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Abstract. We propose a definition of contours for spin systems which leads to
improved estimates on the region of parameters where several phases coexist.
We discuss as examples anisotropic rotators and a λφ4 lattice field theory. Our
contours are estimated using infrared bounds and they are related to those of
Euclidean Field Theory.

I. Introduction

The purpose of this paper is to present improved estimates on the region of
parameter space where phase coexistence takes place. We discuss few examples but
the method based on a new (at least in statistical mechanics) definition of contours
may have a wider range of applicability.

Specifically we first consider (Sect. 2) an anisotropic rotator model in two
dimensions:

-H=£Sx-S, + a£Sis;. (1)
<χy> <χy>

It is known [9, 13, 14] that for any αΦO there is a spontaneous magnetisation for β
large enough. However, as α goes to zero, β has to be taken of order α~ * (at least).
Heuristic arguments indicate that this is not the actual behaviour of otcrit(β): as β
goes to infinity αcrit(β) should behave like exp(— cβ) except for the case of two
components where, due to the Kosterlitz-Thouless transition in the α = 0 case [11],
αcrit(β) should reach zero for finite β.

We prove that for some c>0, if α = exp( — cβ) then for all β large enough, the
model (1) exhibits a spontaneous magnetisation. However our constant c is not
best possible.
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Now we explain our definition of contours. Usually one defines contours as
separating sites or groups of sites where different ground state configurations (or
close to the ground states) occur. In our definition, contours separate blocks of
spins, where the average of the spins over the block is close to the ground state
value. That is, the average of S? in one block will be close to + 1 and over the next
block close to — 1.

Moreover, we let the size of the blocks depend on β in order to get improved
estimates, uniform in β for a = e~cβ. We estimate the probability of these contours
with the infrared bounds. This requires reflection positivity but is different from
the contour estimates of [8, 9]. However, it is an exact analogue for lattice systems
of the contour estimates in P{φ)2 models [12, 7].

We explain this further in Sect. 3. We show that in a lattice λφ^ — σφ2 model
there is a spontaneous magnetisation for suitable λ,σ uniformly in the lattice
spacing a. The limit α-^0 is analogous to β^oo in the anisotropic rotator.
However the field theory case offers some simplification, and our proof is merely
an adaptation to the lattice of [7]. On the other hand, the result is relevant for
comparison with some numerical computations [1-3]. (See last remark in Sect. 3.)

II. Anisotropic Rotators

At each site xeZ2 there is an n-component rotator SxeSn~1 of unit length. The
Hamiltonian H is

-w=ΣsΛ+αΣsίs;, (2)
<χy> (χy>

where the sums run over nearest neighbour pairs in a finite box A C TL2 including
suitable boundary conditions. We say that there is long range order for this system
at inverse temperature β is some translation invariant Gibbs state does not have
the clustering property.

Theorem. There exist K<co, c>0 and a βo>0 such that for α = (K/jf?)exp( — cβ)
and all β>β0 there is long range order.

In the proof, we consider for simplicity the case n = 2 (two component rotator).
The extension to any n is explained in the remark at the end of this section.

Proof. We take A to be a square of side L:

and we put periodic boundary conditions in (2). Let L = 2pb, where b is the side of a
smaller box

which will be chosen (later) as a function of β. We let p (i.e. \A\) go to infinity via a
sequence pn such that the sequence of periodic Gibbs states in An converge. We
shall prove that the limiting state does not cluster. We denote B , ieTL2 the
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translate of Bo by multiples of b:Bi = B0-\-(ίίbJ2b\ and define our contours via
the following characteristic functions (c.f.): 2n

χt: c.f. of the event £ cos0 x^O and £ C° S Λ ^ 1/8,
xeBt xeBi \B\

χ?: c.f. of the event £ ^ ? * < l / 8 ,

χΓ c.f. of the event £ cos0x^O and £ C 0 S * ^ 1/8.
l lxeB, xeB, l l

Here \B\ = b2 is the number of sites in Bt. Obviously, χ* + χ? -f χΓ = 1 Vi.
We shall prove two estimates, for α = e~c/? and i> a suitable function of β:

a) <X?>A-*0 as jB->oo,

b) <Zi + x7>^^V4-δ, <5>0,

uniformly in Λ, z, and j as /?->oo. Since

this implies long range order.
From now on, we suppress the index on the expectation values. The proof of b)

starts in a standard way (see [7] for more details): we introduce

and expand the product. For each term in the resulting sum, define a box Bt to be
irregular if either χ9 occurs for the box Bt in that term or χ + χj (or χ[ χ*) occurs for
some box B} that has one side in common with Bt. Define a contour to be a
connected set of irregular boxes. So to each term we associate a set of contours,
and every non-zero term must have a contour separating i and j . So the proof is
reduced to the following estimate on the probability of a contour y:

(3)

where ε(i) = 0, ± 1 depending on y and ρ is large enough to control the "entropy"
( = the number of contours with given length and given origin) of the contours.
Note that this "entropy" is a purely geometrical quantity that does not depend on
b. So, letting b depend on β in order to get (3) with ρ large enough and uniform in β
will not affect the entropy estimate.

The proof of (3) which itself concludes the proof of b) above and the proof of a)
above follow from the Schwartz inequality and the proposition below:

Proposition ("contour estimate"). Let b = Qxp{c'β). Then
a) For oί = (K/β)exp{ — cβ) with c<2cf, β large enough, and srf any set of boxes

(4)
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b) There exists a λ independent of β and of d such that for $ a set of pairs of
adjacent boxes and any α^O,

Xΐχj)ύ{c'λ)mi2. (5)
I

Remarks. 1) Estimate b) does not depend on α. Indeed it holds for α = 0. So we
choose d small enough in this estimate in order to have ρ large enough in (3). This
fixes the β dependence of b. Then in a) we have to take α = (K//?)exp( — cβ) with
c < 2c', that is α is constrained by the choice of d not to be too small. The closer c is
from Id the larger β has to be in order to get (4).

2) The basic ideas behind the estimates are as follows:

a ) I f Σ ^ r 1 i s s m a l 1 (< 1/8), Λ e n Σ C°sθ*™sθy is small, but this is
xeBi \B\ (xy}CB \B\

unlikely because the Hamiltonian contains a term "favoring" cosθ x cos$ r

However, for this to be effective, we need \B\ very large if α is small: ocβ> 1/|B| or
c<2d.

b) On the other hand, χfχj is unlikely because there is a "forbidden" region

Σ —r~r^= 1/8- So, on the average, there is a jump between Bt and Bp

xeBi \B\
2 X (cos0 x-cos0 y) 2

cannot be too small but, if b is not too large, this is unlikely because of the
infrared bounds that roughly say (in two dimensions)

((cosθx-cosθy)
2}S(Vβ)\og\x-y\.

For b = ec'β and x, y in adjacent boxes, this is of order d (chosen to be small).
We start by proving part a) of the proposition. The proof of part b) will follow

after three lemmas.

Proof of Part a). We use the method of [4], but chessboard estimates could be
used instead.

Since cosθxcosθy^(l/2)(cos20 ; c + cos20y) and # nearest neighbour pairs in

B = 2\B\, we have

right hand side of (6)^exp |J/ |

Iτr Λ\
Y COS0 COSθ,,).

Then, by the method of [4], this is less than
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as long as ocβ^iKlBl'1 < >' is the expectation value with respect to the measure

Z~x exp[β(cos(# x- θy) + \B\~x cosθxcosθy)]dθxdθy

lim

So we get, for β large enough,

A ^exp((K- l)\st\/4-{K- DM/3)

Now we state and prove three lemmas that are needed for part b).

Lemma 1.

i
yeBj

Proof. If χ + χ " = l, then

\xeBι

and
cosθxcosθy^0.

From Lemma 1, follows the formula:

Π xΐxj)ύW\B\2)WΣl Π (cos^-cos^.) 2 \, (7)

where the sum runs over all families BF of pairs (xt, y3) where we choose some ^ e ^
and some y^B for each pair (ij)e&; notice that | # ] = \&\ and that the sum runs
over \B\2^ families.

Now we consider the subset Si' of £β of pairs (ίj) such that Bt and B share a
vertical side. Without loss of generality, we assume that a majority of pairs in J*
have this property:

(8)

otherwise, change vertical into horizontal. Since χ+χ~ ^ 1, we have

(Π χ,+%;W Π xΐxA (9)
\{i,j)e@ I \{i,j)e@' /

and we apply (7) to the right hand side of (9).
Next we use chessboard estimates on the right hand side of (7). For this we

define the strips

and the sublattice
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The subsets i f v cif , v = 0,1,2,3 are defined by if0: n1,n2 even; i f 1 : n1 even n2

odd; S£2\ n1 odd n2 even; if3: w l 5n2 odd. For xeB ( 0 0)U j^(i o)> w e define

Finally, for any xeA there is a unique ieS£ such that x —ze£ ( 0 > 0 ) uJ3 ( 1 ) 0 ) . We
define ρv(χ) = ρv(x - i), v = 0,1,2,3.

Lemma 2 (Chessboard Estimates). Lei ^ be a term in the right hand side of formula
(7) applied to Si'. Then

\2(B)

Π (cos0 x-cos0 y)
2^

<;(c')ί^l y[ -/exp^c')"1 7 2 Σ Σ (cos^<?v(*) + s~ c o s ^M)θ + s)l/ ' (^)

Proof First we use u 2 ^ ( e " + e~")/2, with u= ]/cr(cosθx — cosθy). So

Π (cosθ.-cos^) 2

1 π
σxy=±l

We refer to [8] for our use of chessboard estimates: first let stf0 be the functions
depending on the spins in Sγ and Q = QV Then use formula (4.3) of [8]. Repeat the
operation with S2 and ρ = ρ2. Note that ρj = 1 Vv.

Finally, we use the invariance of < > under cos#x-> — cosθx to estimate the
sum over σxy. •

In order to state the last lemma (Infrared bounds) we define < >^ as the
expectation value in the massless Gaussian field in A with periodic boundary
conditions. This is well defined only for expressions involving differences of fields
(φx — φy) because of the boundary conditions. Explicitly:

/As (A sh\\° i ΛI-1 v exp(ifcx)-exp(%)

kΦO

where

Λ* = {k = (kί9 k2) = (2πκjL,2πκ2/L)\κielN,0SκiSL-1}.

Lemma 3 (Infrared or Grad-0 Bounds).

θ ' 1 / 2 Σ(cos0Xf-cos0y<)

Σ <{φx-φy){φxj-φyj)>°λ
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Proof. This is just a restatement of Theorem 2.1 of [10] or formula (4.11) of [8],
after summation by parts. Π

Proof of Proposition, Part b). We apply successively Eq. (9) to / J~J χϊχ. V then

Lemma 1 in the form of Eq. (7) to the right hand side of (9) Lemma 2 is applied to
each !F in (7) and finally Lemma 3 to the right hand side of (10), where the sum
over i—\...n is replaced by the sum over v = 0 . . . 3 , seJ£v and ^ = ρv(x) + s,

s. We get (using | # Ή ^ Ί )

1 1 Λ i λj

•Π Π exp (2\B\/\Λ\2βc'(ί
& (x,y)e^

• Σ Σ

Now we perform explicit cancellations in the sums over v, V, s, s'. Let us consider
v = V = 0. The other cases are treated similarly. By periodicity the sum over sf gives

times the sum over 5 for s' = 0. If we write this explicitly,

The sum over seif 0 will be zero unless

the dual of

Λ Qxp(iks) (2 — 2 cos k(x — y))

i^X* 2(1 —cos kι + l — cos/c2)
fcΦO

If fce(S)*, the sum over s of eiks is just |/1|/8|JB| therefore the sum over se^0 of

diverges logarithmically with B, i.e. it is O(logb) = O(c'β). Therefore, the argument
of the exponential in (11) is 0(1). The sum over 3F involves exactly B2^ terms to
finish the proof we can take λ in (5) to equal 4 expθ(l), and we use \&S'\ ^ |^|/2. •

Remark. For n component rotators, the only non-trivial extension concerns the
estimate on χ° [part a)] where we use (implicitly) correlation inequalities known
only for n = 2. However, we can either use reflection positivity and a thermody-
namic estimate or extend the proof of Theorem 3a in [4] to the case s^s* ̂  l/4en2

and then extend it to blocks in the same way that we extended here the proof of
Theorem 2 of [4]. However, we have to replace 1/8 in the definition of χ° (and of
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III. Lattice Field Theory

We can consider the model given, in a finite box ΛcZ2 by

H=k Σp (Φx-Φy)
2+W4)ΣΦt-(Φ)ΣΦl Φ*eiR;

(xy}CΛ xeΛ xsΛ

we impose periodic b.c. on A. The Gibbs measure dμΛ

xeΛ

Since β can be absorbed into λ, σ by a change of scale it is set equal to one.
Again we consider states that are limits of dμΛ as Λ-+Έ2 through a suitable

sequence and we speak of long range order as before.

Theorem. There exists a c>0 and a X>0 such that for

σ = (3/4π)λ\logλ\ + cλ, (12)

then for all λ^λ there is long range order.

Remarks. 1) The proof is patterned after that of [7] which simplifies the proof in
[12] of phase transitions for continuum (φ4)2. The relationship between a weak
coupling (λ small) lattice field theory and the continuum limit is made explicit if we
reparametrize λ, σ as follows: let

λ = λ0δ
2, σ = (3/4π)λ0δ

2\\ogδ2\ + σ0δ
2,

where

<70 = (3/4πμ0 |logλ0 | + c V (13)

Think of δ as a lattice spacing. Then we can rewrite

(A/4)φJ - (σ/2)φ2

x = (λo/4)δ2 : φ* :δ> λ

-((σo-l-0(λ0))/2)δ2:φ2

x:δΛ

+ (1/2)<S202 + const, (14)

where the Wick-ordering : :δ 1? is with respect to a lattice free field of mass 1 and
lattice spacing δ:

: φx:δ x = φχ — 6CQ'QΦI + const,

n/δ 22 rζ

As (5->0, one computes that

The l/4π and the factor 6 in the Wick ordering explain the 3/4π in formula (12)
for σ. The 0(1) gives the 0{λ0) in (14). In (15) we recognize the formula for a
lattice approximation of a field theory (FT)

m2

( V 4 ) : φ4 :m 2- ( σ F T / 2 ) : φ2 :m2 + — :φ2 :m2, (16)
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where

m2 = l , λFτ = λ0, σFΎ = σo-l-{λo). (17)

If we choose c in (13) large and λ0 small, we can make σFT/AFT as large as we
need in order to be, for the continuum field theory, in the two phase region [7,12].
So the theorem can be viewed exactly as a version of this result on a lattice, which
holds uniformly in the lattice spacing δ.

2) In [6] it is proved that, if c in (13) is sufficiently negative, then the
correlation functions decay exponentially for λ sufficiently small. This combined
with Theorem 2 implies that for this model the critical σ satisfies:

to leading order in λ as λ —>Ό, with an error of order λ. Thus σc(λ) can be defined as
the sup over λ's such that the correlation functions decay exponentially. This is the
two dimensional analogue of the estimates of [5] on σc{λ).

3) The main estimates that are used in the proof and what follows from field
theoretic results are stability bounds on the partition function [12, 7].

Proof. We indicate the differences with the proof of Theorem 1. Also all the
difficult estimates are taken from [7]. The main difference with the anisotropic
rotator lies in the definition of χ+, χ~, χ° : χ{

+ : c.f. of the event

%r : c.f. of the event (B)~1 £ φx S - K,
xeB

χ?: c.f. of the event (B)~1 £ φx\ ̂

Here \B\ = b2 will be chosen of order λ * (i.e. δ 2 if we refer to Remark 1 above)
and K is a large number to be chosen later. Now, following the proof of
Theorem 1, we have to estimate

Π χί+ )χ;Wp(-2iqWexp[ Σ (B)"V Σ Φx- Σ Φy
i,j)e@ / \ \(i,j)e33 \xeBi yeBΊ

• (18)

We write

La TX Lu τ)i /_a Ύx 7 χ 5
xeBx yeBj xeBτ

by making a one to one correspondence between points of B{ and By
The expectation value is then shown to be 0(1)'^' by the infrared (or grad-φ)

bounds using Lemma 3. (It is only easier because we do not have to perform
cancellations as in the proof of Theorem 1, since we do not use chessboard
estimates here.)

We have also to bound

( Π Xϊ) ^exp(l/2σFTKM) (exp[-(σFT/2) Σ ( Σ fe)Ί) > U9)
\iesί IA \ L ίejtf \ x e B i \&\/ \ / A

with σF T given by (17).
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Using chessboard estimates [7], the expectation value in the right hand side of
(19) is bounded by

Now, using the method of [7, proof of Lemma 7.4], one can show that Z|f'/|y4'
diverges uniformly in \A\ as λ0 in (14) goes to zero. If we think of the lattice
approximation |Λ|/|2?| is the size of the box in the continuum limit and λo = λFΊ. So
as λo-+0, the factor exp( — (A0/4)</>4) that guarantees the stability of ZΛ disappears
and the factor exp((σ/2)φ2) remains. This factor produces, for suitable e, a negative
effective square mass.

On the other hand this factor is compensated in the numerator by the
exp( — (σFT/2)...) in (20) as shown in [7, Eq. (7.31)]. One can write

^J-Σ-hM••*,!+Σ((ΣΦJ\B\)
xeBi 1̂ 1/ ie& \xeBi\£>i\/ ietf \\xeBι I

where < }δl is the lattice Gaussian with covariance defined in (15). The second

term contains \Λ\/\B\ terms each of which is bounded (as δ-+0 it approaches

II\ φ(x)d2x\\ C\ = unίt box]; the first term compensates the (σ F T /2)^:φ^ :x in

\\π I I )
(14) and (16). The net result is that the numerator is uniformly bounded in δ (or in
our fixed lattice spacing notation in λ for λ^λ). So (20) is bounded by (ε)1^1 with ε
as small as we need for λ0 small enough. Now we first choose K large enough so
that the bound (18) makes χf χj sufficiently unlikely. Then we choose ε sufficiently
small so that εexp(^σFTX) is small ( = ε') and therefore ]\ χ° ^ ( ε ' ) M . •

Remarks. 1. The main technical difference between the proof in the λφ4 and
anisotropic rotator cases is that in the λφ4 case we have strong stability bounds.
This allows us to get the correct constant ( = 3/4π) in σc(λ)~cλ\ogλ, while the
corresponding c in the anisotropic rotator (α = exp( — cβ)) is certainly not the best
possible. In that case we do not have analogous stability bounds.

2. As we mentioned earlier, our results combined with the lower bound on
σc(λ) in [6] shows that

as λ->0. It was pointed out in [3] that a real space renormalization group
calculation predicts a curve of this type for σc(λ) when λ-+0. This has to be
contrasted with results predicted by a Kadanoff-Migdal transformation [2] which,
in the same situation, led to a linear dependence of σc on λ (see also [1]). So our
result (which could be guessed any way by field theoretic methods) settles the
question in favor of the real space renormalization group calculation. However, in
that approach the constant multiplying Alnλ seems to be too large by a factor 5
[3].
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