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Hamiltonian Structures and Lax Equations
Generated by Matrix Differential Operators
with Polynomial Dependence on a Parameter

L. A. Dickey

Leningradsky av. 28, fl. 59, SU-125040 Moscow, USSR

Abstract. We investigate a general set of equations which can be studied by the
inverse scattering method.

In the present paper we study Hamiltonian structures and equations of the Lax
type which arise in connection with a first-order linear differential operator L = d

+ U0 + U1ζ+ ...+Unζ
n + Λζn+\ where d = — Ut are matrices, and i is a

CIJCCIJC

constant diagonal matrix. The case n = 0 is well-known.
Much attention is also paid to the Lagrangian formalism for these equations

and its connection with the Hamiltonian approach. Two different Lagrangians are
found.

1. Lie Algebra R_

sd is a differential algebra consisting of the polynomials (with real coefficients) in
matrix elements of some matrices Uo, t / 1 ? . . . , Un and their derivatives with respect
to x of arbitrary orders. Thus elements of Ui are independent generators of this
differential algebra: R_ is a Lie algebra consisting of the matrix bundles,

n

X= Σ Xiζ~ι~ \ where elements oiXt belong to J / , and ζ is a formal parameter. In

this algebra the commutator is introduced by

~ (1.1)

Here [ , ] is the ordinary commutator of matrices, 3 is a fixed real number, the bar
symbolizes cutting out a segment of a series in ζ~ι from ζ " 1 to ζ~n~x.

It is clear that the commutator (1.1) is a linear combination of two com-
mutators : from [X, Y] we cut out either the second half of the powers of ζ~1 (from

ζ-n-2 t 0 £-2«-2) a n d m u i t ipiy l t by ζn+1

9 or the first half (from ζ'1 to Γ " " 1 ) . So
we have a family of commutators depending on the parameter 3.
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Lemma. The expression (1.1) has all the properties of a commutator.

The simplest proof of this lemma can be obtained if we consider R_ as a
module over the ring IR(C~ *) of series in ζ~1 with real coefficients, where ζ~n~2 is
identified with 3" 1 . Then (1.1) is simply $_X, Y].

2. Dual Space JR +
n

R+ consists of the matrix bundles M = £ M£\ where the elements of Mt belong
i = 0

n

to si. One of the elements of # + is U= £ t/£C
£» where L/f are the matrices whose

0

elements were taken as the generators of si. The space R + is dual to #_ relative to
the coupling n

(M,X) = $trfjMiXίdx = \tvres(MX)dx, (2.1)
0

where res denotes the coefficient in ζ'1 :τQsYJAiζ
ι = A_1. [Here the integral is

formal it means the projection of si on the quotient-space s/= si/dsi. In non-
formal theory it is possible to use here any concept of the integral provided that
the property §f'dx = 0 holds for every f(x) belonging to the function class under
consideration.]

Let us define [M,X]* for MeR + , XeR_ :

It is easy to check that

* = [ M j f ( p T ^ } ( 2 . 2 )[M,X] =

The wavy line symbolizes cutting out a segment of a series in ζ from (° to ζn.
To every MeR+ we assign the differentiation in si (a "vector field"):

ijM it

(the asterisk denotes the transpose of a matrix). These differentiations commute
with δ, and therefore can be considered in si. We shall also apply them to the
elements of R± (to every element of every matrix). It is obvious that ξMU = M.
Now we denote L d

where A is a constant diagonal matrix with different diagonal elements. Let us
consider a mapping R_-^R+ :

We shall denote the vector field ξMχ more simply by ξx. The lemma below can
easily be proved by a direct calculation:

Lemma. For two vector fields ξx and ξγ, we have

Kx? ζγl — ζ[χt Y]3+ξxY-ξγX
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3. Symplectic Form

On vector fields of the type ξx a form can be defined:

2{ξx,ξγ). (3.1)

Proposition. The form ω is closed.

Proof. For any three vector fields we have (the summation extends over the cyclic
permutations ofX, 7, and Z):

dω{ξx, ξγ, ξz) = X {ξxω(ξγ, ξz) - ω{lξx, ξγ\ ξz)}

+ MZ[X, Y]{Cn+1+i) + Mz(ξxY-ξγX)}dx

- 2 χ t r r e s j ( Γ + 1

= 2 Σ tr res J (ζn+'

Now

as stated. •

Remark. The construction of ω slightly differs from that of Kirillov-Kostant, since
the mapping MX:R_-+R+ (2.3) does not coincide with the coadjoint repre-
sentation of this algebra R_ given by (2.2) (with M = U): here we have L=U + d
+ Aζn+ί instead of U.

4. Hamiltonian Vector Fields and Equations

To every functional f=\fάxesd we assign a vector field ξf such that for any
vector field ξγ the relation ξγf= —ω(ξf,ξγ) holds. We have

= trκs$MγXfdx=-ω(ξXf,ξγ), (4.1)
n

whereX f = YJδf/δUf ζ~ι~1. Thus we have
o

Lemma. The Hamiltonian vector field corresponding to a functional f= j / dx is
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It should be noted that (4.1) can also be written as

δf=J tr resX/ Udx=- i(ξXf)ω.

It may also be useful to write

(4.2)

where ωs is a 1-form of δU.δU', This form is important for the theory of
stationary equations (see [1]).

Now we define the Poisson bracket of two functionals as

The definition involves the parameter 3, i.e. here a bundle of Poisson brackets is
defined.

Let us write the differential equation corresponding to a Hamiltonian vector
field:

U = MXf9 (4.3)

or, in more detail,

δf
l

+3 Σ \ui+m+1,
m = 0

There are two extreme cases here:

δϋt

c/

i = Σ, ^i + m-B'Cfrt

Un+1=A. (4.4)

(4.5)

and

Ui=Σ uι + m+ί,jL\ i = O,...,n; Un+i=A. (4.6)
tn — 0 ίfί-i

5. Resolvent

Now we shall construct Lax equations. They correspond to special Hamiltonians
connected with a resolvent of the differential operator L.

The resolvent is a formal series

where Rk are matrices with elements of si which satisfies the equation

[ L , « ] = 0 . (5.2)

Let
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and
00

0t= y -x~{0i

where r0 is a fixed integer between 0 and n. Rk with a negative subscript is zero. It is
clear that ^ ^,

and 01 belongs to the ring #_((3 x)) of formal series in 3 1 with coefficients
belonging to R_. We call 01 a polarization of the resolvent 01. Depending on r0

there exist n + 1 different polarizations of a given resolvent.
The mapping M defined earlier in R_ can be defined in i^_((3-1)) as well:

Proposition. 7Vze polarization of the resolvents form the kernel of the mapping
i.e. (5.2) is equivalent to

^ 0. (5.5)

Proof We have

Now we substitute 3 = ζ n + 1 :

00

M ~l — V r~A«

«f=0

ίf=0

Thus [L, M~]=0 is equivalent to M^|3 = ζn + i=0. The substitution $ = ζn+1 trans-
forms terms corresponding to different powers of 3 " 1 into different segments of the
series in ζ " 1 , and therefore M^|3 = ζn + i = 0 is equivalent to M^ = 0. Π

M% depends on 3 linearly: M@ =Lemma. Equation (5.2) is equivalent to recurrence relations

Un+i)((+ιrO. (5.6)

Proof It is sufficient to substitute ^ = Σ δ " ^ - f . 0 + ( l l + i K into Mψ + $Mψ = 0 and
0

equate the terms with the same powers of 3. •

Corollary. For any natural r we have

t l = 0 . (5.7)

6. Existence of Resolvents

Let us consider the equation

Lφ = λφ. (6.1)
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00

The column vector φ is sought as a formal series Σφrζ~r- The scalar λ is also an
oo 0

unknown series: λ = £ λrζ~r. The elements of the vectors φr and the coefficients

λr belong to si. ~1~n

Lemma 1. If m is the dimension of the vector space, then there are m linearly
independent solutions φ, the scalar λ being completely determined.

Proof. Equation (6.1) is equivalent to recurrence relations of the form

0,...,φr_1,λ_n_v...,λr_n_2) = <d, (6.2)

where Fr is a vector-function. The initial recurrence formula is (A — λ_n_1)φo=0.
Hence λ_n_ί is one of the eigenvalues of the diagonal matrix A, and φ0 is the
corresponding eigenvector. For the solvability of (6.2) it is necessary and sufficient
that

This determines λr_n_v and then (6.2) gives φr to within a multiple of φ0 we can
specify this solution by the requirement that φr, r > 0 contain no constants in any
of its coordinates.

From m solutions a matrix Φ = (φks) can be formed (here 5 is the number of a
column, i.e. of a solution, and k is the number of a coordinate of this vector). Here

00

Φ = YJΦ£~\ where Φo is a constant invertible matrix; hence Φ is invertible as a
o

formal series in ζ'1. Let Ψ = Φ~ί. Φ satisfies the equation

ίλ{l) \
Φ~1 + UΦ + Aζn+1Φ = ΦA, Λ=\ '"• (6.3)

\ λH
(the superscript in A(I) is the number of the solution). Here Ψ satisfies

-Ψ'+ΨU+ΨAζn+1=ΛΨ, (6.4)

i.e. the conjugate equation. Let Ψ = (ψsk) (the number of a row s is a number of a
solution of the conjugate equation).

Proposition. The matrices

^ = (^}) = (φksxpj, s=l,...,m (6.5)

m

are resolvents. The general form of a resolvent is £ J</ ( S ) ^ ( S ) , where stf{s) are series in

ζ~γ with constant coefficients.

Proof From the equations

φ' + (U + Aζn+1)φ = λφ,
(o.o)

1) = λψ,

for column vectors φ(s) = (φks) and row vectors ψ{s) = (ψsk)9 we obtain for 01 = φ ψ
the required equation without any difficulty. To prove the second assertion we use
the following lemma.
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Lemma 2. // the diagonal elements of any of the matrices Rk of a resolvent M do not
contain constants, then this resolvent is trivial zero.

Proof We can suppose that # o φ 0 . The first n + 2 equations defining a resolvent

(6.7)

The first of these equations implies that Ro is diagonal. We must show that R'o = 0.
Let F = ( L - δ ) C " f I " 1 = ί 7 ζ " π " 1 + y l , S = 0t ζ. From (6.7) it is seen that the senior
terms in ζ of the commutator [K S] (from ζ° to ζ~w) vanish while the next term has
vanishing nondiagonal elements. Let us show that the diagonal elements of this
term also vanish, which will imply that R'o = 0. We have

p + 1

Let us consider the coefficient in ζ " " " 1 . The second term does not involve C~w~\
and for any p we obtain tr^4p[KS]|ζ-n-i=0. Hence the diagonal elements of
[K 5] ζ - π -1 vanish. Thus .R'o = 0 and Ro = 0, since Ro does not contain constants. •

To complete the proof of the proposition we note that the resolvents (6.5) have
only one constant, namely the unity in the sth place of the diagonal. It is possible to
obtain an arbitrary combination of constants on the diagonal of a resolvent and
thus an arbitrary resolvent by choosing appropriately series J/ ( S ) . •

The resolvents form a ring (if Ma and &h commute with L so do their sum and
product). We have tr^? = const, which is easily seen from the equation for a
resolvent. In particular, for &{s) from (6.5) we have t r ^ ( s ) = l. Further, m{s)2 = @{s)

since Mis)2 and ^?(s) have the same constants. Hence 0l{s) are projectors. Thus
01 = Σ a{s)&{s) gives the spectral decomposition of the resolvent.

7. Variational Theorem

Theorem. For the resolvent M^φ-ψ of (6.5), the equation

δtrLζ@ = tr{δU 0ί)ζ + dtr{-δφ ψζ + φζ δψ) (7.1)

holds. (The subscript ζ denotes the derivative.)

The proof of this theorem can easily be obtained from (6.6). We omit it because
it is the same as in the case n = 0 (see [1]).

Corollary.

^ - r + W r + k - ! (7-2)

(the subscript r denotes the coefficient in ζ~r').
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It should be noted that on the left-hand side of this equation there are R^
ending with Rr + n, and the right-hand side contains R^ with smaller numbers only.

8. Involutive System of Hamiltonians

Let

Hr = \tτ(U + ζn+1A\Mx\r, (8.1)

where 3t is a linear combination of resolvents (6.5) with constant coefficients.

Theorem. Functίonals Hres/ are in involution with respect to the Poisson brackets
{, }1 and {, }2 defined in Sect. 4.

Proof. We have

n £ Tj n

' 1 Σ ' 1

) . (8.2)
0 0Uk 0

It is necessary to show that

J tr res M ^ Msdx = \ix resMg Ms dx = 0

holds for any r, s. We can use the recurrence relation (5.7) and the skew symmetry
of the Poisson brackets:

f tr res M<£ Msdx = — J tr r e s M g + n + ί Ms dx

Thus the subscript r has increased by n + 1 and the other subscript s has decreased.
One can continue this process until one of the subscripts becomes negative, and
then Rk = 0 for it. •

Corollary. If one of the functional Hr is taken as a Hamiltonian then the other HJs
form an infinite set of first integrals in involution for the Hamiltonian equations

Remark. Equation (4.5) for the Hamiltonian Hr coincides with (4.6) for Hr + n+v

9. The Connection with Zakharov-Shabat Equations

Let us consider (4.5) for the Hamiltonian Hr in more detail. We have

Ui= Σ _[C/ i + M- I 1,/? r + m-1] + K + » - i - i ; i=0,...,n. (9.1)
m — n — i

Now Rk are defined by the resolvent equation (5.2):

K;- n- 1 + " Σ [ £ /

m , K s + , M - , , - 1 ] , s = ( U , 2 , . . . , ( l / B + 1 = Λ ) . (9.2)
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If we take the first r + n equations (9.2) then together with (9.1) they form a set of
r + 2n+l equations with the r + 2 n + l unknown functions R0,...,Rr+n_1,
Uo, ...,£/„. This set is a particular case of the general Zakharov-Shabat scheme, see
[2, p. 222]. Namely, if we consider an equation

U-V' = IU,V], (9.3)

where

and if we require that the equation be satisfied identically with respect to (, we
shall obtain r + In + 1 equations with r + 2n + 2 unknown matrices. One of the
matrices can be chosen arbitrarily. Let us take Un+1=Λ. Then the set of the
equations (9.1) and (9.2) (s<r + n) is precisely obtained (Vk = Rr + n_1_k).

There arises the question whether this set of equations is closed, i.e. whether all
equations are independent. The answer is negative. Indeed, this set of equations
has an additional degree of freedom, namely n + 1 diagonal matrices can be chosen
arbitrarily and only after this choice the set of the equations becomes definite. The
situation can be explained in the following way. The sih equation (9.2) determines
the nondiagonal part of JRS, and the diagonal part is only determined for Rs_n_v

For brevity, we omit the proof of this assertion. The same fact was encountered in
Lemma 2 of Sect. 6: to find the diagonal of Ro we needed n + 2 equations (6.7). The
diagonal parts of the last n+1 matrices Rk in the set (9.1) and (9.2) (s<r + n)
remain indeterminate. The best way to choose them is to use the next equations
(9.2) without restricting ourselves by the condition s<r + n, i.e. to take as Rk the
coefficients of the resolvent, as was done in the previous sections.

We would like to emphasize that the question of definiteness of the Zakharov-
Shabat equations must be treated very cautiously. They are definite as above, to
within a single matrix, only if U and V have no common pole. Otherwise every
common pole (with its multiplicity taken into account) brings an indeterminate
diagonal matrix. The reason for this is just the same as for the fact that the
equation [£, [/]=0, where B is a known and U an unknown matrix is unde-
termined, though the number of equations is equal to the number of the unknown
matrices, the degree of freedom reduces to the choice of a diagonal matrix.1

10. Lagrangian

Equation (4.6) will be derived from a variational principle. The general questions
concerning the connections between the Hamiltonian and the Lagrangian ap-
proaches in similar problems will be discussed in a separate paper with Gelfand. It
is yet unclear why this method fails in the case of Eq. (4.5).

We have the equation

T ί r ] (10.1)

1 Hamiltonian structures and integrable equations connected with scalar second order differential
operators with polynomial dependence on a parameter were treated in [3]
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We reduce this equation to a matrix variety which can be written as

(10.2)

where φ = YJφiζ,~ι~1. In the Kirillov-Kostant terminology this is an orbit of the
o

coadjoint representation of the group l + # _ passing through the element Λζn+1.
It is easy to see that (10.2) imposes some requirements on U. For example, from
Un = [v4, φ 0 ] we see that the diagonal part of Un must vanish. However we shall see
that the variety defined by (10.2) is compatible with (10.1).

Let siφ be a differential algebra with independent differential generators which
are elements of the matrices φt. According to (10.2) the algebra si is imbedded in
siφ. Earlier the vector field ξMχ = ξx acted in si. Now we extend its action to the
whole siφ. Its action on the generators φ must be defined in such a way that (10.2)
implies ξxU = Mx [this will also prove the compatibility of the variety defined by
(10.2) with (10.1)]. Let us apply ξx to the right-hand side of (10.2):

It remains to put

φ)-1ξxφ=X9 (10.3)

and we receive ξxU = [U + Aζn~*Tjf]=Mx. Now let

&=-f+tττes(l + φ)-1Aζn+1φ. (10.4)

Theorem. Equation (10.1) is equivalent to the variational principle:

δ^/δφ = 0. (10.5)

Proof. Taking into account (4.2) we have

. + φ)-1Aζn+1δφ)-dωi

:s {Xf(l + φ)~ 1δφ(l + <

—Xf(l + φy1Aζn+1δφ —

+ δtωn-dωs;

This implies

The rest is clear. •
The formula (10.6) gives in fact more than a mere calculation of the variational

derivative of 5£. There are two more terms, namely, — dωs and dωn which play an
important role. We have already mentioned that the form ω s relates to stationary
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equations (see [1]). As to the second form, ωn, the integral ω = \δωndx is the
symplectic form, generated by the Lagrangian. We can prove directly by calcu-
lation that it coincides with the symplectic form ω2 (3.1): for any vector fields
ξx, ξγ we have

= — Jtr resX( U + Aζn +1) Ydx - Qf<-> Y)

We could forget everything written earlier and start with the Lagrangian (10.4).
We have derived Eq. (10.1) and the symplectic form from it, and we can also obtain
the Hamiltonian or, even more, the energy-momentum tensor. The general rule for
this is the following. Let JS? be an arbitrary Lagrangian which is a differential
polynomial in φ.. Then it can be proved that YJψiίtδ^lδφi and YjφUxδ^lδφi are

i i

divergences of some vector fields whose components are also differential
polynomials:

dt ( ί ί ) + dx {tx)' LΨuxδφi " dt
1(xx)

The quantities T{tt), T{tx), T(xt), T(xx) are the four components of the energy-
momentum tensor. Thus H = \ 7Jίf) dx is the Hamiltonian of the system. Let us find
it for the Lagrangian (10.4)

= - t r resφ([(7 + Λζn+ \X / ] - 17) (1

Then

+ tr resφ(l + φ)~ x(p{\ + φ)~ M ζ " + ̂ 1 + φ)(1 + φ)~x - 0 ,

and

ζn+ \X f~] x

j - V t r f JJ{k)

~^T δυ* ''tί dvfk) ι tίδu*{k)

tJ l

We have found two components of the energy-momentum tensor and H = jfdx as
it should be expected.
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11. Another Lagrangian

Surprisingly, another, more sophisticated Lagrangian can be found. It leads to the
same Hamiltonian structure (the symplectic form and the Hamiltonian). Its
variational derivative is rather complicated, but equating it to zero we obtain an
equation which is equivalent to the given one.

We start from the same equation (10.1) but instead of (10.2) we use another
substitution. Now we shall write V={U + Aζn+1)ζ'n~1 = Uζ~n~1+A. Then the
equation is

V=\V,X]. (11.1)

The substitution will be

ζ φ = Σ<PiCi-\ (11.2)
0

(the subscript ζ denotes the derivative). In more detail the equation is written as

and the substitution is

(11.4)

It is clear that not every set of matrices Ui can be presented in the form (11.2).
For example, as follows from the last of the equations (11.4), the diagonal of Un

must be zero. It can be proved that (11.2) or (11.4) is equivalent to the following
condition on ί/f: the diagonal of Ui is expressible in terms of nondiagonal parts of
Uk with k>i. Thus (11.2) or (11.4) specifies a variety of matrices. We shall see that
this variety is invariant under the vector field (11.1).

The substitution (11.2) gives an imbedding of the differential algebra j / in an
algebra sίφ which is generated by the elements of φt. Now we define a vector field ξ
in s/φ in such a way that its action on the variety defined by (11.2) coincides with
ξx\ξxV=\_V,X~\. This will mean that ξx is tangent to this variety and thus the
variety is compatible with the equation. Let us put

= ζXζ-[X,φ-]. (11.5)

Proposition. ξV=[_V,X~].
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Proof. We apply the differentiation ξ to (11.2):

+ [φ, [K

or, denoting £ F - [ K * ] = W9

ζWζ-[_W,φ']=0.

The last equation has the same form as (11.2). However there is a distinction
between FFand V:

V=A+U0C~1+ ... +Unζ-n~ί and W=WQζ~ι+ ... +Wnζ'n~1.

Therefore Wt satisfy (11.4) with A = 0. This immediately gives W=0 and
ξV=[V,X~} as required. •

Now we put

This expression will be taken as a Lagrangian. Let 0.— £ [£/fc+1 + ̂ X J — Uj [the
fc = O

differences between the left-hand and the right-hand sides of (11.3)].

Theorem.

ΐ = 0 (α)

where the summation extends over all the sets of nonnegative integers (α) = (α 1 ?...,α r)
for which i + r + αx + ... + α r ^ n fί/ie o r ^ r o/ the integers is important here), ωs is
the same 1-form as in Sect. 10 and the coefficients cί(α) are

Corollary. 77ze Euler-Lagrange set of equations

fs equivalent to (11.3).

Only a brief sketch of the proof will be given. Recall that X=Xf and
Xk = δf/δU%. We have
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It is necessary to transform trYjXkδUk to the form trj^akδφk. Let

ί = 0

Lemma 1. The coefficients aki satisfy the set of recurrence equations

} (11.7)

Here we put Un+ί=Λ.

To prove this lemma it is necessary to substitute δUk from (11.4) into the left-
hand side of (11.6), to express all the summands with δUt in terms of δφt using
(11.6) and to equate the summands with the same δφt.

Remark. Equation (11.7) enables us to determine all the coefficients aki: first

«w-i,i = (l + 0 ~ 1 [ ^ ^ ] 5 then an_i_li etc.

Lemma 2.

(α)

+ f + r + α 1 + ... +θίr^n+l and the coefficients cί(α) are given above).

To prove this lemma one has to check that the expression (11.8) satisfies (11.7).
Now let us prove the theorem. We have

o

= tr V V aki\Xk-\ -φk)δφ.
\ n + 2Ψk) ιn + 2Ψk) ι n + 2

+ dωs + dt tr Y Ukδφk.
s * n+2^ k k

Further,
n

Σ % ( Φ / c H " Σ Ci(α)[ [Φ/c^/c+l+/ + r + α1 + ...
/c = 0 (α),/c

= - Σ C/(α)[ [ φ k ' ^ / c + l + i + . + α i + . . .
(α),fc

+ Σ C i ( α ) [ - k ^ l c + l + K , + α1+..
(α),fc

or, taking into account (11.4),

— Σ c ί (« ) ( w + 1 — ί — r — α x — ... - α r ) [ . . . [ ί 7 ί + r + α
(α)

- Σ C

ί (α)[ [^+l+i + r + αi + . . . + α ^ J ^ α 1 ] ' ]

(α)
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Now

{
i = O (α) { k

= ~~tr L Li cm
i = 0 (α)

Λ 1

as stated. Q
The expressions for the variational derivatives of if are

= — Yc [... [Q. ,φ ] ...]
uΨi (α)

This proves the corollary: if δ^/δφf = 0 we get in succession Qn_ 1=0, Qn_2 = ^
etc.

Proposition. The 1-form

ω= —

coincides with ω2 in (3.1) on ίne vector fields tangent to the variety defined by (11.2).

Proof We have

Now

Therefore, from (11.2):

= {n + 2)ω2(ξx,ξγ).
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It is unnecessary to verify that the Hamiltonian will be the same as before, i.e.
H = §fdx. This follows automatically from the coincidence of the equation and the
symplectic form.
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