Gauge Potentials and Bundles Over the 4-Torus

C. Nash
Department of Mathematical Physics, St. Patrick's College, Maynooth, Ireland

Abstract

The construction of principal bundles over a four dimensional torus is considered. The class of groups considered is $\operatorname{SU}(n) / Z_{n}$, and for this class the Pontrjagin class has even integer values.

1. Introduction

This paper considers principal fibre bundles over a four-dimensional torus. Physically a four-dimensional torus corresponds to space-time being a kind of Euclidean box with periodic boundary conditions. Fibre bundles enter when one considers non-Abelian gauge fields inside this box. This physical picture has been considered by a number of people, cf., for example, [1] and references cited therein.

In [1] it is argued that the gauge groups $\mathrm{SU}(n) / Z_{n}, n=2,3, \ldots$ are physically important (Z_{n} stands for the centre of the group $\operatorname{SU}(n)$, hence for each n, Z_{n} is isomorphic to the $n^{\text {th }}$ roots of unity). The topology of space-time is $S^{1} \times S^{1} \times$ $S^{1} \times S^{1}$, where S^{1} is a unit circle. We shall denote space-time by T^{4}. Underlying the non-Abelian gauge field is a fibre bundle and so we are led to the construction of all $\mathrm{SU}(n) / Z_{n}$ bundles over T^{4}. We describe, in what follows, a method for carrying out this construction. In Sect. 2 we treat the case $n=2$, and in Sect. 3 the case $n>2$. An important mathematical tool in the calculations will be the generalised cohomology theory known as K-theory.

2. The $\boldsymbol{n}=\mathbf{2}$ Case

When $n=2$ there is the well known result, of a kind typical for Lie groups of low dimension, that $\mathrm{SU}(2) / Z_{2} \simeq \mathrm{SO}(3)$. Thus we wish to construct all $\mathrm{SO}(3)$-bundles over T^{4}. In contrast to the case where the base space is a sphere S^{k} the calculation is not completely straightforward. It turns out to be most easily accomplished by resorting to a well known mathematical tool of bundle theory known as K-theory. K-theory is a kind of generalised cohomology theory defined for vector bundles. For an introduction to K-theory, cf. the works cited in [2]. The K-theory for T^{4} considers all vector bundles E over T^{4} and assembles them together into equivalence classes - two bundles E and F are equivalent if the addition of a trivial
bundle I^{j} to each of them renders them isomorphic [2]: $E \oplus I^{j} \simeq F \oplus I^{k}$. Although the K-theory over T^{4} considers all vector bundles over T^{4} of all possible ranks, we shall nevertheless be able to pin down those bundles with $\mathrm{SO}(3)$ as their structure group and identify their corresponding principal bundles. We shall use the notation of Husemoller [2]. Since $\mathrm{SO}(3)$ is an orthogonal group, the corresponding K-theory is denoted by $\widetilde{K} O$-the so-called reduced real K-theory [2]. In general $\widetilde{K} O(M)$ for some M forms a ring, with multiplication and addition provided by tensor product and direct sum respectively. If $M=T^{4}$, then $\widetilde{K} O\left(T^{4}\right)$ forms a group G and a certain subgroup H of G provides us with the $\mathrm{SO}(3)$-bundles we seek.

Before constructing H we need some general results about the construction of bundles. If one wishes to construct G-bundles over a compact manifold M, then one needs a space B_{G} known as the classifying space for bundles with group G. This space B_{G} is the base space of a certain bundle W_{G} called a universal G-bundle. Then for a $\operatorname{map} f$

$$
\begin{equation*}
f: M \rightarrow B_{G} \tag{2.1}
\end{equation*}
$$

$f^{*} W_{G}$ is a bundle over M known as the pull-back of W_{G} by f. All G-bundles over M arise as $f^{*} W_{G}$ for some f, also if f and g are homotopic maps the $f^{*} W_{G}$ and $g^{*} W_{G}$ are isomorphic. Thus all G-bundles over M are given [2] by all homotopy classes of maps $f: M \rightarrow B_{G}$ by $\left[M, B_{G}\right]$. Now we choose $G=\mathrm{SO}(3)$ and $M=T^{4}$ so that we wish to know $\left[T^{4}, B_{\mathrm{SO}(3)}\right]$. Next we may use a result of James et al [3] to characterise $\left[T^{4}, B_{\mathrm{SO}(3)}\right]$ in terms of $\widetilde{K} O\left(T^{4}\right)$. To this end we calculate $\tilde{K} O\left(T^{4}\right)$. This calculation presents some difficulties which may be circumvented by replacing T^{4} by X where X is a space of the same homotopy type as T^{4} so that $\widetilde{K} O\left(T^{4}\right)=\widetilde{K} O(X)$. Such a space X is a given by [4]

$$
\begin{array}{cc}
X=S^{4} v\left(S^{3} v S^{3} v \ldots v S^{3}\right) v\left(S^{2} v S^{2} \ldots v S^{2}\right) v\left(S^{1} v \ldots v S^{1}\right), \tag{2.2}\\
\text { 4-times } & \text { 6-times }
\end{array}
$$

where $A v B$ denotes the disjoint union of A and B with base points identified. (Alternatively, instead of introducing X, one may calculate $\widetilde{K} O\left(T^{4}\right)$ via the properties of $\tilde{K} O^{-P}\left(T^{4}\right)$, where $\tilde{K} O^{-P}=\tilde{K} O\left(S^{P} M\right)$ and $S^{P} M$ is the P-fold suspension of M.) We then have

$$
\begin{array}{r}
\tilde{K} O(X)=\tilde{K} O\left(T^{4}\right)=\tilde{K} O\left(S^{4}\right) \oplus \tilde{K} O\left(S^{3}\right) \oplus \tilde{K} O\left(S^{2}\right) \oplus \tilde{K} O\left(S^{1}\right) . \tag{2.3}\\
\text { 4-times 6-times 4-times }
\end{array}
$$

The right-hand side of 2.3 is well known [2] so that we obtain

$$
\begin{align*}
& \tilde{K} O\left(T^{4}\right)=Z \oplus\left(Z_{2}\right), \tag{2.4}\\
& 10 \text {-times }
\end{align*}
$$

where Z_{2} denotes the group of integers modulo 2 . Next we utilise Theorem 1.6 of [3] which says that the map

$$
\begin{equation*}
\left[T^{4}, B_{\mathrm{SO}(3)}\right] \rightarrow\left[T^{4}, B_{\mathrm{SO}}\right]=\tilde{K} O\left(T^{4}\right) \tag{2.5}
\end{equation*}
$$

is injective, and that under this map the elements of $\left[T^{4}, B_{\mathrm{SO}(3)}\right]$ correspond to a subgroup H of $\tilde{K} O\left(T^{4}\right)$: namely those elements of $\tilde{K} O\left(T^{4}\right)$ with vanishing 4th-Stiefel-Whitney class W_{4}. (In $2.5 B_{\text {SO }}$ is the classifying space for all principal $\operatorname{SO}(n)$ bundles and SO denotes the infinite special orthogonal group.) The subgroup H is then given by

$$
\begin{array}{r}
H=2 \mathbf{Z} \oplus\left(Z_{2}\right) . \tag{2.6}\\
\text { 6-times }
\end{array}
$$

We can now describe the various $\mathrm{SO}(3)$-bundles over T^{4}. To do this requires the notion of an induced or pullback bundle: if f is a map from T^{4} to M and E is a bundle over M, then $f^{*} E$, the pullback bundle, is a bundle over T^{4}. The six Z_{2} summands in H correspond to the following pullbacks. Project first from T^{4} to T^{2} (the 2-torus). This can clearly be done in six possible ways. Denote the six projections by $\pi_{1}, \ldots \pi_{6}$:

$$
\begin{gather*}
\pi_{i}: T^{4} \rightarrow T^{2} \\
i=1, \ldots 6 \tag{2.7}
\end{gather*}
$$

Now consider the Hopf bundle S^{3} over S^{2} and a map $f: T^{2} \rightarrow S^{2}$; if we denote the Hopf bundle by ξ, then $f^{*} \xi$ is the pullback of ξ to T^{2} and $\left(f \circ \pi_{i}\right)^{*} \xi$ is the pullback to T^{4}. These six bundles contain the twist $\eta_{\mu \nu}$ referred to by 't Hooft [1]. They also have zero Pontrjagin number p_{1}. This is because

$$
\begin{align*}
H^{4}\left(S^{2} ; Z\right) & =0 \text { so that } p_{1}(\xi)=0 \text { and } \\
p_{1}\left\{\left(f \circ \pi_{i}\right)^{*} \xi\right\} & =\left(f \circ \pi_{i}\right)^{*} p_{1}(\xi) \\
& =0, \tag{2.8}
\end{align*}
$$

so the bundles over T^{4} have vanishing p_{1} also. These bundles $\left(f \circ \pi_{i}\right)^{*} \xi$ are $\mathrm{SO}(3)$ bundles by virtue of the embedding of $\mathrm{U}(1)$, the group of ξ, in $\mathrm{SO}(3)$; they correspond to the generators of the six Z_{2} summands in H. Further $\mathrm{U}(1)$-bundles may be formed as we shall see below shortly. The summand $2 \mathbf{Z}$ in H is generated by pulling back a certain bundle ζ over S^{4} to T^{4} under a map $g: T^{4} \rightarrow S^{4}$. The bundle ζ has total space $\mathbf{C} \mathbf{P}^{3}$ and base space $\mathbf{H} \mathbf{P}^{1}$, where $\mathbf{H} \mathbf{P}^{1}$ stands for one dimensional quaternionic projective space, and in fact $\mathbf{H} \mathbf{P}^{1} \simeq S^{4}$. The fibration is as follows: $\mathbf{C P}^{3}$ has four homogeneous coordinates $\left[z_{1}, \ldots z_{4}\right]$, a quaternion q may be regarded as being given by a pair of complex numbers a, b so that $q=a+b j$. The projection p of the bundle ζ projects $\left[z_{1}, \ldots z_{4}\right]$ onto $\left[z_{1}+z_{2} j, z_{3}+z_{4} j\right]$, which is an element of $\mathbf{H P}{ }^{1}$. The pullback $g^{*} \zeta$ is an $\mathrm{SO}(3)$-bundle over T^{4}. Further $p_{1}\left(g^{* \zeta)}\right.$ is always even. This is because in general we have

$$
\begin{equation*}
p_{1}(\zeta) \bmod 2=W_{2}^{2}(\zeta) \tag{2.9}
\end{equation*}
$$

where $W_{2}(\zeta) \in H^{2}\left(S^{4} \mathbf{Z} / 2\right)$ is the second Stiefel-Whitney class of ζ. Since $H^{2}\left(S^{4}: \mathbf{Z} / 2\right)=0$, then $p_{1}(\zeta)$ is even. Now if the map $g: T^{4} \rightarrow S^{4}$ has degree k, we have

$$
\begin{align*}
p_{1}\left(g^{*}(\zeta)\right) & =g^{*} p_{1}(\zeta) \\
& =k p_{1}(\zeta) \tag{2.10}
\end{align*}
$$

so that $p_{1}\left(g^{* \zeta}\right)$ is also even, in fact $p_{1}(\zeta)=2$, and thus $p_{1}\left(g^{* \zeta}\right)=2 k$. We have now identified the bundles that correspond to the generators of H. The operations of \otimes and \oplus which provide $\tilde{K} O\left(T^{4}\right)$ with its ring structure provide a source of further bundles.

In general we define $\xi_{i}=\left(f \circ \pi_{i}\right)^{*} \xi$ and $\xi_{j}=\left(f \circ \pi_{i}\right)^{*} \xi$; the tensor product $\xi_{i} \otimes \xi_{j}$ remains a $\mathrm{U}(1)$-bundle and will have Pontrjagin number given by, (cf. appendix)

$$
\begin{equation*}
p_{1}\left(\xi_{i} \otimes \xi_{j}\right)=C \varepsilon_{\mu v \alpha \beta} \nu^{\mu \nu} v^{\alpha \beta} \tag{2.11}
\end{equation*}
$$

where the integer $\eta^{\mu \nu}$ is the twist of $\xi_{i} \otimes \xi_{j}$ and $C=\frac{1}{4}$, so that $p_{1}\left(\xi_{i} \otimes \xi_{j}\right)$ is an even integer. Now if we set $\zeta_{i j}=\zeta_{i} \otimes \zeta_{j}$ and form $\tau=\zeta_{i j} \oplus g^{*} \zeta$, then we have, since $H^{4}\left(T^{4} ; \mathbf{Z}\right)$ contains no elements of order 2,

$$
\begin{align*}
p_{1}(\tau) & =p_{1}\left(\zeta_{i j} \oplus g^{*} \zeta\right) \\
& =p_{1}\left(\zeta_{i j}\right)+p_{1}\left(g^{* \zeta}\right) \\
& =2 k+C \varepsilon_{\mu v \alpha \beta} \eta^{\mu \nu} \eta^{\alpha \beta} . \tag{2.12}
\end{align*}
$$

Compare this with Eq. (1.1) of ref. 5, cf. also Van Baal [6], where the definition of p_{1} used in ref. 5 is corrected.

3. The $n>2$ Case

When $n>2$ the group to be considered is $\mathrm{SU}(n) / Z_{n}$, which we write as $\mathrm{PU}(n)$. Here $\mathrm{PU}(n)$ is the projective unitary group, if G is any group with centre Z then $P G=G / Z$; note that $\operatorname{PU}(n)=\operatorname{PSU}(n)$. The essentials of our problem will again be reduced to the calculation over spheres S^{i} via 2.2 ; now G-bundles over S^{i} are classified by the homotopy group $\pi_{i-1}(G)$, i.e. we have an isomorphism

$$
\begin{equation*}
\left[S^{i}, B_{G}\right] \simeq\left[S^{i-1}, G\right] \tag{3.1}
\end{equation*}
$$

If $G=\mathrm{SU}(n)$, then it is important to know that

$$
\pi_{i}(\mathrm{PU}(n))=\pi_{i}(\mathrm{SU}(n)), i>1
$$

but that

$$
\begin{equation*}
\pi_{1}(\mathrm{PU}(n))=Z_{n} ; \pi_{1}(\mathrm{SU}(n))=0 \tag{3.2}
\end{equation*}
$$

We shall refer to a $\operatorname{PU}(n)$-bundle as a projective bundle. Projective bundles may be obtained from $\mathrm{U}(n)$-bundles by a procedure that we now describe, however inequivalent $\mathrm{U}(n)$-bundles may give rise to the same projective bundle: If E is a $\mathrm{U}(n)$ bundle over a manifold M, then it gives rise to a projective bundle $P E$ by use of the natural projection $p: \mathrm{U}(n) \rightarrow \mathrm{PU}(n)$. If, however, L is a $\mathrm{U}(1)$-bundle, or line bundle, then $E \otimes L$ is another $\mathrm{U}(n)$-bundle; in general inequivalent to E, but certainly $P(E \otimes L)=P E$. A converse also holds, i.e. if $P E$ and $P F$ are equivalent projective bundles, then there exists a line bundle L such that

$$
\begin{equation*}
E \simeq F \otimes L \tag{3.3}
\end{equation*}
$$

There is therefore a one to one correspondence between projective bundles $P E$ and equivalence classes of $U(n)$-bundles, the equivalence relation is denoted by \sim and
the equivalence class given by:

$$
\begin{equation*}
E \sim F \Leftrightarrow E=F \otimes L \tag{3.4}
\end{equation*}
$$

for some line bundle L. To calculate projective bundles $P E$ over M one can therefore first calculate all $\mathrm{U}(n)$-bundles over M, and then divide these up into equivalence classes according to (3.4), one then has all the projective bundles PE. We have a specific situation: namely $n>2$ and $M=T^{4}$. It is then known that the $\mathrm{U}(n)$-bundles are found by calculating $\tilde{K} U\left(T^{4}\right)$, the reduced complex K-theory of T^{4}; since $n>2$, we are in what is known as the stable range and two vector bundles of rank n are isomorphic if and only if they are equivalent in $\tilde{K} U\left(T^{4}\right)$. In other words

$$
\begin{equation*}
\left[T^{4}, B_{U(n)}\right] \simeq \tilde{K} U\left(T^{4}\right), \quad n>2 \tag{3.5}
\end{equation*}
$$

The calculation of $\tilde{K} U\left(T^{4}\right)$ is done by exactly similar methods to those used in Sect. 2 and the result is

$$
\begin{align*}
K U\left(T^{4}\right) & =K U\left(S^{4}\right) \oplus K U\left(S^{3}\right) \oplus K U\left(S^{2}\right) \oplus K U\left(S^{1}\right) \\
& =\mathbf{Z} \oplus \underset{\mathbf{Z} \oplus \ldots \mathbf{Z} .}{\text { 4-times }} \text { 6-times }
\end{align*}
$$

In the right-hand side of (3.6), one copy of \mathbf{Z} comes from the fact that $\tilde{K} U\left(S^{4}\right)=\mathbf{Z}$, the other six come from the fact that $\widetilde{K} U\left(S^{2}\right)=\mathbf{Z}, \tilde{K} U\left(S^{3}\right)$ and $\widetilde{K} U\left(S^{1}\right)$ being zero. The description of the $\mathrm{U}(n)$-bundles over T^{4} requires first the giving of the bundles over S^{2} and S^{4} that correspond to the generators of $K U\left(S^{2}\right)$ and $K U\left(S^{4}\right)$. We denote these bundles by ξ and ζ respectively, ξ is determined by a map

$$
\begin{equation*}
\alpha: S^{1} \rightarrow \mathrm{U}(n) \tag{3.7}
\end{equation*}
$$

and ζ by a map

$$
\begin{equation*}
\beta: S^{3} \rightarrow \mathrm{U}(n) \tag{3.8}
\end{equation*}
$$

In fact $\alpha \in \pi_{1}(\mathrm{U}(n))=\mathbf{Z}$ and $\beta \in \pi_{3}(\mathrm{U}(n))=\mathbf{Z}$ so that only the homotopy classes of α and β matter. The integers, a and b say, that label the homotopy class of α and β respectively are chosen to be unity and are given by

$$
\begin{align*}
& a=\int_{S_{2}} C_{1}(\xi), \\
& b=\int_{S_{4}} C_{2}(\zeta), \tag{3.9}
\end{align*}
$$

where C_{1} and C_{2} denote Chern classes. To construct $\mathrm{U}(n)$-bundles over T^{4} we simply need to pull-back ξ and ζ to T^{4}, i.e. to construct the bundles $\left(f \circ \pi_{i}\right)^{*} \xi$ and $g^{*} \zeta$.

Finally we need to construct $\mathrm{PU}(n)$-bundles over T^{4}. This is done by giving $P \xi$ and $P \zeta$: let p be the projection $p: \mathrm{U}(n) \rightarrow \mathrm{PU}(n)$, then the maps

$$
\begin{align*}
& \alpha_{p}: S^{1} \xrightarrow{\alpha} \mathrm{U}(n) \xrightarrow{p} \mathrm{PU}(n), \\
& \beta_{p}: S^{3} \xrightarrow{\beta} \mathrm{U}(n) \xrightarrow{p} \mathrm{PU}(n), \tag{3.10}
\end{align*}
$$

where $\alpha_{p}=p \circ \alpha$ and $\beta_{p}=p \circ \beta$ define the projective bundles $P \xi$ and $P \zeta$ which are then
pulled back to $\left(f \circ \pi_{i}\right)^{*} P \xi$ and $g^{*} P \zeta$ respectively to give projective bundles over T^{4}. Evidently $\alpha_{p} \in \pi_{1}(\mathrm{PU}(n))=Z_{n}$ and $\beta_{p} \in \pi_{3}(\mathrm{PU}(n))=\mathbf{Z}$. Thus the six kinds of bundles $\left(f \circ \pi_{i}\right)^{*} P \xi$ are classified by a twist $\eta_{\mu \nu}$ defined modulo n and the bundles $g^{*} P \zeta$ are classified by an integer. The twist $\eta_{\mu \nu}$ is defined modulo n because $\alpha \in \pi_{1}(\mathrm{U}(n))=\mathbf{Z}$ and $\alpha_{p} \in \pi_{1}(\mathrm{PU}(n))=Z_{n}$, for example, because of this fact, two homotopically inequivalent $\alpha, \alpha^{\prime}: S^{1} \rightarrow \mathrm{U}(n)$ may become homotopically equivalent when composed with p, i.e. we may have $\alpha \not \approx \alpha^{\prime}$ but $\alpha_{p} \simeq \alpha_{p}^{\prime}$.

In fact since topologically $\mathrm{U}(n)=\mathrm{U}(1) \times \mathrm{SU}(n)$, then $\pi_{1}(\mathrm{U}(n))=\pi_{1}(\mathrm{U}(1))$, since $\pi_{1}(\mathrm{SU}(n))=0$, so that in (3.10) the map $\alpha \in \pi_{1}(\mathrm{U}(n))$ is actually determined by an element α^{\prime} of $\pi_{1}(\mathrm{U}(1))=\pi_{1}\left(S^{\prime}\right)$ and $\operatorname{deg} \alpha^{\prime}$, the degree of α^{\prime}, is unity. This means that ξ is again the Hopf bundle of Sect. 2. As a consequence we may again construct the $\mathrm{PU}(n)$-bundle τ where

$$
\begin{equation*}
\tau=\zeta_{i j} \oplus g^{*} P \zeta \tag{3.11}
\end{equation*}
$$

and $\zeta_{i j}=\xi_{i} \otimes \xi_{j}$ and $\xi_{i}=\left(f \circ \pi_{i}\right)^{*} P \xi, \xi_{j}=\left(f^{\prime} \circ \pi_{j}\right)^{*} P \xi$. Even though τ was originally derived from $\mathrm{U}(n)$-bundles whose characteristic classes are Chern classes, τ may be regarded as having a Pontrjagin class $p_{1}(\tau)$. This point, also made independently by Van Baal [6], is that $\mathrm{PU}(n)$ is isomorphic to a subgroup G of $\operatorname{SO}\left(n^{2}-1\right)$, indeed any compact Lie group is isomorphic to a subgroup of $\mathrm{O}(n)$ for some n. The isomorphism in the case of $\mathrm{PU}(n)$ is provided by simply taking the adjoint representation of $\mathrm{U}(n)$, the map defining the adjoint representation has, by definition, kernel equal to the centre of $\mathrm{U}(n)$ so that the desired isomorphism $\mathrm{PU}(n) \simeq \operatorname{AdU}(n)$ follows. This being so, a $\mathrm{PU}(n)$-bundle may be regarded as an $\mathrm{SO}\left(n^{2}-1\right)$-bundle whose structure group reduces to G, its appropriate characteristic class can then be taken to be a Pontrjagin class.

A general Abelian configuration is given by taking a sum of $(n-1)$-bundles $\zeta_{i j}$ which we denote by $\zeta^{(a)}, a=1, \ldots n-1$. The resulting bundle, ζ say, has group $\mathrm{SO}(2) \times \ldots \times \mathrm{SO}(2),((n-1)$-times $)$, which corresponds to the maximal Abelian subalgebra for $\operatorname{AdU}(n) \subset \operatorname{SO}\left(n^{2}-1\right), n>2$. For ζ we have

$$
\begin{align*}
p_{1}(\zeta) & =p_{1}\left(\zeta^{(1)} \oplus \zeta^{(2)} \ldots \oplus \zeta^{(n-1)}\right) \\
& =p_{1}\left(\zeta^{(1)}\right)+\ldots p_{1}\left(\zeta^{(n-1)}\right) \\
& =\sum_{a=1}^{n-1} \frac{\varepsilon_{\mu \nu \alpha \beta}}{4} \hat{\eta}_{\mu \nu}^{(a)} \hat{\eta}_{\alpha \beta}^{(a)} \tag{3.12}
\end{align*}
$$

These $\hat{\eta}_{\mu \nu}^{(\alpha)}$ differ from those of ref. 6 due to a difference in the normalisation of the subalgebra. With the normalisation of ref. 6 we indeed find

$$
\begin{equation*}
p_{1}(\zeta)=\frac{(n-1)}{4} \varepsilon_{\mu v \alpha \beta} \eta_{\mu \nu} \eta_{\alpha \beta}+k \tag{3.13}
\end{equation*}
$$

where $\eta_{\mu v}$ is the twist defined modulo n and k is an even integer. The splitting principle [2] guarantees that a general value of p_{1} may be obtained with such Abelian configurations in agreement with refs. 1 and 6 , and p_{1} is also always even [6].

Appendix

Let the bundle ξ_{i} have twist $\eta_{\mu \nu}$ and ξ_{j} have twist $\eta_{\alpha \beta}$ as $\mathrm{U}(1)$-bundles. Then we have

$$
\begin{align*}
& c_{1}\left(\xi_{i}\right)=\eta_{\mu \nu}=\int_{T^{2}} i \frac{\mathbf{F}^{i}}{2 \pi}, \\
& c_{2}\left(\xi_{j}\right)=\eta_{\alpha \beta}=\int_{T^{2}} i \frac{\mathbf{F}^{j}}{2 \pi}, \tag{A.1}
\end{align*}
$$

where \mathbf{F}^{i} and \mathbf{F}^{j} are curvature defined on 2-dimensional tori. The Pontrjagin class $p_{1}\left(\xi_{i} \otimes \xi_{j}\right)$ is given by [2]

$$
\begin{gather*}
p_{1}\left(\xi_{i} \otimes \xi_{i}\right)=\left\{c_{1}\left(\xi_{i} \otimes \xi_{j}\right)\right\}^{2}=\left\{c_{1}\left(\xi_{i}\right)+c_{1}\left(\xi_{j}\right)\right\}^{2}, \tag{A.2}\\
c_{1}^{2}\left(\xi_{i}\right)+c_{1}\left(\xi_{i}\right) c_{1}\left(\xi_{j}\right)+c_{1}\left(\xi_{j}\right) c_{1}\left(\xi_{i}\right)+c_{1}^{2}\left(\xi_{j}\right)=2 c_{1}\left(\xi_{i}\right) c_{1}\left(\xi_{j}\right),
\end{gather*}
$$

where we have used the facts that $c_{1}^{2}\left(\xi_{i}\right)=c_{1}^{2}\left(\xi_{j}\right)=0$ and $c_{1}\left(\xi_{i}\right) c_{1}\left(\xi_{j}\right)=c_{1}\left(\xi_{j}\right) c_{1}\left(\xi_{i}\right)$, which follow from naturality and $\mathrm{U}(1)$-valuedness respectively.
Thus

$$
\begin{equation*}
p_{1}\left(\xi_{i} \otimes \xi_{j}\right)=-\frac{2}{(2 \pi)^{2}} \int_{T^{4}}\left(\pi_{i}^{*} \mathbf{F}^{i}\right) \wedge\left(\pi_{j}^{*} \mathbf{F}^{j}\right) \tag{A.3}
\end{equation*}
$$

where $\pi_{i}^{*} \mathbf{F}^{i}$ and $\pi_{j}^{*} \mathbf{F}^{j}$ are the pullbacks of the curvatures \mathbf{F}^{i} and \mathbf{F}^{j} to T^{4}. The righthand side of (A.3) is evidently proportional to $\varepsilon_{\mu \nu \alpha \beta} \eta_{\mu \nu} \eta_{\alpha \beta}$. If one takes a specific case where $\eta_{\mu \nu}=\eta_{12}, \eta_{\alpha \beta} \equiv \eta_{34}$, one finds easily that this constant is $\frac{1}{4}$, so we have

$$
\begin{equation*}
p_{1}\left(\xi_{i} \otimes \xi_{j}\right)=\frac{1}{4} \varepsilon_{\mu \nu \alpha \beta} \eta_{\mu \nu} \eta_{\alpha \beta} \tag{A.4}
\end{equation*}
$$

as desired, and this formula holds for general $\eta_{\mu \nu}, \eta_{\alpha \beta}$ defined modulo n.

Acknowledgements. The author would like to thank Richard Ward for his encouragement and Professor I. James for a valuable correspondence.

References

1. Ambjørn, J., Flyvbjerg, H. :'t Hooft's non-A belian magnetic flux has zero classical energy. Phys. Lett. 97B, 241 (1980);'t Hooft, G.: A property of electric and magnetic flux in non-Abelian gauge theories. Nucl. Phys. B153, 141 (1979); Physica Scripta 24, 841 (1981): Acta Phys. Aust. Suppl. 52, 531 (1980); Some twisted self-dual solutions for the Yang-Mills equations on a hypertorus. Commun. Math. Phys. 81, 267 (1981)
2. Eguchi, T., Gilkey, P. B., Hanson, A. J.: Gravitation, gauge theories and differential geometry. Phys. Rep. 66, 213 (1980); Husemdler, D.: Fibre bundles. Berlin-Heidelberg, New York: Springer 1975; Atiyah, M. F.: K-theory. New York: Benjamin Inc. 1967.
3. James, I., Thomas E.: J. Math. Mech, 14, 485 (1965) (I am indebted to Professor I. James for this information.)
4. James, I.: Trans. Am. Math. Soc. 84. 545 (1957)
5. 't Hooft, G.: Some twisted self-dual solutions for the Yang-Mills equations on a hypertorus. Commun. Math. Phys. 81, 267 (1981)
6. Van Baal, P.: Utrecht preprint

Communicated by R. Stora
Received February 25, 1982; in revised form June 3, 1982

