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Abstract. A Gaussian ensemble of Hermitian matrices depending on a para-
meter α is considered. When α = 0, the ensemble is Gaussian Orthogonal, and
when α = 1, it is Gaussian Unitary. An analytic expression for the rc-level
correlation and cluster functions is given for any n and 0 ̂  α ̂  1. This ensemble
is of relevance in the study of time reversal symmetry breaking of nuclear
interactions.

1. Introduction and Summary

Wigner's Gaussian Orthogonal Ensemble (GOE) of asymptotically large real
symmetric matrices has been the model for nuclear energy level fluctuations [1-4].
A large amount of data—mainly on slow-neutron resonances of medium and heavy
nuclei, but also on some proton resonances of light nuclei—has been used to test the
model. A very recent analysis indicates that the agreement between GOE and the
data is remarkably good [5].

It can be shown [6] on general symmetry arguments that if the Hamiltonian
governing the system is invariant under time reversal and space rotations, the
appropriate ensemble is that of real symmetric matrices. On the other hand, if it
contains a time reversal non-invariant part, then the matrices should have an
imaginary part as well. One such ensemble, namely Gaussian Unitary Ensemble
(GUE) of complex Hermitian matrices in which the real and imaginary parts are
sampled independently but with the same weight, has also been studied analytically
in great detail [1-4]. It gives very different fluctuation properties than the GOE and,
in particular, has stronger level repulsion than observed in nuclear spectra, implying
that the nuclear forces are mostly time reversal invariant. Following a suggestion of
Wigner [2], the close agreement between GOE and the data may then be used to
derive an upper bound on the time reversal non-invariant part of the nuclear
interactions by studying ensembles of complex Hermitian matrices with a small
imaginary part.

Ensembles of Hermitian matrices in which the dispersions of the real and
imaginary parts are arbitrary and unequal have been the subject of several previous
studies [7]. It is only recently, however, that approximate forms for the two-level
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correlation and cluster functions have been given [8]. It is made plausible that the
transition from GOE to GUE in the (asymptotic) eigenvalue fluctuations is
governed by a parameter λ which is the dispersion of the imaginary part of the
matrix elements expressed in local spacing units see Ref. [9] for the relevance of this
parameter in more general ensembles. In this paper we derive an exact closed
expression for the n-level correlation and cluster functions for any n for ensembles
intermediate between GOE and GUE, and give, inter alia, a rigorous derivation of
the transition parameter.

In what follows we consider an ensemble of Hermitian matrices depending on a
parameter α. The matrix elements are Gaussian random variables and the relative
dispersion of their imaginary to real parts is α. For α = 0, the ensemble is GOE, and
for α = 1, it is GUE. We restrict ourselves to the case 0 rg α :g 1. This restriction
enables us to write the ensemble as a sum of GOE and GUE, and consequently the
joint probability density of the matrix elements as a convolution (Sect. 2). This plays
a key role in the derivation of the joint probability density for the eigenvalues in
Sect. 3.

The joint probability density for the eigenvalues follows easily in the two
limiting cases from the in variance properties of the ensembles [10] see Ref. [11] for
the third limiting case α = oo. For arbitrary α, however, one needs to integrate over
the variables of the unitary transformations which diagonalize the matrices of the
ensembles. For the restricted values of α, the formula needed to do this is known
[12]. Then, making use of the method of integration over alternate variables [13],
we obtain the joint probability density as a pfaffian (Sect. 3).

The same method of integration can be used to derive the one-and-two-level
functions [13]. We briefly discuss this line of inquiry in Appendix I. For more
general results (Sect. 4), we rely on two theorems on quaternion determinants [14]
which have already been used to derive all n-level functions for α = 0, 1 [15].

In Sect. 5 we consider the limits when the dimension of the matrices is large. It is
shown that the eigenvalue fluctuations (as described by the n ^ 2-level functions)
undergo a discontinuous transition at α = 0. For all non-zero finite α we obtain
results characteristic of GUE. On the other hand, in the limit when α -• 0 but the
parameter λ remains finite, the n ^ 2-level functions undergo a smooth transition
from GOE (λ = 0) to GUE (A = oo). Except in the two limiting cases, the functions
are non-stationary owing to the variation of λ over the spectrum [8].

In Sect. 6 we study the (asymptotic) two-level functions in detail and derive
expressions for the number variance Σ2 as well as for the ensemble average of the
least square statistic A 3 which are useful in the analysis of data.

We do not consider here the data analysis for the breaking of time reversal
symmetry, as it is already part of a separate study [8]. Some other quantities, such as
the spacing distributions which follow from the cluster functions, will be discussed in
a later paper.

2. An Ensemble of Random Hermitian Matrices

Consider the ensemble of Hermitian matrices

H = A+B, (2.1)
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where A is an N x N real symmetric matrix with the probability density

Pι(A) = 2" iV/2[2π(l - αV]~ W ( N + 1 ) / 4 exp{ - TrΛ2/4(l - a2)v2}, (2.2)

dA = γ\dAuχ\dAjk, (2.3)
i j>k

and B an N x N Hermitian matrix with the probability density

p2(B) = 2" i V / 2 [2παV] ~N2/2 exp{ - Tr B2/4α V } , (2.4)

dB = Π «**« Π ( R e dB;Vc) dm dBJk). (2.5)

The joint probability density for the matrix elements of H is then

p(H) = §pί(Ά)p2(H — A)dA, (2.6)

dH = Π dHu Π (Re dH^) (Im dHjk), (2.7)

and on the average

llmfίll2 / i V - l \ . 2 „ 2

| |Retf| |2 \N +

The ensemble is symmetric in α. We consider therefore α ̂  0. Furthermore the
definition (2.1) restricts it to α ̂  1. When α = 0, B = 0 with probability one and then
H = A forms the GOE. Similarly α = 1 gives H = B which is the GUE.

Here υ2 fixes the scale. We shall choose

2ί;2(.l + α2) = 1, (2.9)

so that the results for GOE and GUE will be identical to those in [3].
We remark that the convolution integral in (2.6) can be evaluated easily and the

resultant form, giving explicitly the joint probability density of the real and
imaginary parts of H, is then valid for all α. However, it is the integral form in (2.6),
which will be used in the next section for the joint probability density of the
eigenvalues.

3. Joint Probability Density of the Eigenvalues

Let x 1 ? . . . , xN be the eigenvalues of H:

H = UϊχU,x = lxiδijlUW = l, (3.1)

so that [10]

(3.2)
V i /

where

κt — Xj),dx = dxx ...dxN. (3.3)
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Similarly if al9..., aN are the eigenvalues of A,

A = ΩτaΩ, a = [ α ^ ], ΩTΩ = 1, (3.4)

then [10]

( ( ^ \ \ V (3.5)

To get the probability density p(x) of the xf, one has to further integrate over U in
Eq. (2.6). We have

= const
4(1 — or)v~ 4orv~

where an intermediate step involves a trivial integration over Ω. The constant in the
last step is the product of the constants in (2.2,2.4, 3.2, 3.5). The integral over U can
be performed by using the formula [12]

N_χ d e t exp< — —-(rί — Sj)
. JV(JV-l)/2 ΓT Ί L I 2tJ

(3.7)

valid for Hermitian R, S with eigenvalues {r^, {sj. Note that the determinant has
the same sign as Δ(r) Δ(s). Then for the final integral over a, we have

= N! exp( - Σxf/4v2)Pflε(xb x,)], (3.8)

where in the last step we have first integrated over alternate variables and then used
the theory of Pfaffians [13]. To avoid minor complications, we have taken N = 2m,
even. The antisymmetric function ε(x,y) = — ε(y,x) is a double integral:

ε(x,y)= f dz2 J ^ z 1 j e x p ( - l

 2 2 [ ( z , - ( 1 - α 2 ) x ) 2 + ( z 2 - ( 1 - α 2 ) j ; ) 2 ]

Γ/l-α2V/2 )
= 4π(l-«2)αVerf ί g ^ j j (x-y)k (3.9)
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where

erf(x) = —j- \ exp( — t2) dt. (3.10)

In the last step of (3.9) the integral over zx was performed after introducing the new

variable t = (z2 — z j .

The Pfaffian in (3.8) is the square root of the determinant of the antisymmetric

matrix ε. Collecting all the terms and using the normalization (2.9), we have finally,

for even N,

v(x) = C expf — — - ^ - Σ x 2 )|zl(x)|{det[f(x — x )]} 1 / 2 , (3.11)

with

and

N

O A T ~~~ £•> (J. — 0ί ) \i- "i OL ) I I V "* ~2 J/' \ )

We remark parenthetically that the limit α = 0 is trivial since, then,/(x) = sign x

and d e t / = 1. On the other hand for a = 1 one should expand (det/) 1 / 2 in powers of

to obtain
4α2

l(x)|. (3.14)

In both cases the standard results [10] are recovered.

4. Correlation and Cluster Functions

We shall use two theorems from the theory of quaternion matrices to derive the
correlation and cluster functions. For a proof of the theorems, and details of the
notions involved, one may consult either of the two references in [14]. The same
theorems have been used to derive the functions for GOE and GUE [15]. An
alternative derivation of the functions is outlined in Appendix I.
Theorem 1. In an N x N self-dual quaternion matrix σ, replace its quaternion
elements by their 2 x 2 matrix representatives as follows

"1 oΊ ΓO - 1 Ί Γ 0 - Π Π 0Ί
o l Γ 1 | i o H - i o r 3 io -i[ { 4 1 )

This gives a matrix C(σ) of twice the size with complex elements. Then

(4.2)
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where the quaternion-determinant Q det σ is defined as the scalar

P 1

Here P is any permutation of the integers (1,2,..., N)9 consisting of I cycles of the form

(α -* b -> c -> -> s -• α), (4.4)

and (-l)N~ι is the parity of P.

Theorem 2. Let the quaternion elements σjk of an N x N self dual quaternion matrix
σ{N) satisfy the following conditions:

(i) σjk = Φ(xj9xk) = σkj9 (4.5)

(where the bar denotes the operation of quaternion-adjoint), i.e. σjk depends only on the
variables Xj and xk9

(ii) \Φ{x,x)dμ{x)=c, (4.6)

(iϋ) J Φ(x, y)Φ(y, z)dμ(y) = Φ(x, z) + Φx (x, z), (4.7)

Φ^^T^zj-^z)!, (4.8)

vv/ίerβ d/i is a suitable measure, c a constant scalar and τ a constant quaternion. Then

$Qdetσ(N)dμ(xN) = (c-N+ l j β d e t σ ^ - ^ , (4.9)

where σ^'^is the (N — 1) x (N — 1) matrix obtained from σ{N) by removing the row
and column containing the variable xN.

We exhibit now a self-dual quaternion matrix σ{N) (xί9 x2,..., xN) and verify that
its elements satisfy Eqs. (4.5-4.8). Moreover, we shall show that

) = {p(x)}2, (4.10)

where p(x) is given by (3.11). We can then immediately write down the n-level
correlation function [16]

N\ °°
Rn(x1,x2,...,xn)= ' J ~ $p(x1,...,xN)dxn + 1~'dxN (4.11)

yiv n). _ 0 0

as a quaternion-determinant.

We write the quaternion elements of σ by their 2 x 2 matrix representatives

„ -Φ(Ύ rλ-[SN(Xj>*k) DN(xj9xk)Ί
σjk-Φ(xpxk)~\ ct ίχ χ J » (4 1 2 )

\_JN{Xp Xk) oN{Xj, Xk) J

where

Σ { P i M j M j (4.13)
J = 0

m - 1

DN{x9y) = Σ {^2/^2/^) - ̂ 2iWφ2/y)} = - D N ^ 4 (4.14)
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JN(χ> y) = ^(x* y) + #(*> y)= - JΛy^ χl (4.15)

m - l

IN(X>y) = Σ {<p2M)A2j(y) - A2j{x)φ2j(y)} = - IN{y,x), (4.16)
j = 0

4-<Ύ2\1 / 2

with

(Pj(x) = {2Jj\ y/π) ϊlze

ί Λ V
(4.18)

and

/1 — r/2 V °°
Aj(x) = ^ — ^ e-*1 '2*2*2 I e ^ ^ ^ ' ^ e ί x - y)<?? ;(^^ (4.20)

1 (X /

Here/(x) in (4.17) is as defined in (3.12), the Hfx) in (4.18) are the Hermite

polynomials and e(x) in (4.20) is given by:

(4.21)

The φfx) are orthonormalized harmonic oscillator wave functions:

ί φi(x)φj(x)dx = δij. (4.22)
- 00

By a partial integration we find that

f 4(x)ψ/x)dx=-δy. (4.23)
— 00

Moreover, since the parity of φ^x) is ( - l) j, while that of ^.(x) or A^x) is ( - iy + 1

9

we have

J φi(x)φj(x)dx= J φi(x)Aj(x)dx = 0, ί + j = even. (4.24)
- oo — oo

We now define, for any two functions/^x,};) and/2(x5>y), the composition

Λ */2 = (Λ */2)(*, 2) = ϊ Λ(*. yίΛίy. ̂ y (4.25)
- oo

Then using (4.22-4.24) we find that

SN*SN = SN, (4.26)

SN*DN = DN*tfN = DN, (4.27)
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and

IN*DN = S^, DN*IN = SN. (4.29)

To evaluate #*£# and g*DN we need the integrals (see Appendix II):

00

J Q(χ>y)Ψj(y)dy = (pj(χ), (4.30)
— 00

and

ϊ g(x,y)φJ(y)dy = Aj(χ). (4.31)
— oo

Using these equations we get:

g*SN = S*N*g= -IN, (4.32)

and

g*DN=-tfN, DN*g=-SN, (4.33)

so that

JN*DN = DN*JN = 0. (4.35)

Thus

where

φ 1 = = xφ — Φx (4.37)

with

" { i ?}{i -
We also see from (4.22, 4.23) that

00 00

J Φ{x,x)dx= J SN(x,x)dx = 2m = N. (4.39)
— oo — oo

Thus Eqs. (4.5-4.8) are satisfied with c = N and τ given by (4.38).
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To verify (4.10) we observe that the 2N x IN matrix

oNyXj, xk) uNyxp xk)

iN\Xj, xk) όN{Xj, xk) j

[ψ2i(Xj) ~Φ2i(Xj) 0 ] YψlkXk) Ψ2i(Xk)~

\_-A2i(xj) φ2i(
χj) OJ A2i{xk) φ2ί(xk) ^ ^

0 0 J
has rank N. In other words, the last N rows

(4.41)

(4.42)

(4.43)

is therefore not changed if we subtract from its last N rows the last N rows of G. Thus

detC(σ(N)) = d

are linear combinations of the first N rows

LSN{Xj,xk)DN(xj9xh)].

The determinant of C(σ(iV))?

0

N(xp x k ) l

Moreover, from (4.17) we have

and, since

we also have from (4.18, 4.19)

det lDN(xj9xk)-] = ( - I f {det [φ2i(xj) Φ2ί(.

/m~)

=(-i)1 Π

(4.44)

(4.45)

(4.46)

N(N~2)/2

X ( I — ( (4.47)

where in the last two steps we have made repeated use of the fact that a determinant
is not changed if we add to a column a linear combination of the other columns.
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Thus in the second step we have used the relation

*2)ψj-Λx)-VΪ+ΐ(ι +oc2)φj+1(x)} (4.48)

to replace the column φ2iby φ2i +1 (Note that in the first step the index i runs from
zero to m — 1 whereas in the second from zero to N — 1 in both steps j is from 1 to
N.) The last form follows by reducing det \_Hi(xj)'] to det [xj] which is the
Vandermonde determinant A(x). Equations (4.44, 4.45, 4.47) now give (4.10).

All the conditions of the theorem being satisfied, we apply it several times to
obtain from (4.9-4.11)

Rn(xl9x2,... ,xH) = βdetσ™ = {det C(σ(M))}1/2, (4.49)

where σ{n) is the n x n quaternion matrix

σ<"> = <μχXί ,x2,...,xn) = ίΦ(xp xk)l,k=ι , . . . , „ , (4.50)

and C(σ(B)) is the In x In matrix

^ ^ (4.51)
N\Xρ Xk) ^N\Xr Xk) J j , k = 1,2,..., n'

Thus the level density is

R1(x) = SN{x,x)
N-ί

j = 0 - oo

(4.52)

where the last form follows from the simplified expression for S^ given in (4.63)
below. The two-level correlation function is

R2(x,y) = RΛx)RΛy) - T2{x,y), (4.53)

where the two-level cluster function T2 is given by

T2(x, y) = SN(x9 y)SN{y, x) - DN(x, y)JN(x9 y). (4.54)

As in [14, 15] the n-level cluster function is given by

Tn(Xl, χ 2,. . ., xn) = X Φ(xu x2)Φ(x2, x3)... Φ(xn, Xi), (4.55)
p

where the sum is taken over all the (n — 1)! distinct cyclic permutations of the indices
(1,2,..., ή). The functions satisfy the integral relations, namely

00

j Rn(xux2,...,xn)dxn = (N-n+ l ) J R n _ ^ x ^ . . . , x π _ J , (4.56)
— oo

and

00

1 (x 1 ,x 2 , . . . ,x n _ 1 ), (4.57)
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with

J R±(x)dx = J Tί(x)dx = N,
— oo — oo

as they should [16].
One can use (4.48) and

to simplify the expressions for SN and J^. We have

1 -h α 2 \ 2 j

)

l+oc2\2j+2

and

l + α 2 \ 2 j

)

.2\2j + 2

Then from (4.13, 4.60)

459

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

x J e(y-z)e(ίl2)χ2z2φN(z)dz.
— oo

Also, from (4.31, 4.61) we have

00 00

d(χ>y)= Σ Λi(χ)(Pi(y) = 2 Σ {^, W Φ ,

(4.63)

j=0

00

= Σ
00

= Σ

j=o

(4.64)
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which along with (4.15, 4.16) gives

JA*>y)= Σ {AijtoφiJίyϊ

The result (4.55) is already in the form given for α = 0, 1 in [15]. For α = 0,
g(x, y) = e(x — y), and DN and IN can be written, with the help of (4.61, 4.62), as a
differential and an integral, respectively, of SN in (4.63). On the other hand for a = 1,
while DN diverges, its product with JN, (4.65), is zero so that only SN terms survive
in (4.55).

5. Limits when the Matrices are Large

The large-N limits of the rc-level functions are known [15,17] for α = 0,1. We follow
here the method of [17] where the limits for n( > l)-level functions are derived for
every region of the spectrum.

We have, from (4.63), for large N

= (iiv)1/2 ί ΨΛΦN ~i(y)~

— y

(5.1)

Here the second form is obtained by the Christoffel-Darboux formula and the last
form, valid for small δθ, by using the asymptotic formula [18] for φN,

2 Y / 4

)

(5.2)

where

/ V \

θ = θ(x) = cos-1ί -—==], 0<θ<π, (5.3)

and

δθ = θ(x) - 0(3;) α (x - y)/(2N)1/2 sin 0. (5.4)

Thus for the asymptotic level density, we obtain from (4.52, 5.1)

• x ) , p.:>)
π

the famous semicircle of Wigner. Also, as N-* oo, (x — y)-*0 while

(5.6)



Gaussian Ensembles of Random Hermitian Matrices

remains finite, we have from (5.1)

For non-zero finite α, we see from Eqs. (4.14, 4.19, 4.20, 4.65) that

DN(x9y)^>ao, JN(x,y)->0,

and

DN(x,y)JN(x,y)-+0,

461

(5.7)

(5.8)

(5.9)

implying that in the asymptotic-iV limit the n-level correlation and cluster functions
for n > 1 are discontinuous functions of α. For α = 0 we have the GOE results and for
α > 0 the GUE results. However, DN and JN have finite limits when α -» 0 and

(5-10)
Local Average Spacing at x

is finite [8]. These limits can be obtained by taking the Fourier transform of Eqs.
(4.32, 4.33), using (5.7) for SN. Using the notation

= J e2πikxh{x)dx

for the Fourier transform of a function h(x), we have [19] for b > 0

) = 2i f sin(2πkx)Qrί(bx)dx = —exp( - π2k2/b2\
o πk

and

7Γ 9 if 2π|fc|<fe,

[

(5.11)

(5.12)

( 5 1 3 )

ΰ , if

which, along with (4.32), give for the Fourier transform of IN.

i , if |fc|<i/2,

, if |fc| = 1/2,

, if | fc|>l/2.

(5.14)

An inverse Fourier transform then gives

so that

0 π

-2λ2k2

(5.16)
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Similarly from (4.33) we have

DN(x,y)κ(R1(x))2D(r;λ),

dr [π 0

Using the new variables

;λ) = ^\-]dkcoskre2λ2k2\=--]dkksmkre2λ2k2.
dr [π J π

r,= J R^dx,

(5.17)

(5.18)

(5.19)

we get, from (4.49-4.51, 4.55, 5.7, 5.16-5.18), for the rc-level correlation function

n{rur2,...rn\λ)= \im {R1(x1)R1(x2)- R1(xn)}-iRn{xi,x2,...,xn)
iV-»oo

and for the n-level cluster function

Yn(rl9r29...9rn:λ) = lim {Λ1

- r2 λ)Φ(r2 - r 3 λ) • • • Φ{rn - r, λ),

(5.20)

(5.21)

where

sinπr D(r;λ)

πr

J(r;λ) sinπr

πr

(5.22)

with J(r) and D(r) given above, Eqs. (5.16, 5.18).

The transition parameter λ, Eq. (5.1), varies over the spectrum because of its
dependence on x. As a consequence, the fluctuation properties, described by the set
of Mn or Yn functions for n > 1, are non-stationary, the exceptions [17] being the two
limiting cases. In particular, the GOE (λ = 0) -• GUE (λ = oo) transition then is seen
to be faster in the middle of the semicircle than at the ends [8].

6. Two-Point Fluctuation Measures

The two-level cluster function, namely

Y2(r;λ) = J(nλ)D(r;λ) = Y2(r; oo) - J(r;λ)D(r;λ)9 (6.1)

is of particular interest in the analysis of data. Its asymptotic expansion can be
derived by partial integration in (5.16, 5.18). We have for \r\ <̂  1

Y2(r; λ) - Y2(r; oo) =
r2 cos2 πr — \6π1λA

πr
2(r 2

π2(r + • (6-2)
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valid for any value of λ whether large or small compared to r (see appendix III). For
the Fourier transform,

b(k;λ)= J e2*ikΎ2(r;λ)dr, (6.3)
— oo

we have [20]

and

b(k;λ)-b(k;ao)=- J J(r;λ)D(r;λ)exp(2πikr)dr
— oo

oo oo 1 K

= — \ dr \ dkί j dk2 — sin (π/qr) sin (πk2r) exp (2πikr)
- o o 1 0 ^ 1

xexp[-2π2Λ2(/e2-/c2)]

= i i ^ j dk^δ | Λ | - ί L p i exp[-2π2A2(/cf-/c2)]. (6.5)
0 -1 Λ l \ Z /

Integrating over fe2 we get

b(k;oo)
1 t — 1 4- 1 /l/cl

- | | /c | exp(-8π 2 A 2 | / c | ) J ' exp(-8π2A2/c2f), \k\<,\,
-i Γ + 1 + 1//C

- | e x p ( - 8 π 2 A 2 / c 2 ) I d ί — 4 r Γ Γ T e x p ( - 8 π 2 A 2 1 / c | ί ) , | Λ | ^ 1 , (6.6)

while integrating over /c2 we get a different form,

fe(fcU) - b(k; oo) = - /c^~ 8 π 2 ; ι 2 | ; c ! {1 + /z(M)}, (6.7)

where

rs/ι(8π2/ί2/c2)

8π2A2/c2

and

) . (6.9)

which can of course be expressed in terms of the standard Eγ functions.
A quantity often used to measure the rigidity of the spectrum is the number

variance Σ2(ή), namely the variance of the number of levels in a given interval
containing on the average ή levels [21, 22]. We have in the present case

Σ2(ή;λ) = 2](ή-r)(δ(r)-Y2(r;λ))dr
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l-conήt\fl-b{t/2π;λ)

= Σ2(ή; oo) + lΣ2(n; λ) - Σ2(n; oo)]. (6.10)

Here in the formal decomposition in the last form, the l-independent term, namely
the GUE result [22], is

1 ?/Ί-cosHtVl-fr(t/2π;α,,
Γ ( f i ; o o ) - i ? U — i — A (t/2«) I Δ

π

2

f"/l-cosήΛ , 1 x. (2π\(ϊ-cosnt\
ί : Mt + ~2 ί — )dt

"« 2 L :log(2πn) + γ + 1 - Ci(2πn) + 2πn[ — - Si(2πn) 1 - cos 2πn

-2 [log (2πw) 4-7 + 1], (6.11)
π

whereas the 1-dependent term is

ί/2π

(6.12)

The final asymptotic forms in (6.11,6.12) are valid, with good approximations as in
(6.2), for n ̂  1 and λ of any size compared to ή. The functions ξ(λ) and p(ΰ;λ) are
defined by

ξ(λ) = Xr T e-4πλ2ί/ι(ί/2π; A)— (6.13)
π 2 S ί

and

p(n A) = - - ί T e ~ 4 π λ 2 ί cos (fit)h(t/2π \λ)— (6.14)
π 0 t

4λ2 • + ... (6.15)
n 2 +16π 2 / l 4

For small λ we can use an expansion [23] of the E-function of (6.9). After some
tedious calculations we get
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4λ2 + ... (6.16)
V

which in (6.10), along with (6.11,6.12), reproduces for λ =0 the well-known GOE
result [21]. We mention moreover that the final result in (6.9) has also been derived
in [8] but without an exact form for ξ(λ).

Another commonly-used fluctuation measure is the A 3-statistic which for a given
n measures the least square deviation of the staircase energy function from the best
straight line fitting it [21, 22]. Its ensemble average, related to Σ2 [24], is given by

A3(n;λ) = ̂ ](n3 -2n2r + r3)Σ2(r;λ)dr
n

4π2 n2 I πλ2 \4πλ:

τr2 1 2

where the last term in the last form goes from zero to 9/8π2 as λ increases from zero
to infinity, agreeing with the known limiting results [21, 22]. As indicated by the
numerical integrations [5] for GOE and GUE, the term ignored, namely the integral
involving p(n;λ% may not however be very small for n S 10.

Appendix I. An Alternative Derivation of the Correlation and Cluster Functions

An alternative way to derive the rc-level functions is to consider the integral

oo N

LN{u)= J >-$p{x1,x2,...,xN)Y\u{xi)dxi (1.1)
— oo ί = 1

for an arbitrary function u(x). This integral can be evaluated by expanding
the pfaffian in (3.11) in terms of its elements and then integrating term by term by the
method of integration over alternate variables as in [13]. We omit the details. The
result for N = 2m is

L » = [det»ί]
1/2, (1.2)

where η is an N x N antisymmetric matrix with elements (i,j = 0,1,..., m — 1)

/I +a 2 V + J ' °°
η2ί>2J= 2 TZ^2 ί ί dxdyψ2i(x)φφ)g(x - y)u{x)u{y\ (1.3)

V 1 α / -oo

ί\ _|_ oί2\i~j °°

>?2ΐ,2j+1 = ~ V2j+1,2£ = 1 _ 2 ί Sdxdyφ2ι(x)ψ2j{y)g(x - y)u{x)u(y\
V 1 α / -oo

(1.4)

*l2i+i.2j+i = i 7 3 - 2 ί ί dxdyφ2i(x)ιl/2j(y)g(x - y)u{x)u(y). (1.5)
V 1 α / -oo
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The correlation functions now follow as functional derivatives of LN(u) with respect
to u at u = 1 [13]. In particular the one and two level functions, Eqs. (4.52, 4.54),
were derived in this way which facilitated the task of guessing the N x N quaternion
matrix σ{N) in (4.12).

Appendix II. Proof of Equations (4.30, 4.31)

Consider the integral

J

Expanding both sides of this equation in powers of z, for which we use the generating
function for the Hermite polynomials [25]

— 2

j = 0 J-

and using the definition (4.18), we get

W—2, (Π.2)

Then a partial integration along with the definitions (4.17, 4.19) yields (4.30).
For (4.31), it is convenient to write it as

> = f e ( x - ;
2Vl-α^

where we have used the definition (4.20). Differentiating both sides of this relation
with respect to x, we obtain (II.3). Therefore the relation is true if it is valid for one
value of x. At x = oo, f(x — y) = 2e(x — y) = l,so that we have to prove that

I e φ j { y ) d y = J

When j is odd, the truth of this equation is evident. For even j , we consider the
integral

ί exp]
- o o L



Gaussian Ensembles of Random Hermitian Matrices 467

which along with (II.2) yields

^J\ψ(\^y, (Π.7)
verifying (II.5). This completes the proof of (4.31).

Appendix III

Asymptotic forms of J(r; λ) and D(r;λ).

By partial integration

2λ2k2)dk = exp( - r2βλ2)lm J exp - { - 2λ2(k --^Yl—

I \ 4λ J ) k

1
χ<! 7 — + •••

4λ2k k -
4λ2

• cxp(-2λ2π2)Imeiπr

(_ — ir)

rcosπr 4

Similarly

00

J/csin/crexp(2/l2/c2^/c
o

[ rcosπr — 4πλ2 sinπr

I

Eqs. (5.16, 5.18, 6.1) then give (6.2).
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Note added in proof. The ensemble of Hermitian matrices H with || ImH | | 2 > || Re//1|2, corresponding to

α2 > 1, has now been studied. We find the same joint probability density for the eigenvalues as in (3.11),

and hence all the results which follow from it.




