, the first T-conjugate point on each segment r N\ D is the j’th
T-conjugate point along r.

Proof. Let Ve T, be the j'th T-conjugate point along the ray v —vV. Since conjugate
points are isolated along a timelike ray, we may choose a number v, > 1 such that
exp is non-singular at all points vV for which ve(1,v,]. If ord(V') = k, then the index
atv, Visi=j— 1+ k. By Lemma 3.6 there is a neighbourhood B of v, V such that the
index is equal to i throughout B. In the same manner we can find a v, <1 and a
neighbourhood C of v,V such that the index is equal toj — 1 throughout C. The final
step is to choose a convex neighbourhood D of V consisting of ray segments which
start in C and end in B. Then D has the required properties.[ ]

This completes our discussion of the proof that Warner’s theorems (Theorems
3.1 and 3.2) hold in the timelike case. The timelike theorems can be stated in a way
completely analogous to the Riemannian case. Let R (p) be the regular timelike 7-
conjugate locus, i.e. the timelike part of R(p).

Theorem 3.8. Let M be a space-time. Then the regular timelike T-conjugate locus of a
point p, Ry(p), is a (n — 1)-dimensional submanifold of T, with the relative topology.
Further, Ry(p) is an open dense subset of the timelike T-conjugate locus and
T,(1,)=T,(Ry(p))® T,(r) at all points Ve Ry(p) where T, (r) is the tangent space of the
rayv—r(v)=vV at V.

Theorem 3.9. Let M be a space-time. If V is in the regular timelike T-conjugate locus
and ord(V)=k> 1, then dim T(V) =k.



Space-Time Caustics 349

4. The Null 7-Conjugate Locus

Let N, be the set of null vectors in T,,. A null T-conjugate point Ke T, is said to be
regular if there is a neighbourhood B of K in N, such that every ray in N, contains at
most one T-conjugate point in B. The null analogue of Lemma 3.6 is:

Lemma 4.1. Let M be a Lorentzian manifold. If K€ T, is a null vector which is not T-
conjugate, then there is a neighbourhood of K, in N , in which the index is constant and
equal to the index at K.

Proof. The general outline of the proof is the same as in the timelike case. Let y be the
null geodesic defined by v— y(v) = exp(vK,). Define a (n — 2)-parameter geodesic
variation y, of y such that y,(0) = p for all « and such that the geodesics v — y, are all
null. Then y, represents a part of the null cone at p. Define the index form I, , for
7.1[0,7] by (A.2.4)
t
I(X,Y)= - [((X,Y") = (RX,K)K, Y ))dv, (4.1)

0
where K =y, and X, YeX,(y,).

By Lemma 3.5 there are neighbourhoods D of 0eR""2 and U of 1R and a
sequence {f;}f73 such that 0=t,<...<t,_, <t, =t is a normal sequence for
v.1[0,t] for all (a,t)eD x U. Given (a,t) in D x U we define

1 ={XeX (y,):X(t) = [7,(t,)] for all i}. (4.2)

To prove that I'|y! is negative definite, let I, be the index form on y,|[t;,;, ] so
that I =) 1. By [8, Theorem 9.69], I, is negative definite. Hence so is I|x".

Now let x> = J,{t,} be the subspace of X,(y,) consisting of broken Jacobi classes
which break only at the t;. To show that x' and x* are orthogonal with respect to I, |,
let Xey! and Yey? Since Y is a broken Jacobi class (A.2.6)

I(X,¥) =Y 4V, X)), (43)

But X vanishes at the jumps of Y’ and so I, (X,Y)=0. Hence X and Y are
orthogonal with respect to I, ,. This shows that I =I|y>.

By Lemma 2.3, a Jacobi class along v,|[¢;,t;.,] is uniquely determined by its
values in G(y,(t;)) and G(y,(t;+,))- Hence for any value of o there is an isomorphism

T At} 2 GOL{1) ®... @ G(yy{ty - 1)) (4.4)

As in the timelike case, let E, be a basis frame along y, in a neighbourhood of y.
We now identify the space J,{t;} for different o using the isomorphism (4.4). The
index form may then be regarded as a family of forms on the fixed finite-dimensional
vector space J, {t;}. To show that I, , depends continuously on (o, t) we must show
that the X'(t;)eG(y(t;)) depend continuously on (a, ) if Xey?, ie if X(¢)(i=1,...,
k—1) are given.

Choose V,eN(y(t,)) with n(V,) = X(t;). Then for any « such that E, is defined,
there is a unique Jacobi field J along y, with J(¢;) = V;. Further, J and hence the J(t,)
depend continuously on («,t). Put X =n(J). Then X is a Jacobi class with the
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prescribed values at the t;. Also X'(t) =n(J'(t)) by the definition of covariant
differentiation of Jacobi classes. Finally, since 7 is a continuous map, the X'(t,)
depend continuously on («,t).[ ]

We can now state the continuity property for null geodesics. The main difference
is that everything now takes place inside the light cone N,,.

Proposition 4.2 (Null Continuity Property). Let M be a Lorentzian manifold. If
KeT,(M)is a null vector which is the j'th T-conjugate point along the ray v—vK, then
there is a neighbourhood D of K in N, such that the number of T-conjugate points
(counted with multiplicities) in r N\ D for each ray r which intersects D is constant and
equals ord (K). Moreover, the first T-conjugate point on each segment r "\ D is j'th
T-conjugate point along r.

The proofis the same as in the timelike case except that neighbourhoods should
be taken in N, instead of in the full tangent space T,. We can now state the null
analogues of Theorems 3.8 and 3.9. Let Ry(p) be the regular null T-conjugate locus,
i.e. the subset of R(p) consisting of null vectors.

Theorem 4.3. Ler M be a space—time. Then the regular null T-conjugate locus of a
point p, Ry(p), is a (n — 2)-dimensional submanifold of N, with the relative topology.
Further, Ry(p) is an open dense subset of the null T-conjugate locus and Tg(N,) =
Tx(Ry(p))® Ti(r) at all points K eRy(p) where Ti(r) is the tangent space of the ray
rv)=vK at K.

Theorem 4.4 Let M be a space—time. If K is in the regular null T-conjugate locus and
ord(K) =k > 1, then dimT(K) = k.

5. The M-Conjugate Locus

In this section we consider the physical space—time caustic, i.e. the M-conjugate
locus. We say that the M-conjugate locus has a cusp at g = exp(V) if Ve T(p) — R(p)
(i.e., if V is a singular conjugate point) or if Ve R(p) but exp| R(p) is not an immersion
of R(p) at V. Thus g is a cusp if exp~ *(g) is not a regular T-conjugate point or if the
null space of exp at exp !(g) has some direction tangential to R(p). If V is a
degenerate T-conjugate point, then the M-conjugate locus is necessarily cuspidal at
exp(V) (cf. the discussion preceding Theorem 3.2).

To be able to use the results of the previous sections, we need to impose a
condition which ensures that focusing always occurs to the past of a particular
space-time event. One such condition is that (see Tipler [11])

[ F(v)dv =+ o0
for all null geodesics with y(a) = p, where F(v) = Ric(K, K) and K =y’ (Ric denotes
the Ricci tensor). However, it may happen that some or all null geodesics with
y(a) = p are past incomplete. In that case the singularity could come “before” the
geodesics have had time to refocus. We say that the omni-directional focusing
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condition is satisfied at p if any past directed null geodesic y through p contains a
point which is conjugate to p along y.

Next we show that the null M-conjugate locus in a 4-dimensional space-time can
never be a smooth 2-sphere. Intuitively, this follows from the observation that the
geodesics touch the caustic. Hence their tangents form an everywhere non-vanishing
vector field on the caustic. However, no such field exists on a 2-sphere. This
argument is made rigorous in the following theorem:

Theorem 5.1. Let M be a 4-dimensional space-time. If the omni-directional focusing
condition is satisfied at pe M, then there is a cusp in the first null M -conjugate locus to
the past of p.

To prove the theorem we make use of a Euclidean metric on T, defined as
follows. Choose a Lorentzian basis L, for T,, ie. {L,L,»=n,, where 1, =
diag(—1,+ 1,4+ 1,+ 1). The Euclidean metric is then defined by E(L,, L,) = .
Now let U, be the set of past directed null vectors K in T, with E(K, K) = 1. Then
U, is diffeomorphic to a 2-sphere and can be regarded as a representation of the
celestial sphere at p. Any point K in N, the set of past directed null vectors in T,
can be projected into U ;" by sliding it along the ray through K. Let this projection be
denoted by P. Then P is a C* map and its differential P, can be use to project
elements of the tangent bundle of N into the tangent bundle of U, .

Proof of Theorem 5.1. We show that the first null T-conjugate locus to the past of p,
denoted by C|, contains at least one point which is degenerate, i.e. the multiplicity
> 1. Suppose to the contrary that the conjugate order is | throughout C; . Then by
Theorem 4.3, C| is a smooth submanifold of N, (it is in fact a 2-sphere since P|C; is
a diffeomorphism onto U,).

Let T be the mapping K — N(K) which assigns the null space of exp to any point
K in C{.Then T is C* in the sense that the matrix equation (0F;/0x*)X* = 0, where
F = exp in some coordinates x*, locally has a solution X which is a C* vector field
along C; with X e N(K) wherever X is defined. Now N(K)is always perpendicular to
K because of the Gauss lemma (Cheeger and Ebin [7, p. 8] or Beem and Ehrlich [§,
p. 262]). Then since N(K) is never parallel to K, T can be projected by P, to a C®
distribution on U, . However, U is a 2-sphere and hence does not admit a 1-
dimensional distribution. This contradiction shows that our assumption that all
points of C; have conjugate order 1 is false. Thus C| contains at least one
degenerate conjugate point. [ ]

Corollary 5.2. In a 4-dimensional space—time M, the null M-conjugate locus cannot
be a smooth 2-sphere.

Note 5.3.  Since no even-dimensional sphere admits an everywhere non-vanishing
vector field, Theorem 5.1 is valid for any even-dimensional space-time with the
corollary that the null M-conjugate locus cannot be a smooth (n — 2)-sphere.
The observational significance of a degenerate conjugate point is that the
observed distortion in a given direction becomes infinite in more than one direction,
ie. a given object at the caustic is infinitely distorted both longitudinally and
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latitudinally on the celestial 2-sphere in the case of a 4-dimensional space-time.
Therefore we also refer to this as degenerate focusing.

Theorem 5.4. Let M be a 4-dimensional space—time with a point peM such that an
observer at p sees degenerate focusing in all directions. Then the space-time is closed in
the sense that it admits a compact (topology S3) slice.

Proof. As before we denote the first past null conjugate locus by C;. In a 4-
dimensional space-time, the conjugate order for a null geodesic can take on the
values 1 and 2. Since the focusing is degenerate in all directions the conjugate order is
2 throughout C;. Now let KeC; and let (x,y) be coordinates on some
neighbourhood U of K in C; . Then, since the null space of exp is tangential to C; by
Theorem 4.4, we have

exp, (0/0x|L) = exp, (0/0y|L) = 0€T,

exp(L)

for all Le U, which shows that exp is constant on U. But then exp is constant on the
whole of C| . Thus, exp (C; ) is a single point in M. Then by [3, Theorem 4.6] the
space-time admits a smooth spacelike 3-sphere. [ ]

As stated, Theorem 5.4 is only true for 4-dimensional space-times. However, if we
require the focusing to be maximally degenerate instead of just degenerate (i.e. the
conjugate order =n — 2), then the theorem is valid in any dimension > 4 (the
topology of the spacelike slice will be $"~! in general).

The requirement of degenerate focusing in all directions is not as unrealistic as it
may seem at first glance. Such behaviour is actually present in the closed
Friedmann—Robertson-Walker (FRW) universes (cf. [3], [4]). One may use
Theorem 5.4 to explain the fact that there are no open (i.e. not admitting a compact
spacelike slice) geodesically complete FRW models (with or without cosmological
constant). For that purpose, consider any isotropic space—time satisfying the omni-
directional focusing condition. Then some observer would see a non-empty C; and
by isotropy (see [4]), all points of C; would be degenerate. Hence we can apply
Theorem 5.4 to establish the existence of a compact slice so that the space—time is
closed. The power of this argument is that it is grounded on purely geometric
reasoning. It is therefore valid regardless of the field equations.

Appendix 1. Timelike Index Theory

For a treatment of Riemannian index theory, see Cheeger and Ebin [7]. The
Lorentzian index theory can be found in Beem and Ehrlich [8], [12], [13]. Let y:
[a,b] — M be a timelike geodesic with y(a) = p and y(b) =q. If X and Y are vector
fields in x,(y), then the timelike index form is defined by ([8,p.251])

b
IX,Y)= - [(KX,Y") +(RX,K)Y,K))dv, (A.L1)
where R is the curvature tensor and K =7y’. The index form is a symmetric bilinear

form on yx(y). Let us choose a sequence a=t,<t; <...<t,=b such that
X|[t;t; ] and Y|[t;,t;,,] are smooth for all i. Then the index form can be
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integrated by parts to give

b
I(X,Y)=[(KX"+RX,K)K, Y )dv+ Y 4 X", Y, (A.1.2)

a

where

A4<X Yy = lim (X, Y= lim (X', Y).

=1+ 1ot —

If X and Y are smooth, then the index form reduces to
b
I(X,Y)=[{X"+R(X,K)K, Y)dv. (A.1.3)
From this expression one sees clearly the connection with Jacobi fields. We say
that X isin the null space of I if (X, Y) = O for all Yey,(y). Then X ey,(y)is in the null
space of I if and only if X is a Jacobi field. The index, ind(I), of the index form is
defined to be the maximum dimension of a subspace of y,(y) on which I is positive
definite. The index at VeT, is defined as the index of the index form along the
geodesic y:[0, 17— M, where y(v) = exp (vV). The main result of index theory is the
Morse index theorem which relates the index to the number of conjugate pointson a
geodesic.

Theorem A.1.1 (Timelike Morse Index Theorem) (Beem and Ehrlich [8, Theorem
9.27]). Let M be a space—time and y: [a,b] — M a timelike geodesic segment. If I is the
timelike index form on y|[a,b), then the index of I is finite and equal to the number of
conjugate points to p = y(a) along y|[a, b) counted according to their multiplicities. T he
null space of I is zero unless q =y(b) is conjugate to p along y and in that case its
dimension equals the conjugate order of q.

Appendix 2. Null Index Theory

The index theory of null geodesics differs from that of timelike geodesics. To see why
let y:[a,b] — M be a null geodesic segment. We first observe that unbroken Jacobi
fields in y,(y) are always perpendicular to y by Lemma 2.1. Therefore, defining

% () = {Xexn0):<X,y)> =0},
the index form can always be restricted to vector fields in y;(y) without loss of
generality. Now consider vector fields along y of the form f(v)y’, where f(a)=
f(b)=0.If Z is any field in y;(y), then I(fy’, Z) =0, showing that f7’is in the null
space of I. But vector fields of the form f7’ never giverise to conjugate points. Hence,
the definiteness of the index form cannot be used to characterize conjugate points.
However, this difficulty can be resolved by working with a quotient bundle of y, (),
where vector fields parallel to 7’ are considered to be zero.
We make the following definitions

N('))(U)) = {XG Ty(u) . < XS ,})’(U)> = O}a
[y(0)] = {4y'0): AR}, (A2.1)
G(y(v) = N((©))/7' ).
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Further we define the quotient bundle by G(y) = UG(y(v)). The space of piecewise
smooth sections of G(y) is denoted by X(y). The elements of X(y) are called vector
classes along y. We shall distinguish vector classes from vector fields by putting a bar
over symbols for vector classes. The space of vector classes along y which vanish at
y(a) and y(b) is denoted by X,(y), i.e.
X,(y) ={XeX(): X(a)=[y'(@] and X(b)=[7'(b)]}. (A22)

Vector fields in y(y) may be projected by the natural projection map 7: N(y(v)) —
G(y(v)) into vector classes in X(p). Also, the Lorentzian metric {, ) can be projected
to a positive definite metric, denoted by <{,>>, on G(y(v)) x G(y(v)) by putting
KX, Y)Y =(V,W> if X,YeG@((v)) and V,WeN(y(v)) satisfy m(V)=X and
n(W) =Y. Covariant differentiation of a vector class X along y is defined by
X' =n(V') if Vex(y) and n(V)= X. The endomorphism V—R(V,y' )y’ of N(y'(v))
may be projected to an endomorphism of G(y(v)) by setting R(X,y)y' =
n(R(V, y' )W) for Xe G(y(v)) if Ve N(y(v)) satisfies (V) = X. All projection operations
introduced here are well defined (see Beem and Ehrlich [8]).

A smooth vector class XeX(y) is said to be a Jacobi class along y if

X' +RX, )y =[], (A.23)
where [y'] denotes the zero element of G(y). Finally we define the null index form I on
vIla,b] by

b
I[X,Y)=—[(KX, YD)~ KRX,K)K, Y>))dv, (A.24)

where K =7y'and X, YeX,(y). As in the timelike case, this expression can be partially
integrated to give

b
IX,¥) = [ (X + RIGKK, Vo)do+ 3 4K YD), (A2.5)

From this it follows that
IX,7)=Y4,LX, Y (A.2.6)

if X is a piecewise smooth Jacobi class in X, ().

Theorem A.2.1 (Null Morse Index Theorem) (Beem and Ehrlich [8, Theorem
9.77]). Let M be a space—time and y:[a,b] - M a null geodesic segment. If T is the null
index form ony|[ a, b], then the index of T is finite and equal to the number of conjugate
points to p = y(a) along y|[a, b) counted according to their multiplicities. The null space
of I is zero unless q = y(b) is conjugate to p alongy and in that case its dimension equals
the conjugate order of q.
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