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Abstract. We study the spectrum of the almost Mathieu hamiltonian :

{Hx\p){n) = ψ{n + 1) + ψ(n - 1) + 2μ cos (x - nθ)ψ{n), ne TL,

where θ is an irrational number and x is in the circle ΊΓ. For a small enough
coupling constant μ and any x there is a closed energy set of non-zero measure
in the absolutely continuous spectrum of H. For sufficiently high μ and almost
all x we prove the existence of a set of eigenvalues whose closure has positive
measure. The two results are obtained for a subset of irrational numbers θ of
full Lebesgue measure.

I. Introduction

The aim of this paper is to study some properties of the spectrum of operators of
the form:

HMψ(n) = ψ{n+ϊ) + \p(n-ΐ) + μV{x-nθ)ψ{n)9 (1.1)

where φe/ 2(Z), V is a continuous function on the circle ΊΓ, θ is an irrational
number, x e T and μ is a real positive number (the coupling constant). From the
physical point of view, both the dependence of the spectrum on μ, as well as the
growth of the eigenfunctions as n->oo are crucial.

The first example of the treatment of an almost periodic potential goes back to
Peierls [21] where the Schrodinger operator defined in (1.1) describes the one band
hamiltonian for a Bloch electron in a magnetic field, in the approximation where
the interband contributions is neglected; see also [22]. The prediction of Little
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[19] concerning the possibility of getting supraconductivity at high temperatures
using organic conductors gave, more recently, a new interest to the subject.

Subsequently a great effort was made theoretically as well as experimentally in
these fields. The first studied materials, such as the family TTF-TCNQ [8], failed
to be conductors below 40 K since they present a metal-insulator transition, due to
the Peierls instability. In order to avoid Peierls instability, one has to increase the
rigidity of the material. This was performed very recently using the (TMTSF)-PF6

[7], for which material it seems that supraconductivity can appear at higher
temperatures.

On the other hand, Frδhlich theory [11] predicts superconductivity provided
the perturbing modulation is small enough. It has been conjectured that large
modulation creates localization of the electrons as argued by Anderson [1] for the
case of random media.

One of the main heuristic steps in the understanding of the phenomenum is due
to Aubry and Andre [2], who proposed a tight binding approximation, for which
the Schrόdinger operator, known as the almost Mathieu operator, consists of the
operator (1.1) in the case where V(y) = 2cos2πy. Computing the Liapounov
exponent y which gives the asymptotic behaviour of ψ(n) as n-> oo, they found that
for almost all x

(1.2)

suggesting localization properties for μ>l. An argument, known as the Andre-
Aubry duality [2] relates the spectra of Hiμ) and H^/μ) suggesting then a
conducting phase for μ< 1. See Avron and Simon [4] for a rigorous proof of the
Thouless formula and (1.2). Subsequently Hermann [16] gave a simpler proof of
(1.2). However, as it was recently pointed out by Avron and Simon [4] a result of
Gordon [12] implies that localization cannot occur for all irrational values of θ.

Therefore at most we can expect that for "almost" all irrational θ, the metal-
insulator transition really takes place. The aim of this paper is to prove rigorously
that such is the case.

There are two pieces of mathematical machinery which will be employed. First
we use the method developed by Dinaburg and Sinai [9] for studying the
spectrum of Hiμ) for small values of μ. This method is based on the Newton
algorithm for computing roots of certain equations, together with the analysis of
the small divisors as in the classical work of Kolmogoroff [18], Arnold [3], and
Moser [20]. Actually we use Russmann's point of view [23] with the main
difference coming in our case from the fact that we treat a discretized version of the
Schrδdinger equation.

After that, we use, in an essential way the Andre-Aubry duality. In a previous
paper [6], two of us showed that this duality is fairly general, since it appears as a
Fourier transform in the algebraic formalism related to this problem. In our work
we use this duality argument in order to show the existence of an infinite number
of eigenvalues, with corresponding exponentially localized eigenfunctions.

Furthermore we are able to prove, using techniques of number theory, that the
measure of the closure of the set of eigenvalues is strictly positive.
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The paper is organized as follows. In Sect. 2, we recall some useful results about
number theory and Russmann approximation functions, and we fix some
functional spaces used in the sequel. Section 3 contains the list of results. In Sect. 4
we make the first steps of an application of the Dinaburg-Sinai method using
Russmann's point of view and obtain estimates of the linearized equation. In
Sect. 5 we achieve the proof of Theorem 1 inspecting a recursion process. The
existence of absolutely continuous spectrum for small coupling, which is the
content of Theorem 2, is proved in Sect. 6. Finally, the proof of the existence of a
pure point spectrum at high coupling, together with an estimation of its Lebesgue
measure, is given in Sect. 7. Section 8 is devoted to the case of a special type of
irrationals θ for which the estimate of the size of the spectrum can be improved.

Remark. Some of the results contained in this paper were announced by one of us
(J.B.) at the Summer Institute on Operator Algebras and Applications, Kingston
(Ontario), July 1980, and the YIth International Conference on Mathematical
Physics, Berlin, August 1981.

2. Preliminaries

Here we fix some notation and recall some results used in the sequel.

2.1. Russmann's Approximation Functions [23]

An R A F (Russmann approximation function) is a strictly positive function Ω on
[0, + oo[ which satisfies:

i) Ω is continuous, decreasing and

lim£2(s) = 0 as 5 ^ + 00, (2.1)

ii) s ^ ~ l ° g 7 ^ 7 T is decreasing, (2.2)
s ίd(s)

+ GO 1 1
iii) j ds-^log—— < + 00 for any s o > 0 . (2.3)

s0

 S ^\s)

A useful example of an RAF is given by

Ω(s) = Ω(s0) if s£so = e1+", (2.4)

ί+a for s^s0, (2.5)

where α ^ and C are strictly positive constants.
Clearly the product of two RAF's is again an RAF, so that in particular

positive powers of an R A F are RAF's. Following [23], we now introduce the
functions
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Here Φm is a decreasing function of ρ. Further we define DS(ρ) to be the set of
00

positive decreasing sequences r = (rn)n>0 such that ]Γ rn^ρ. Endowed with the
n=0

topology of pointwise convergence, DS(ρ) is a compact subset of [0, ρ] N .
For each RAF, Ω, we define

Ψm(ρ)= inf flΦJr)^, m>0. (2.7)
rsDS(ρ) n = 0

It is proved in [22] that

ao. (2.8)

On the other hand, since Φm(ρ) increases as ρ decreases to 0, the map

f[ ΦJrn) ^ ^ s u p f] ΦJr^ (2.9)
n = 0 N n=0

is lower semi-continuous and therefore, by the Weierstrass theorem, there exists a
sequence reDS(ρ) such that

«Ue)= UΦm(rn)
2"^ (2.10)

n = 0

00

Clearly rn > 0 for all n and ^ ^ = Q ( 2 1!)

2.2. Function Spaces

In what follows we deal with functions of three parameters (φ, x, μ), where 0 runs
over a domain in T + /ΊR = (Γ/Z, .v is chosen in some open neighbourhood of T
in (C/Z, and μ is a small complex parameter.

For φ e T + ilR we define

| | φ | | = inf|0 + n|. (2.12)
neTL

For any compact subset K of T + ilR and any Banach space B we denote by
££{K, B) the set of Lipschitz continuous functions from K to B. On J£?(K, B) we
define the following norm:

IIIΓII ιn™ιι^. \\F(φ)-F(φ')\\
|| F ||, = sup || F(φ) || + sup — — — — . (2.13)

ΦεK φ,φ'eK WΦ-ΦW
If B is a Banach algebra, S£{K,B) turns out to be a Banach algebra under
pointwise multiplication.

The following is easy to prove :

Lemma 2.1. If B is a Banach algebra and Fe£?{K,B) such that for any φeK,
1!! ^fc< + oo, then F is invertible as an element of the algebra S£(K,B) and

\\F-%^k2\\F\\,. (2.14)
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In what follows B will be the Banach space of holomorphic bounded functions
on the interior of some holomorphic manifold Jί with boundary and with values
in C or in the two by two matrices M2((C). Here B is equipped with the norm of
uniform convergence. Accordingly, we shall denote J£(K, B) by if(X,^#,C) or
£?{K,Ji,M2(<Dj) in these cases. More specifically Jί should be one of the
following:

(i) a one point set and in which case B = (£ or M2((C), (2.15)

(ii) T r = T + z [ - r , r ] , for r > 0 , (2.16)

(iii) Dλ = {ze<£;\z\Sλ}, for A>0, (2.18)

(iv) T r x D A . (2.19)

So that there is no ambiguity, we shall drop the index f in the norm of £?(K, B) and
denote by || ||, || ||r, || ||A or || \\r λ the norms in J£(K, Jί,C or M2((C)), according
to whether Jί is given by (i), (ii), (iii) or (iv).

Given an RAF Ω and an irrational θ such that

inf | |nθ| |^Ω(m), (2.20)
\n\£m

we define a domain KΩΘ R, for R>0 by

(2.21)

Note that KΩ θ R is the complement in ΈR of the union of open discs with
centre nθeT and radius Ω(\n\). If Ω decreases rapidly enough, and if £2(0) is small
enough, KΩ θ RnΈ turns out to have non-zero Lebesgue measure.

2.3. The Irrational Rotation

Let 0e[0,1[ be an irrational number and [α 1 > α 2 , . . . ] its continued fraction
expansion. Denote, as usual,

Writing qn0 = qnθ — pn, we see that

7

 l-yr ^ ^—- ύ \\qnθ\\ = WqJW S — S — ! — . (2.22)
(an+1 + 2)qn qn+1+qn qn+1 an+1qn

We shall use the following results; see [15, p. 63] for the proofs.

Lemma 2.2. Let q be such that 0<q<qn+1, then

ikfl i i . (2.23)

Lemma 2.3. For each integer je[0,qn+ί[, let I" denote the subset of T given by
θθ $ ( d )j

For any n ^ l , the {qn + qn+ί) intervals I", for O^j<qn+1 and I " + 1 for O^j<qn

cover T and /z<2U£ disjoint interiors.
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We say that an irrational θ is of constant type if there is a constant e > 0 such

that

(2.24)

or, equivalently, if the continuous fraction expansion is uniformly bounded,
namely an^Λ, for all πeN. An irrational number θ is called a Liouville number if

Pn 1
(2.25)

The set of irrational θ for which the non-existence of localization for the
Schrodinger operator related to (1.1) was proved [4,12] is a class of Liouville
numbers, namely those for which there is a constant c verifying:

Pn
(2.26)

Note that the set of numbers of constant type as well as the set of Liouville
numbers are of zero Lebesgue measure.

An irrational number is called a Roth number if, for every ε>0, there is a
constant cc > 0 such that

(2.27)

The class of Roth numbers is of full Lebesgue measure.

3. Statement of Results

This section is devoted to the precise statement of the results proved in this paper.
As explained before, our results agree with the Andre-Aubry conjecture. They will
be presented in three steps. We use the notation introduced in the previous section.

3.1. Twisted Conjugacy

As is well known, the Schrodinger equation corresponding to (1.1) can be written

as
Ψn+l

Wn

+ μV(x-nθ) -l\ί ψn (3.1)

Our first theorem asserts that, under certain circumstances, there is a twisted
conjugacy of this equation to the free model. In what follows V is a complex-
valued continuous function on T r, r > 0 , holomorphic in the interior of TΓr and
\\V\\r denotes its uniform norm.

Let Ω be an RAF and θ an irrational number such that

\\mθ\\^Ω(m), Vm>0. (3.2)
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For a fixed R>0, let K denote the set KΩΘR defined in the previous section, see
(2.21). Define a matrix-valued function by

where ze(C, yeΊΓ,.? a n d M G ^A f° r s o m e Λ,>0. The corresponding free matrix is
defined by

M ° ( z ) = ( i Ό 1)- (3 4)

Theorem 1. There exists a constant B>0 such that for all ρ with 0<ρ<r and all
λ>0for which

\\V\\rλΨ2(ρ)<B, (3.5)

one can find a matrix-valued function G in ££{K, Έr_ρx Dλ,M2(<E)) and a complex-
valued function α in =Sf(X, Dλ, (C) such that

M(2 cos π ^ + α(φ, μ\ y, μ) = G{φ, y-θ, μ)M0(2 cos πφ)G(φ, y, μ)"1 (3.6)

/or α/Z

l | < λ ρ . (3.7)

Furthermore G and a can be chosen in such a way that

(i) detGiφ,y,μ) = l, (3.8)

(ii) c # , μ = 0) = 0, (3.9)

(iii) G(φ,y,μ = Q) = i. (3.10)

Moreover, if V(y)eΈt for yeJR, then for y and μ real,

G(φ,y,μ) = G{φ,y,μ) and a(φ,μ) = d^μ), (3.11)

where G is for the complex conjugate matrix of G.

3.2. Absolutely Continuous Spectrum at Small Coupling

In addition to assumptions of (3.1), let Ω be an RAF such that

00

Σ Ω(n)<l (3.12)

and denote K0 = KΩfθtRr\Έ.
For xeT, consider the self-adjoint operator on /2(Z), defined in (1.1):

. (3.13)

We have the following

Theorem 2. There exists λί>0 such that for 0<μ<λv the map

(3.14)
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is a Lipschitz homeomorphίsm which transforms Ko into a closed subset of the
spectrum of H^ of positive Lebesgue measure moreover, the restriction of the
spectral measure of H^ to E(K0,μ) is, for any xeTΓ, absolutely continuous.

3.3. Pure Point Spectrum at High Coupling

In addition to the assumptions of 3.1 and 3.2, we suppose now that θ is a Roth
number, (see 2.3), with a continued fraction expansion

Θ = [α 1 ,α 2 , . . . ,α π , . . . ] (3.15)

for which lim sup απ = ,4(0)^10. As is true for almost all irrational numbers, A(θ)
n—• o o

may be infinite.
The following theorem insures the existence of" point spectrum at high coupling

for the special case of the almost Mathieu operator, namely

F(x) = 2cos2πx. (3.16)

Theorem 3. Under the assumptions above, there is a constant λ2 such that for μ^λ2

the almost Mathieu operator H^ has, for almost all x e T (with respect to Lebesgue
measure), an infinite set of eigenvalues whose closure has positive Lebesgue measure.
The corresponding eigenvectors have exponential decay.

More precisely, for almost all xeTΓ, the set

} (3.17)

is in the closure of the set of eigenvalues and has positive Lebesgue measure.

3.4. The Case where θ is of Non-Constant Type

For a set of full Lebesgue measure, the constant

,4(0) = lim sup αn (3.18)
«—>• oo

turns out to be infinite. In that case we can give an improvement on the size of the
sets of the spectrum of the almost Mathieu operator described in Theorems 2 and
3. Actually in that case their Lebesgue measure is very close to that of the entire
spectrum.

Theorem 4. With the same conditions as in Theorem 3, if θ is a Roth number for
which Λ(θ)= oo, then for any ε > 0 there is λo>0 such that, for almost all x e T and
μ^λ0 (respectively μ^l/λ0) the absolutely continuous part of the spectrum
(respectively the closure of the set of eigenvalues) of the almost Mathieu operator
H^ has a Lebesgue measure greater than 4 — ε (respectively (4 — ε)μ).

We remark that 4 + 4|μ| is a trivial upper-bound of the Lebesgue measure of the
spectrum of H^\ In [2], Andre and Aubry gave numerical evidence for the
Lebesgue measure of the spectrum of H^] to be 4|1 — μ|.
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4. The Linearized Equation

In the proof of Theorem 1, the main point is concerned with the solution of a
linearized equation and some related estimates.

Let F and G be given in j£?(K, TΓrJ M2(C)), r > 0 and let M be the 2 x 2 matrix-
valued function, defined by

( 2 c ° i

S π φ " ^ j . (4.1)

As in (3.1), θ is an irrational number such that

\\mθ\\tΩ(m), Vm>0. (4.2)

Associated with the equation of Theorem 1, we consider the following linearized
equation:

W(φ, x - θ)M(φ) - M(φ) W(φ, x) = F(φ, x) + G(φ9 x-θ)- 1A(φ)G{φ, x). (4.3)

The rest of the section is devoted to the proof of the existence and properties of the
solutions W and A of this linearized equation.

Denote by E the linear subspace of M2((£) of those matrices of the form

J); M β c (4.4)

Propositions. Under the previous assumptions, there is 0 < ε o < l such that if
\\G— l | | r < ε 0 and 0 < ρ < r , the linearized equation (4.3) has a solution (W,A) with
We^(K, T r_ρ,M 2(C)) and Aeif(K5 M2((C)). ylmon^ α// the solutions, there exists a
unique one such that

(i) A(φ)eE, MφeK, (4.5)

(ii) $tr{W(φ,x))dx = 0; \iτ{W{φ,x)M{φ))dx = O. (4.6)
T

Furthermore, in that case, the solution satisfies

(a) \\A\\SCJFl., (4.7)

(b) WF+Ge'AGW^CJFl, (4.8)

(c) HW%- β ^C 3 Φ 2 (2πρ) | |F | | r , (4.9)

where C1 ? C2, αnJ C 3 are constants depending only on Ω, R, ε0, αnJ Gθ denotes the
function

Gθ(φ,x) = G(φ,x-θ). (4.10)

In order to prove this result, we first introduce for FGjSf(K,Tr,M2((C))

En(F) (φ) = J rfx exp ( - 2iπnx)F(φ, x), (4.11)
¥

and for GeJS?(K,Tr,M2(C)), ΓG denotes the operator acting on &(K,M2(<C)) by

M (4.12)
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Now the proof proceeds in three steps, the first dealing with A, the second with
E0(W) and the third with W.

Step ί. Computation of A and related estimates.

Lemma 6. Let η= \\G- 1||,< 1, then ΓG is bounded on if(K,M2(C)) and

\\ΓG-i\\rS2η/l-η; \\ΓG\\£l+η/l-η. (4.13)

Proof. Since

(ΓG - ί)A = E0(G; U{G -1)) + £0((G - 1 - ί)A),

and

we get
WG-'W^l/l-η,

which proves the lemma.
We now prove (a) and (b) of Proposition 5. Integrating over x, we see that (4.3)

is equivalent to the following two equations:

(4.14)

and
tr(M£0CF) + MΓG(A)) = 0. (4.15)

But, if AeE, we get:

T T)
where (Aί(F),A2(F)) is the image of (tr£0(F),trM£0(F)) by the inverse A"1 of the
mapping

* . : < * » - K »)• ««'•«(» S))
Note that by Lemma 6, AG

ι exists in if(K,C) provided \\G— l\\r is small enough.
From (4.16) (a) and (b) of Proposition 5 follow immediately

Step 2. Existence and Properties of E0(W).
Since E0(W) appears only in [E0(W),M~\, Wcan be chosen in such a way that

(ii) of Proposition 5 is verified. Then, it is a simple matter of computation that we
can write:

1 ),M]. (4.18)

Lemma 7. For φeK = KΩ θ R, we have

\\E0(W)\\^K2\\F\\r.

Proof. Since 4- t r (M) 2 = 4sin 2π0 and for |Re0|<l/2, we get |s inπ0|>2| |0 | | . For
φeK, \\φ\\ ^Ω(0)>0, thus K2 exists and depends only of Ω(0), R, ||M||, and C2.
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Step 3. Computation of W.
In order to compute W, we use a Fourier expansion and a φ-dependent change

of basis diagonalizing M(φ). From (4.3), we get:

exp( - 2iπnθ)En{W)M{φ) - M{φ)En{W) = En{F + GQ ιAG). (4.19)

The matrix

(eXpilπφ) M P ( - ^ ) ) (4.20)

gives the desired change of basis. The following is elementary:

Lemma 8. Let A be in ^{K, M2(C)) and let atj be the matrix elements of
iφΓ^iφ). Then

(4.21)
i J i J

where

K, = \\S(φ)\\\\S(φΓι\\. (4.22)

The rest of this section is devoted to the proof of (c) of Proposition 5. Let
Wij(φ,ή) and Hij{φ,ή) be the matrix elements of En(W) and of En(F + GQ1AG).
Writing ε t = + 1 and ε2 = — 1, from (4.37), we get

, 1 O ^r, „. , , , Hkk(φ,n)Qxp{iπ(n0-εkφ))
k = 1,2 , n Φ 0 , Wkk(φ,n)= — r :) , 4.23

and

H " U ' " " n ' m ? . (4.24)

Lemma9. Let He^f(K,T r ,C) and let WHW^^ denote the supnorm of H on KxΈr.
Let H(φ,n) be the Fourier coefficient of H(φ, •) of order n and let

w (φ )_yH(φ,n)exp(2iπ»x)

where ε= 1,0, — 1
^ ,,, (4.26)

/or 0 < ρ < r.

Proof. If \lmx\g,r— ρ one gets

^ Λ Σ Σ ίΓT Zlϊ (exp(-2πρm)-exp(-2πρ(m + l))).(4.2
2 m t J o \ p = - m \\εφ-mφ\\ )
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But by Schwarz's inequality and the proposition in the appendix together with
ParsevaΓs formula

™ \H(φ,m)\Qxp(2π\m\r) ^

(4.28)

Finally, since Ω is a decreasing function, we have

co I

Σ 7^—^(exp(-2πρm)-exp(-2πρ(m+l)))
m = o i AmJ

oo i 2πρ(m+ 1)

(4-29)

and (4.29) together with (4.28) proves the lemma.

Lemma 10. Under the assumptions of Lemma 9, for 0 < ρ < r , the following in-
equalities hold:

For i: = + 1

l ϋ . a Γ ( l / a r (4.30)

Proof. We only need to estimate the extra term

λ w ί , , , , W(φ,x)-W(φ',x)
δW(φ,φ,x)= . (4.31)

I I Φ - Φ II
But

,*',*)= Σ exp(2πnx)( . ^ / ' l -

— nθ) L J

where ε= ± 1 .
By the previous lemma and Holder's inequality, one gets:

and thus
: chπR)ίχΦa+1(2πρ)}, (4.34)

and since Ω(s)<Ω(0)S \\nθ\\^ί one gets Φa^Φa+1 and (4.30) follows.
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For ε = 0, the second part of (4.32) does not occur and so (4.30) follows directly
from Lemma 9, so that Lemma 10 is proved.

We can now end up with (c) of Proposition 5. Applying Lemmas 9 and 10 to
(4.23) and (4.24), we get

-π<z>1(2πρ)]/π + 2, (4.35)

and

/cφ/ί'|| W^A.'llr- o= ll^uΊL U + π chπK)*2(2πρ)|/π + 2 . (4.36)

Therefore, putting

& 4 = Max( j /π + 2(1 -fπchπK), exp(τLR)(l + π) j/π + 2), (4.37)

we have

sup | |IV||,._ogK4tf>2(2πρ)sup ll^uΊL , (4-38)
A.Λ' " k.k'

and finally

l l^-^o(^)L- ρ ^2^K 4 Φ 2 (2πρ)| | f/ | | r

^2K2

3K^C2Φ2(2πρ)\\F\\r9 (4.39)

where we use (4.8) for the last inequality.
From Lemma 9 we can write

\\E0(W)\\^K2\\F\\r^K2φ2(2πρ)\\F\\β9 (4.40)

so that, taking

(4.41)

(4.9) follows and Proposition 5 is proved.

5. The Recursion Process

This section is devoted to the proof of Theorem 1 using a recursion process
applied to the linearized equation. We introduce at each step matrix-valued
functions Zk{μ, φ) and matrix-valued functions Gk(y, μ, φ), sufficiently close to 1, so
that

(1) Nk(y\ μ, φ) = M(φ) + δNk(y\ μ, φ) + Gk(y-0, μ, φΓιZk(μ, φ)Gk(y\ μ, φ), (5.1)

(2) δNk{y,μ9θ) = O, as μ^O, (5.2)

where yeΈr, μeDλ. For, we start with Z0(μ,φ) = 0 and G0 = l, so that

N0(y, μ, φ) = M(φ) + δN0(y, μ, φ), (5.3)

and to be explicit, we write

(5.4)
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Now the results of the previous sections still hold when we replace ££{K, T r, B)
by J£?(K, TΓr x Dλ, B\ B being C or M2((C) in that case μeD λ appears as an extra
parameter and all the estimates are uniform in it. At each step r and λ will be made
precise [see (5.18) and (5.19)].

From Proposition 5, we get \tykΛ ,()', μ, φ) and Ak+ j(μ, φ) as solutions of the
equation

Wk, {(y-0, μ, φ)M(φ)- M(φ)Wk+ {{y, μ, φ)

= όNk(y\ μ, φ) + Gk(y-0, μ, φ)~ {Άk+{(φ, μ)Gk(y\ μ, φ). (5.5)

Therefore, putting

Nk + , (>', μ, 0) - {1 + ̂  + ! (>' - 0, μ, 0)}" 1 NΛ(>', μ, φ) {1 + ̂  + {(>', μ, 0)} " ι , (5.6)

it is not difficult to see that JVι+ ! verifies the same relation (5.1) as NA, with

Zk+ t(μ, φ) = Zk(μ, φ)~Ak+ t(μ, φ), (5.7)

Gk+ι(\.μ. φ) = Gk{y\μ, φ) {1 + Wk, ,(>>,/(, φ)}, (5.8)

d/V,+ ,(>•, μ, φ)={\ + Wk, ,(j - 0 , μ, </»)}" ' {δNt(> , μ, φ)

+ Gk(y-0,μ,φΓιAk+ι(φ, μ)Gk[y, μ, φ)} Wk, ,{y, μ, φ). (5.9)

Following Proposition 5, we shall also get

and as μ->0,
k , (5.10)

so that we can expect the recursion process to be convergent as k-* oo to some
satisfying

y9μ9φ)9 (5.11)

with
00

GJy,μ,φ)=Y\{\ + Wk{y,μ,φ)), (5.12)
fc=l

and ^

Z J μ , 0 ) = - £ Λ(μ,^) (5.13)
fc=l

Now, from (5.6), we get

JV^O;, μ, (/>) = GJy-θ, μ, φΓ1^^ μ, ^G^O;, μ, 0), (5.14)

and comparing (5.11) with (5.14), it follows that

N0(y9 μ, φ)- Z J μ , φ) = G^(); - 0, μ, ^MίφJG^O;, μ, (/>)"x, (5.15)

which will prove Theorem 1 if we are able to show that Z ^ is of the form

(a 0
o o/ (5 16)
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This is more precise than Z ^ μ , φ)eE, which is a consequence of Proposition 5.
We shall come back later to this problem.

We shall follow Russmann [23]. Using (2.10) and (2.11) we build a sequence

I£/V}/VGN w i t r i 0 < . . . < ρ k + { < ρ k < . . . < ρ < r a n d YjQk = g s u c h t h a t

Ψ2(2πρ) = Π <f>2{2πρk)
i'2ktl. (5.17)

We define

>2{

k = υ

and

where the δk, 0<δk< 1,

V

(δk)
2k:

are chosen

= 1

= (l + ε o )" 1 <

= '"*-(

in the

Qk, ro =

, λo = λ

following

r

>

way:

-, for /c>0,

(5.18)

(5.19)

(5.20)

(5.21)

so that

" Φ π°" >0. (5.22)

From Schwarz's principle (see [23] and Proposition 5) we get the following
inequalities

(1) 1 + \\Kk^ - n r k . , . * k l , ^ ( 1 + \\GΓ ' - H l i r k . ; J U + 11^11,.,.^)' ( 5 - 2 3 )

(2) l l ^ n 1||,,fl.Λ,, + 1 ^ C 3 ( ) f | | ( 5 i V A | | I , . / . , * 2 ( 2 π ί ) / J , (5.24)

(3) IM ί̂U^C '̂W/J,,,.^ (5-25)

( 4 ) \\δNk\\rk./k^C2\\nk\\ΓK,λκ(l - \\Wk\\rκ.J~ ] r t - , ' H ^ - . I k . , . , , . - , • (5-26)

As in [23], these recursion estimates can be solved provided

and \μ\ ^ λ^ = 2 0 f̂  ̂ Λ The condition on A in Theorem 1 follows from (5.27).
n

Now, in order to finish, we just need to prove that the matrix [see (5.3) and
(5.13)]

N0(y,μ,φ)-ZJμ,φ) (5.28)

is of the form announced in Theorem 1, namely

M(2 cos πφ + α(μ, φ\ y, φ). (5.29)
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But, since Z^μ, φ)eE, we have

AT ( ΛΛ 7 ί ΛΛ (2cosπφ + μV(x) + a(φ,μ) -l + β(φ9μ)\
N0{y,μ,φ)-ZJμ,φ)=\ ^ 0 ]' ^ ̂

From (5.30) and the existence of G^ we can compute

log d e t ( i V 0 - Z J = log(l-£((/>, μ))

= log det GJφ, x-θ,μ)- log det GJφ, x, μ). (5.31)

Integrating over x on T one gets

log(l-β(φ9μ)) = 0 if ]μ\^λ9 (5.32)

or β(φ,μ) = O, since β is analytical in μ. Finally, it also follows that
logdetGoo((/), x, μ) is independent of x, and, therefore, modifying G^ if necessary,
we can assume

detGJφ,x,μ) = l, (5.33)

which completes the proof of Theorem 1.

6. Absolutely Continuous Spectrum: Proof of Theorem 2

The matrix-valued function G(φ, x, μ) in i f (X, TVQO X D A , M2((C)) of determinant
one, which we get by means of Theorem 1, can be viewed as an "intertwiner"
between the interacting transfer matrix M(E(φ, μ), x, μ) and the free transfer matrix
M0(φ), where

E(φ, μ) = 2 cos πφ + α(0, μ) (6.1)

provided φeK = KΩ R θ and |μ| < A. From that, it is natural to define the following
functions fε and gε in i?(K, Ύroo x Dλ,C), for ε = + 1, relating the solutions of the
free model and such of the interacting one:

f^\=G(φ,X,μ^( 1 ). (6.2)
£>, x, μ)/ \exp - ίπεφ/

Lemma 11. The functions fε and gε satisfy:

(1) gε(φ, x, μ) = exp ( - iπεφ) f£φ, x + θ,μ), (6.3)

(2) {E(φ,μ)-μV{x)} fe(φ9x,μ)-gB(φ,x,μ) = exp(ιπεφ)-f e(φ9χ-θ9μ). (6.3')

The proof is easy.

Corollary 12. The sequences {ψε(ri)}neZ, ε = + 1 defined by

\pE(n) = exp (iπεnφ) -fε(φ, x — nθ,μ), neZ (6.4)

are generalized eigenfunctions of H{lι) for the eigenvalue E(φ, μ).

Proof Combine Lemma 11 with Theorem 1.
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Corollary 13. The Wronskian of the solutions xp+ and ψ_ is

(6.5)

Proof. Since the Wronskian

7 7 (6.6)
\y> + ( n - l ) v?_(n-l)/

is independent of n, for n = 0, we get

(6.7)

where we use Lemma 11 and the fact that detG(φ,x,μ) = ί.
We come now to the computation of the resolvent of H(^\ and first remark that

0 (6.8)

since, using (6.2) and Sect. 5, we have

/ ' (6.9)

Here ε0 is a numerical constant introduced in Proposition 5, and depending on R,
provided they are small enough.

Lemma 14. Let φeK be such that Imφ>0, then for all χe/ 2(Z), we have

ψ+(m) X y>-(p)x(p)+v>-(™) Σ Ψ+(P)X(P)\- ( 6 1 0 )
Jp— — oo

Proof. This is a well known formula, see e.g. [27].
We now prove that if χe^1(Z) the right hand side of (6.10) remains bounded as

Im0->O.

Lemma 15. // χet\Έ)nt\Έ), φeK, then

Proof. Combining (6.9) with (6.10), one gets

ψ + (m) X Ψ-(p)χ(p) ^2(1 +ε0) £ exp(πlmφ{p-m))\χ{p)\
p^m pίm

^2( l + ε o ) 2 | |χ | |^. (6.12)

The remaining terms in (6.10) are bounded by the same constant and the lemma
follows from the inequality:

(6.13)
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For ΦOE^Ω,Θ,R a n d O^β^R, we define two real functions ξμ and ημ by:

ξ"{φ09 β) - iη"(φ09 β) = E(φo + iβ, μ) - E(φ09 μ). (6.14)

Let us remark that, by definition of KΩ ΘR we get φo + iβeK.

Lemma 16. There is a λγ and Ro, 0<λι<λ and Q<R0<R such that, if \μ\ ^ λ1 and

(1) \ξμ(φ0J)\^2πΩ(0)β, (6.15)

(2) πβsinπφ0 ^η μ (φ Q ,β)^3πβsinπφ 0 . (6.16)

Proof. Note that, by Theorem 1, there exists λί such that

IMI ̂ π Ω ( O ) , (6.17)

and therefore
(6.18)

On the other hand, by (6.1):

E(φ0 + iβ, μ) ~ E(φ09 μ) = 2cosπ{φ0 + iβ) - 2cos πφ0 + oc(φ0 + iβ, μ) - a(φ0, μ),

(6.19)
from which we get:

(6.20)

(6.21)

(6.22)

Since we can choose Ro so small that

(1) follows from (6.20).
In order to prove (2), we write

x|3|x|
Using |shx — x | g —— exp|x|, we get

TOo, β) - 2πβ sinπφo\ ^ πΩ(0)β + ±π3β3 exp(πβ) sinπφ0 . (6.23)

Again by (6.13), the right hand side is dominated by βπsinπφ0, provided # 0 is
small enough to have

iπ2R2

0exp(πR0)^, (6.24)
which proves (2).

Combining Lemmas 15 and 16, we easily get the following

Lemma 17. Let μ be a real number such that O^ίμ<λ1 and let σχ be the spectral
measure ofΉ^corresponding to the vector χe/ 1 (Z)n/ 2 (Z). // φoeKΩ g R n l and
0<β<Ro, one has

= i{E-E(φ0,μ)-ξ"(Φ0,β)}2+η^φ0,β)2 ^ '

< H r l i ? . ( 1 + £ ° ) 2 , (6.25)
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From the previous lemma we can conclude the absolute continuity of σχ with
essentially bounded Radon Nikodym derivative on the set E(KΩ θ κnΊΓ,μ). The
proof of this property is the object of the following three lemmas.

Lemma 18. For any Borel subset A of E(KΩ θ RnΈ,μ), we have

A\. (6.26)

Proof. The set M of measurable subsets of 1R for which (6.26) holds is a monotone
family, so that we can take A to be any interval centered at a point of
E(KΩ θ β n T , μ ) , of length smaller than some fixed constant, which we take to be
4π£2(0)k0.

But for φoeKΩiθ}RnT[ and 0<β<Ro, denoting by 1̂  the interval of length
4πΩ(0)β and centered at E(φn,μ), we can use Lemmas 16 and 17 to get

ημ(Φ0,β)l + ε 0 ) ^ f

O(0) =E

]

elβ

πβsm(πφo)σχ(ΐ)
>

= 16π2Ω(0)2β2 + 9π2β2sm2πφ0'
From (6.27), we easily conclude:

[ }

w . (6-28)

It remains to prove that E(KΩΘRπΈ,μ) has positive Lebesgue measure:

Lemma 19. There is a Lίpschίtz homeomorphism Eμ from J = [£2(0), 1 — £2(0)] to
Γ,μ)j such that

(1) E * r K f l , β i Λ n T = £(. ,μ), (6.29)

(2) VφeJ, φ'eJ such that φ^φ',

3π£2(O)(φ/ -φ)S Eμ(Φ) - Eμ(ΦΊ ύ π(2 + Ω(0))(φf - φ). (6.30)

Proof. If φ' > φ are in J, we have:

2π(φ' — φ)^ 2(cos πφ — cos πφ')

^4πΩ{0){φ'-φ). (6.31)

Furthermore, if φ,φ'eKΩ θ Λ n T , we get

(2π + πΩ(0))(φ' -φ)^ \<x(φ' -μ)- oc(φ, μ)\ + 2cosπφ - Icosπφ'

= E(φ,μ)-E{φ',μ)

^2cosπφ + α((/), μ) — Icosπφ' — cc(φ\ μ)

^3πΩ{0)(φ'-φ), (6.32)

where we use (6.17).
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Now KΩ θ RnΈcJ is a Cantor set and there exists a denumerable family {In}n

of open disjoint intervals such that

J-{KΩtθtRnΊ}=[Jln. (6.33)
n

If In = ]an,bn[_ with an,bneKΩΘJ(, we extend E( ,μ) to /„ by

Kμ), an<φ<bn. (6.34)

Since £ μ again satisfies (6.32), this proves that Eμ is a Lipschitz homeomorphism.
We conclude with the following:

Lemma 20. For 0^μ^λ1 and a subset L C T of positive Lebesgue measure, the set
E(L,μ) has positive Lebesgue measure, in particular for L = KΩ θ Rr\Έ.

Proof. Let Fμ be the inverse homeomorphism of Eμ. By Lemma 19(2), one has for
any interval IC J: ,

3πί2(O)

and (6.35) is still true for any Borel subset of J ; in particular

\L\ = \F"(E(L, μ))\ g — i — |£(L, μ)|, (6.36)
3πί2(ϋ)

and since ^ Ω(n) < 1/4, we get

|K Ω f β f R nTΓ|>l/2,

and the lemma follows.
Now lemmas 11-20 combine to give Theorem 2.

7. Pure Point Spectrum: Proof of Theorem 3

We are now able to prove Theorem 3 using Aubry-Andre's duality [2, 6].

Proposition 21. Let μ be such that O^μrg/^ and φeTΓ. Then for all meZ such that

φ + 2mθeKΩ 0 κ , —E(φ + 2mθ,μ) is an eigenvalue of the almost Mathieu operator:

^ l ^ ^ i n ) . (7.1)

Proof If φ — φ'elZθiH^/^ and H{φJ$ are unitarίly conjugate by a translation in
/2(Z), therefore we only need to prove that, for φe KΩ0 R, μE(φ, μ) is an eigenvalue
of (7.1). Now by Theorem 2 and Corollary 12, the functions

ψε(n) - exp(iεπnφ)f(φ, x + nθ\ μ), ε=±ί (7.2)

are generalized eigenfunctions ofH{μ\ provided 0^μ^λ1 and φεKΩ θ R and the
corresponding eigenvalue is E(φ, μ). Therefore

exp(iπφ)f+ (x - 0) + exp(- iπφ)f+ (x + θ) + 2μ cos2πx- E(φ9 μ))f+ (x) = 0. (7.3)
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Taking the Fourier series for / + :

(7.4)
peZ

we get

or

H(

φy2

μ)/+ = - E ( φ , μ ) / + . (7.6)

Now, we can prove Theorem 3. By Theorem 1 and Corollary 12, the functions
fε are analytic in x, in some band \lmx\ <R. Thus we get an exponential decay of
the Fourier coefficients f±(p) as |p|->oo.

On the other hand, Lemmas 19 and 20 tell us that Kon{φ + 2ΈΘ} is mapped

into a set Ξ(φ,μ) by φ-^—E(φ,μ).

μ
The Lebesgue measure of the set Ξ(φ, μ) is positive, provided Kon{φ + 2ZΘ} is

also of positive Lebesgue measure.
Under this condition, Theorem 3 is proved. Therefore the remainder of this

section is devoted to the proof of the following

Proposition 22. Let Θ = [α 1 ,α 2 , . . . ] be a Roth number such that

lO (7.7)

(Λ(θ) can be oo), and let Ω be an RAF verifying Lemma 23 with δ < 1/30.
Then, for almost all φeΈ (with respect to the Lebesgue measure), the set

KQC\(Φ-\-27LΘ) has closure with a Lebesgue measure verifying:

(7.8)

The proof of Proposition 22 requires several steps. The first one gives a
restriction on the RAF introduced previously in (2.4) and (2.5).

Lemma 23. Let θ be a Roth number - see (2.27). There exists a constant B such that
for any δ>0, there is an RAF, Ω such that

(1) δ^BΩ{0), (7.9)

(2) ^ Ω(0) = Ω(l), (7.10)

(3) Σ Ω(jq)^δ\\qθh far all qeN. (7.11)
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Proof We take Ω as in (2.4) and (2.5) for which (2) is satisfied. Now we choose β in
such a way that

Ω ( s ) g ^ s s > 0 . (7.12)
s

By (2.27), there is a Dβ>0 such that

l l«0| |^π£> ( 7 1 3 )
so that (3) and (1) follow.

In order to estimate the Lebesgue measure of Kon{φ + 2Έ0} we need a good
knowledge of the orbit φ + 2ZΘ of φ.

We define Bm (rneΈ) to be the open interval of T centered at mθ(modl) of
radius Ω(|m|), and

Thus, Aq is a union of 2g +1 open intervals and by definition of KΩ>θiRnΊ[ = K0 we
have

^0=^4. ( 7 1 5 )

where Ajj denotes the complement of Aq in T. Note that (A^)q^0 is a decreasing
family of closed sets.

In order to localize the orbit of φe T by the action of the irrational rotation θ
we introduce the set C6n of the intervals

Γj = [jθjθ + 'qjθ'] (modi) (7.16)

such that O^j<q + 1 and E n i =0. Here — is the nth convergent of θ and

Proposition 24. Lei w be positive and

| I n K 0 | ^ ( l - 6 δ ) | I | . (7.17)

In order to prove the proposition above we need the following

Lemma 25. Let I^^n and denote by b1 and b2 the balls of radius Ω(qn) centered at the
extremities of I. Then, ifmeZ, mθφl (modi), and I n E m φ 0 , one has

lnBmCln(b1ub2). (7.18)

Proof We first note that, by definition of <$„, iΐlnBm is non-empty, then \m\>qn.
Assume qJ)>0, the case qnθ<0 being treated in the same way. Then either
mθ<jθ(modl) or mθ>jθ + 'qJJ(moά\). In the former case since Ω(\m\)<Ω(qn), for
any xelnfi , we get

x-jθ<Ω(qn). (7.19)

The latter case is treated in a similar way.
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Proof of Proposition 24. We have

IrvKg = In [J Bm={ (J (InBjl u ί \J (InBjl, (7.20)

where Z = N1vN2, Nί being the set oϊrneZ for which mθ^I(modl) and I n £ m Φ 0 .
By Lemma 25 the Lebesgue measure of the first term is dominated by

2Ω(qn)^2δ\\qnθ\\-

On the other hand, using Lemma 2.2 we can write N2 as a sequence πipjeZ^ in
such a way that

Ω(\mj\)<Ω(jqn), (7.21)

and by Lemma 23 the Lebesgue measure of the second term is dominated by

Proposition 24 follows.

Lemma 26. There exists a conull subset NofΎ such that, if φeN and I e ^ n (n>0),
then

{φ + 2ZΘ}nlnKOιβtR (7.22)
is non-empty.

Proof This is essentially a consequence of the individual ergodic theorem of
Birkhoff applied to the map φh*φ + 2θ on ΊΓ.

The following is a useful division lemma for T :

Lemma 27. Let A be the union of at most k open intervals in T and let {Ij}0<j<k> be a
family of closed intervals of T with disjoint interior and covering T. Assume |Iy| ̂  δ,
0 ^7 < k!. Then for all k" ̂  k\ we have

ljCAc

Proof Since {1̂ } covers T, we get

1= Yll l + Yl1;!- (7-24)
j = 0 j = k"

Now

'h\= Σ m+ Σ li,l+ Σ H l (7-25)

The first term of the right hand side is dominated by \Λ\. The last one is dominated
by 4kδ since Fΐ(Λ) has at most 2/c points and each of these points belong at most to
two of the Ij. The second sum in (7.24) is dominated by (k' — k")δ. Therefore, the
lemma follows.
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We come now to the

Proof of the Proposition 22. By Lemma 26, for almost all φeTΓ, the set Orbφ
= Kon{φ +2ZΘ} is non-empty. Let U£φ) be defined by

Ue{φ) = {ψeK0; d{ψ9 Orbφ) £ε} . (7.26)

Now, for n^no{θ) we have \\qnθ\\ ^ε and, in that case

lnKΩιθtRCUB{φ) (7.27)

for all le^n. Therefore, using Lemma 2.3, we get the following uniform estimate:

\Ue{φ)\Uί-6δ) Σ III- (7.28)

We use now the family of intervals I", I " + 1 of Lemma 2.3 in order to apply
Lemma 27 to Aqn with k' = qn + qn+ί and k" = qn+v

We get:

Σ \\. (7.29)
le<gn

Finally, using (2.22), we get:

limsup Σ | I | ^ | K o l - i L ' (7 3°)

and, since

(7.31)
meZ

Proposition 22 follows.

8. The Case of Non-Constant Type: Proof of Theorem 4

The present section is devoted to the special case of Roth numbers with A(θ)= oo,
since in that case we got a better estimate of the length of the spectrum.

Let us first fix some notations. For each ε>0, we choose δ>0 such that for a
fixed n

( l - 6 < 5 ) ( 4 - 6 π δ ) > 4 - - . (8.1)

Further let Ω be an RAF as in Lemma 23 and

KΩ Q R, Ko = KΩ θ RΓΛ1[ , and Ovbφ = {φ-\-2ΈΘ}rλK0

as above. The main part of the proof of Theorem 4 is contained in the following:

Proposition 28. Let θ be a Roth number with A(θ) = oo and let E be the mapping

E : φeΈ->2cosπφ.
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There exists a conull set iVCT such that, for φeN, we have:

= 2

Proof Take N as in Lemma 26 and η >0. For each φeN we can choose η1 > 0 such
that

(8.3)

where Uηί{φ) is defined in (7.26).
We now take n such that (7.27) is fulfilled and also

(8.4)

which is possible according to the condition on θ.
Using (8.1) and (7.27), we get

£ j 2πsin(πφ)dφ. (8.5)
le<gn Konl

For each interval I, we can choose φγe\ such that

|sinπφ —sinπφjl ^ π | I | . (8.6)

From Proposition 24 and (8.5), it follows that

Z Σ (2πsinπ01-2π2 |I|)(|InKo |)
\e<βn

^(1-6(5) X (2πsinπ</)I-2π2 |I|)|I|. (8.7)

Now let <en be the set of intervals I", 0 ^ j < ^ n + 1 or I " + 1 , O^j<qn, for which
^,4 g n φ0 [see (7.16)], i.e. ljφ^n, then

4— £ J2πsin(πφ)ίi0| ̂  ^ j 2πsin(πφ)dφ. (8.8)

And, as in the proof of Lemma 27, the right hand side is divided into two parts.
The first is dominated by βπδ and the second by 2π{9qn + 4)\\qnθ\\. It follows that,
for all η>0:

^ (1 - 6δ) (4 - βπδ - 2βπη - 2π2η) - η. (8.9)

Proposition 28 is then a consequence of (8.1).

Proof of Theorem 4. Take ε and δ as in (8.1) and choose λ0 such that, for \μ\ <λ0, we
have - see Theorem 1 -

^ φ ' \ \ ; φ,φ'eKΩΘR, (8.10)

where B is the constant deduced from Lemma 23. Now

, (8.11)
B
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where we use again Lemma 23 and \\φ\\ ^Ω(O) for φεKΩ θ R. Therefore

α(φ, μ) - ot(φ\ μ)\ ̂ ~ ε δ ^ \E(φ) - E{φ')\

^ . (8.12)

Take ε < i , and therefore
— o

— εδSπΩ(0). (8.13)
B

From the proof of Theorem 2, we can see that E(KΩ ΘR,μ) is in that case in the
absolutely continuous part of the spectrum of H{£\ and from the proof of
Theorem 3, l/μE(Orbφ,μ) in the spectrum of {

Now, for each Borel set A:

, μ) = E(A) + ot(E~ \Al μ), (8.14)

and in view of (8.14), we obtain:

(8.15)

But
E(Oτbφ)CE(KΩιβtR). (8.16)

Therefore Theorem 4 follows from Proposition 28 along the same lines as in
Sect. 7, replacing Proposition 22 by (8.12).

Appendix

In this appendix, we prove the following:

Proposition A.I. Let θ be an irrational number such that

sup | |n0| |^Ω(m), VmeN, (A.I)
0 < | « | ^ m

and let φ be a complex number such that

inf \\nθ + φ\\^Ω{m), VmeN, (A.2)

{ ' }

Here, for any complex number z, ||z|| denotes the distance to the nearest integer
number.

Although it is probably, well known to number theorists, we shall include a
proof here for completeness since we were unable to locate a suitable reference for
it. However this result is essentially an improvement of a Rύssmann estimate [24].
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Proof. Let pneZ such that

\\nθ + φ\\=\nθ + φ-pn\. (A.4)

Denote by yo<y1 < ... <ym the m + 1 values of nθ + RQφ — pn, n = 0,l,...,m,
written in increasing order.

Since 0<\nk — n^^m, for fc=t=/, we get

(A.5)

Define i by:

y0< ... <>>;_ i < 0 < j / < ... <ym, (A.6)

and t/; = Im(/>.
Then

^ 1 ^ 1

Λy]+ψ2 ( A 7 )

Each of the two sums of the right hand side are estimated in the same way. For
instance, we have

v 1 , ι

 y yj-yj-ι
jJr+1 (yj+ψ2r ~ Ω(m) J=Ϋ+ ! iy]+Ψ2Y '

and then, replacing sums by integrals, we get easily:

m -j _ i

ί(yϊ + Ψ2γ-2Ί&iF' ( A 8)

from which the proposition follows.
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