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Non-Translation-Invariant States in Two Dimensions

S. B. Shlosman

Institute for Problems of Information Transmission, Moscow, USSR

Abstract. We construct a class of models with translation-invariant in-
teraction for which in dimension two there already exist non-periodic Gibbs
states at low temperatures.

1. Introduction

The hypothesis about absence of non-translation-invariant states in the two-
dimensional Ising model was one of the most long-standing problems. The first
major development in this direction was made by Gallavotti [1], who proved, by
means of virial expansion, that at low temperature the (+ )-boundary condition
leads to a translation-invariant state. He showed that the separation line between
(+ )-phase and (— )-phase in a volume V with such a boundary condition fluctuates
at non-zero temperature with a fluctuation of order \/v. Afterwards, several
papers were published on this subject, until Aizenman [2] proved the validity of
the above hypothesis. This result can be stated in the following way: All non-
periodic ground states of the two-dimensional Ising model are unstable.

In 1980, R. L. Dobrushin conjectured that the same instability holds (at low
temperatures, atleast)for any two-dimensional model whose hamiltonian has only
finitely many periodic ground states (pure phases) and satisfies the Peierls
condition [3] : i.e., the creation of an "island" D of one pure phase in a "sea" of
another pure phase leads to an increase of energy which is greater than ρ \d<£)\,
where ρ is some positive constant (the "Peierls constant"), and \d@\ is the length of
the boundary of Θ.

While the proof of this conjecture is still in progress, it was surprising to find a
class of models which possesses both periodic and non-periodic Gibbs states at a
cost of having infinitely many periodic ground states. The Peierls condition is still
satisfied. The underlying non-translation invariant ground states are of the
following "stair" structure:
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This ground state is stable for the following reason: While in the Ising model the
corresponding ( + ) ground state has the form

0 ί^O

with only one contour to separate different phases, which is thus free to fluctuate,
in our model the ground state under discussion has infinitely many contours,
which cannot fluctuate so freely due to interacting with each other. The precise
meaning of this argument is given in the next section.

2. The Main Result

Let Έ2 be, as usual, a two-dimensional lattice, and for any t = {tv t2) a spin variable
φt is given with values in Z1. The interaction is defined through the function U{n),
neΈ1, which is supposed to be

(i) Convex: 2U{n)< U{n + k) + U(n-k\n,keZ\ fc>0,
(ii) Symmetric: U(ή) =U( — n).
The (formal) hamiltonian H of a configuration φ — {φt} is given by the formula

H(φ() = (l/2) Σ U(φs-φt). (1)
s,teZ2,\s-t\ = 1

A configuration φ is called a ground state if for any other configuration φ' which
coincides with φ almost everywhere the (well-defined) difference H(φ') — H(φ) is
strictly positive. One sees immediately that any constant configuration

φ^neZ1 (2)

forms a ground state. So our model indeed has infinitely many periodic ground
states. There are also non-periodic ground states of the hamiltonian (1), for
example,

" s o , ' = ( 1 > ^ - <3>

If one defines the mean energy of a configuration φ by the formula

%>)= lim—T Σ U(φs-φt)
A^co |/1| s,teΛ,\s-t\ = l

(when the limit exists), then one finds that the mean energy of all periodic ground
states (2) is, evidently, the same, and it coincides with that of a non-periodic
ground state of type (3).

Our interest in the model under discussion is based on the observation that the
hamiltonian (1) also possesses a class of ground states {ψn>k>1} n.keZ1, i = l , 2
given by

W^'^ntt + k. (4)
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This class has two interesting features:
1) h(Ψhl'kuil)>h(Ψh2tk2'i2), if K | >\n2\ in particular, if the ground state * P ' M is

non-periodic (n +0), then its mean energy exceeds that of a constant ground state
2) each ground state ψ"'*** is stable in the sense that for each n, fc, i there exists a

Gibbs state of the hamiltonian (1) at low temperature which is a small per-
turbation of the corresponding ground state.

To make our statements precise, let A C Z 2 be a finite region, and consider the
set of configurations Φn

yι
kfl = {φs, seΈ2, φs=Ψ"*k'\ sφΛ}. The hamiltonian H in A

with boundary conditions ψnki is defined in the following way:

Hn'k'^) = (l/2) Σ U{φs-φt)+ £ Ufa-φλφeΦf.
s,teΛ seΛ,tφΛ

|s-ί| = l | s-ί |=l

The Gibbs state < >^y in A with hamiltonian // and inverse temperature β is
defined by the formula

Theorem. Let the conditions (i) and (ii) be satisfied. Then
1. ίήe configurations ψn>k*\ defined in (4), are ίne ground states of the

hamiltonian H
2. if β>β(U,n), then the family of states { )^'V ί S compact as A-*oo, fn, k, jβ, i

are fixed) and if < )^'fe'1 is any /imiί point of this family, then

<<?>,>-•*•'= n ί ( + ί c , ( 5 )

and £ne probability of the event Bt = {φ : φt + ίP"'^1}, calculated for the state <( )^'7c'1,
tends to zero as β->oo.

3. Proofs

Let

be a ground state which will be fixed throughout this section. We assume that
n>0. Let |/L|<oo, A^TL1. By a configuration φ'm A with boundary condition Ψ
we shall mean any mapping φ : Z 2 - * ^ 1 , φ(s)= *F(s) for s^ A

The proof is based on a suitable revised contour technique.
In order to define the set of contours of the configuration φ, we consider the

difference φ = φ—Ψ.Let ίeTL1, and A^={seZ2, φ(s)>ί}. (For ?f<0, the set Ae is
infinite.) The boundary dA€ is defined as the set of all bonds y*e(Z2)*, which are
dual to the bonds y = (s,t)eZ2 with the property: seA^ tφA€. The set dA^ is split
up into the sum of its connected components, dA^ =\JΓi. Let us orient each
component Γ C dAe in such a way that the corresponding connected component B
of AΛ whose boundary contains Γ (JΓ C 3β) is situated on the left side of Γ. More
precisely, for any y*^Γ its orientation is chosen in such a way that the pair
(y*,(Xs)) is left-oriented.

A set Γ oriented in such a way is called an ^-contour, or simply a contour. The
union of all /-contours, — oo < / < oo forms a set Γ(φ) - the set of contours of the
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configuration φ. It should be noted that different contours in Γ(φ) may intersect or
even coincide, so the set Γ(φ) is the set of contours with multiplicities.

The set of (oriented) contours 2Γ = {Γ,Γ£-Λ*£Έ2*} is called admissible if for
all γ*eΓίnΓ2, T{e^Γ, i= 1,2, the two orientations of 7*, induced by that of ΓVΓ2,
coincide. It can be seen immediately that for any φ the set Γ(φ) is admissible.
Moreover, for any admissible set of contours £Γ a configuration φ(&~) can be
constructed in such a way that if έF = Γ(φ') for some configuration φ\ then

In order to construct the configuration φ(&~), let us fix some point sφΛ, and for
each teΈ2 fix some oriented path ^teΈ2 which starts at s and terminates at t. Now
the configuration φ(&~) is given by the formula φ(t) = Ψ(t) + /(/ t), where

and

0, if y*φΓ for all

f(γ) = < \{Γe^,y*eΓ}\, if the pair (7*, 7) is left-oriented, (6)

—\{Γe^y*eΓ}\, if the pair (7*,7) is right-oriented.

It is easy to see that the configuration ψ{^) is thus well-defined.
Now, let ZΓ be some admissible set of contours, Γe^Γ and tT' = &~\Γ. (If the

multiplicity of Γ in 3Γ is more than 1, then Γ still belongs to 3~') For the set of
configurations CΓ = {η,ΓeΓ(η)}, one can define the transformation IΓ given by the
formula IΓ(η) = ηΓ = φ(Γ(η)\Γ). This is the analog of the Peierls transform. As
usual, one is interested in the estimation of the energy difference H(φ) — H(φΓ) for
φeCΓ from below.

Lemma 1. For φe CΓ, H(φ)- H(φΓ) ̂  CJΓ|, with Cn = ̂ min{( 1/2)[C7(r + 1)
+ U{r — 1)] — ί/(r), r = 1,..., n, (7(1) — (7(0)} > 0. iϊβrβ n is the same as in the ground
state Ψ (see {4)).

Proof. Let Γ = {y*;y*e{Έ2)*}. Consider the set Γ* = {yeZ2,y*eΓ}, and for any
bond yeΓ*, let y+,y~ be its endpoints, and moreover let φ(y+)>φ(y~). One sees
immediately that

Φ(y+)-Φ(yΊ=Ψr(y+)-Φr(yΊ + i 0)

By the definition of H

H(φ)-H(φΓ)= £ ίU(φ(y + ) - φ ( Γ ) ) - ^(Φr(7 + ) " Φr(Γ))] • (8)

Let yj, yj be the first and second coordinates of the site y±eΈ2. The bond 7 is
called vertical if 7^ = 7 ^ and horizontal if y2 —y^ We shall show first that each
vertical bond contributes more than a fixed constant to the sum (8). Indeed, for a
vertical bond

φ{y+)-φ(y~) = φ{y+)- φ{y~),
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hence

t/(φ(y + ) - φ(Γ)) - U(φΓ(γ +) - ψΓ(y ")) = U(φ(y +) - φ(y ')) - U(φ(γ +) - φ(y ~) - 1)

^ min [U(k)- l/(k- 1)] = 17(1)- 1/(0)

by formula (7).
As for horizontal bonds, one sees immediately that the contribution of some of

them to (8) is negative. We can circumvent this obstacle by splitting up the set of
horizontal bonds into pairs.

To define this pairing, one first has to note that for any contour Γ there is a
uniquely defined configuration ξ(Γ) such that Γ is the only contour of ξ(Γ\ and its
multiplicity is exactly one. Let IntΓ be the union of all one by one plaquettes of IR2

centered at those vertices s of Έ? for which ζ{Γ)(s) + Ψ{s). Consider now the set Q)
of all (horizontal) segments of the lines ίf-TL2, ^={(x,]i)e]R2, y = teΈ1, xeR 1 } ,
such that be<3 o δ = £tn!ntΓ for some t. Now, two bonds y ,/eΓ* are paired if
and only if there exists a δe<3 such that both ynδ,y'nδ are non-empty (see Fig. 1).

We are going to show that each pair contributes at least some positive
constant. Let two bonds y.y'eΓ* be paired. Then either y + ,yf+ ε ln tΓ or
y~,/~ elntΓ. Consider the first possibility. Without loss of generality one may
suppose that

ύ =7i = J : 1 = 7 2

As for the Peierls transform

φAy~)=(p(y
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p-1 p

Fig. 2

Again there are two possibilities: either

or

If (9a) holds, then φ{y' + )>φ(y'~), and again

- U(φ(y'+)-φ(y")- 1)^ U(l)- 17(0)

of course, φ{y+)>φ(y') + n, and by the same reason

(9a)

(9b)

So, in case (9a), each of the bonds y, y' contributes as before.
We are left with (9b) when the contribution of y' is negative. Let p = φ(y + )

— ψ(y~\ q = φ(y'~)—φ(y'+\ t n e n 0^q<n<pby definition of the contours. Now,

Y + )-φΓ(y

= U(p)+U(q)-[U(p-l)+U(q+m

Now we shall use the following simple

Lemma 2. // U is convex, and q<n<p are integers then

For the proof the reader is invited to inspect Fig. 2, where U(p)+U{q)
-lU(p-l)+U(q+iy] = 2AB, while AB>CB, CB = (ί/2)DE9
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+ U(q-\-2)~]— U(q + l). Thus the desired contribution is not less than

min {i[

and Lemma 1 follows.
Now, let < >^y be the Gibbs state in the finite volume A, defined by the

hamiltonian H at inverse temperature β and boundary condition Ψ. Then one has
the following estimate of the probability Pr of a given contour Γ to occur in the
state < >^y:

Pτ{φ:ΓeΓ(φ)9φ(s)=Ψ(s)9sφΛ} ,

= Σ exp{-j8JΪ(φ)}/Σexp{-i8//(φ)}
φ,ΓeΓ(φ)

Σ
φ,ΓeΓ(φ) φ,ΓφΓ(φ)

_ RΓ \ Γ \ \ Γ compatible with Γ(φ)

j8CJΓ|}. (10)

The second sum is taken over those configurations φ for which the family
ΓuΓ(φ) is admissible. The estimate (10) is known as the Peierls estimate. From (10)
it follows in a standard manner that for any teΛ and large enough β Pr{φ : \φ(t)
- Ψ(ή\}zl}^e~βdn for some dn = dn(Cn)>0, and moreover,

Vτ{φ:\φ{t)-Ψ(t)\^r}gie-βrdn. (11)

Indeed, if \φ{t)— Ψ{t)\^r then there are at least r contours in Γ(φ) surrounding ί.
From (11) the compactness of the family of states < >^y, A^-TL1, |Λ|<αo

follows easily.
Let < }n

β'
kJ be some limit point of the set < Y^β The statement (5) of the

theorem follows from the fact that for all A the state < >^ V ^s symmetric under the
reflection φ->φ with φ(s + t)= Ψ(t) — φ(t — s). The rest of the theorem follows from
the Peierls estimate.

4. Discussion

1. We have shown that the "stair" ground state Ψ(sv s2) = ns^^ is stable at non-zero
temperature. It seems that other choices of boundary conditions - i.e., non-linear
or linear with a non-integer factor - do not give any new Gibbs states which are
not mixtures of the already constructed ones.

2. In their very deep and interesting paper [4], Frohlich and Spencer were able
to show that in certain integer-valued spin models in two dimensions a sort of
roughening transition takes place, which manifests itself by passing from finite to
logarithmically divergent fluctuations as temperature increases. Because of a more
complicated structure of stable ground states in our models, a natural question
arises: How many roughening transitions may occur in them? A priori it is
possible that the critical temperature for a given state < yn>k>1 can depend on n. But
we were unable to prove any result of this type.
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