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Abstract. Let τ be an action of a compact abelian group G on a C*-algebra si,
and assume that the fixed-point subalgebra siτ is an AF-algebra. We show that if
δ is a closed *-derivation on si commuting with τ, and the restriction of δ to j / τ

generates a one-parameter group of *-automorphisms, then δ itself is a
generator. In particular, the result applies if τ is an infinite product action of G on
a UHF algebra. Furthermore, if in this situation δί and δ2 are two derivations
both satisfying the hypotheses on δ, and δί and δ2 have the same restriction to
s$τ, then there exists a one-parameter subgroup of the action τ with generator δ0

such that D(^1)nD((52)πD((30) is a joint core for the three derivations, and δ2

= δ1 + δ0 on this core.

1. Introduction

Let δ be a closed ^-derivation with dense domain D(δ) in a C*-algebra si. Assume
that δ commutes with a strongly continuous action τ of a compact abelian group G
as *-automorphisms on si. It was shown in [4] that if δ vanishes identically on the
fixed-point algebra s/τ = {Aes/:τ(g)(A) = A, geG}, then δ is the infinitesimal
generator of a strongly continuous one-parameter group of *-automorρhisms of si.
Briefly, we say that δ is a generator. By a simple perturbation argument, it follows
that the assumption δ \ s4τ = 0 may be weakened to the condition that δ | j / τ is inner.
An example in [4] showed that it is not enough to assume that δ \ srfτ is a generator on
j / τ . In this example, si is abelian, and there is a geometric obstruction preventing δ
from being a generator: Along the integral curves of the propagator, points burst
into fibres, and conversely, fibres merge into points, in a finite time, [1].

On the other hand, Kishimoto and Robinson [15] showed that if one adds the as-
sumption that si has an identity, and si\yf srf\y) = s/τ for all yeG, where s^\y) =
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for all geG), then δ is a generator if δ\,o/τ is so. This
spectral condition is, however, not satisfied in interesting examples like the standard
gauge action of T 1 on the CAR-algebra, [5]. This paper was motivated by this
example, but we prove the slightly more general result that Kishimoto-Robinson's
spectral condition can be replaced by the condition that each of the ideals
srf\y)*srf\y) in stfτ has an approximate identity consisting of projections. If, in
particular, stfτ is an AF algebra, then this condition is satisfied for all the ideals, [5].
It is interesting to note that if s$τ is abelian and AF, then the geometric obstruction
referred to above is ruled out for trivial reasons: all the closed *-derivations of s$τ are
zero, [3]. Also note that a small modification of [4, Example 6.1], where the string in
the pinched torus is contracted to a point, shows that Kishimoto-Robinson's
condition cannot be replaced by the condition that each of the ideals stfτ(y)*stfτ(y) in
.i/τ is essential in the sense that it intersects any other non-zero ideal. Thus, when
stf is abelian, it is the total disconnectedness of the spectrum of the fixed point
algebra which prevents geometric obstructions and make our proof work.

Our results are applicable to a slightly larger class of C*-dynamical systems than
the CAR algebra with the standard gauge action. Let L be an index set, and for each
iβL, let Mι be the full n x n matrix algebra. Let s$ — (x) MI5 and let H be a compact

ιeL

abelian group acting on M, by an action τι which is independent of i. One can then
associate a gauge action of first or second kind on srf. For the first kind, G = H and

τ(g) = (x) τ

ι(g)5 for the second kind, G is the unrestricted direct product x H, and
τ((0ι)J = ® τ\θι) I n both cases, the canonical projection P = \άg τ(g) onto the fixed

ieL G

point algebra j</τ maps the finite sub-tensor products of .J/ into themselves, and
hence stfτ is an AF-algebra.

For a gauge action of the second kind, Kishimoto-Robinson's (K-R) spectral
condition is not satisfied unless it is satisfied on each factor Mx for the group H, and
this never happens if τι is implemented by a unitary action, i.e. the condition cannot
be fulfilled if H = Jd. For a gauge action of the first kind the situation is more
complicated. If the index set L is infinite, the fixed point algebra stfx is always prime,
and if in addition G is finite, then s$τ is simple, i.e. the K-R spectral condition is
satisfied. If however G is connected, then stfx is never simple, and the K-R-condition
is not valid [6], [19], see [21], [13] for further results in this direction.

This paper is organized as follows. In Sect. 2 we prove some results on
smoothness of 1-cocycles. In Sect. 3 these results are combined with Kishimoto-
Robinson's techniques from [15] to prove the main theorem. In Sect. 4, gauge
actions of the first kind are analyzed in more detail, and Powers-Price's techniques
from [17] are used to prove the result announced in the abstract.

2. Automatic Smoothness of 1-cocycles

Let δ be the generator of a strongly continuous one-parameter group etδ of *-
automorphisms on a unital C*-algebra jrf. If Pis a skew-adjoint element in J / , define

δp{X) = δ{X) + PX-XP = δ{X) + δP{X)

for all XeD(δ). Then δp is the generator of a one-parameter group etδP of
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^-automorphisms. There exists a map t-+ΓP from IR into the unitary group of si
such that

etδP(X) = ΓPetδ(X)ΓP*

for all Xejtf,teU. The map can be taken to satisfy the 1-cocycle property
ΓP

+S = ΓPetδ(ΓP). Here Γp can be taken to be the unique solution of the differential
equation

with initial condition Γp = 0. Then Γp also satisfy the equation

and Γp is given by the perturbation expansions

uMO 0 0

= 1+ Σ \dtί)άt2..^
ldtne

t^{P)...et"'P{P),
w ^ l O 0 0

when ί^O, see [8, Proposition 5.4.1.].
Each of the terms of these expansions involves a smoothing operation on P. This

smoothing suffices to ensure that ΓP is always contained in the domain D(δ) of the
generator δ, even when P is not contained in this domain. More precisely

Lemma 2.1. Adopt the assumptions and notation before this lemma. It follows that
ΓPeD{δ) = D{δp)and

δp(ΓP) = ΓP(etδ(P)-P).

Hence one has

Proof. By [15, Theorem Al], srf may be represented on a Hubert space J f such that
etδ is covariant, i.e. there exists a strongly continuous unitary group t\-^etH such that
etδ(X) = etHX e~tH for all Xesf. Here H is the skew-adjoint generator of the unitary
group. The cocycle Γp is then given by Γp = et(H+P)e~tH, [8, Corollary 5.4.2].

Assume first that H is bounded, and then δ = ad(if) extends to all of i f (jf). One
has
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see [18], or [7, Lemma 3.2.31]. Thus

P) =δ(ΓP) =
0

= \dsesδF(δ(P))Γf
0

= \dsesδ\δp{P))Γp.
o

But e?δ\δp{P)) = (d/ds) <?δ\P\ and hence δ(ΓP) = (etδ\P) - P)ΓP.
Assume next that H = — H* is unbounded. Using spectral theory, we may

approximate H by a sequence (Hn) of bounded functions of H, i.e. each Hn is bounded
and skew-adjoint, and Hn\\/ -• Hφ for all φeD(H). It follows from the Trotter-Kato
theorem in Kurtz' form [7, Theorem 3.1.28], that etHn and e

t{Hn+P) converges
strongly to etH and et{H + P). Hence

- t(Hn + P) _ p\et(Hn + P)e -tHn

converges strongly to

{etδ\P) - P)ΓP.

It follows from the formula for δ(ΓP) above that

converges strongly to (etδP(P) — P)ΓP, but at the same time it is clear from direct
inspection that this expression converges as a bilinear form on D(H) x D(H) to
IH,ΓP]. It follows from [7, Proposition 3.2.55] that ΓPeD(δ) and

δ{Γp) = {etδP(P)-P)ΓP.

The remaining assertions of the lemma follows from the formuli

d β

and δp = δ +

3. Derivations Commuting with Compact Abelian Actions

Theorem 3.1. Let sέr be a C*-algebra, G a compact abelian group, and τ a continuous
action ofG as ^-automorphisms of stf. Assume that the fixed point algebra s4τ for this
action is an AF-algebra.

Let δ be a closed *-derivation on srf satisfying
1. δτ{g) = τ(g)δ for all geG.
2. The restriction δ0 of δ to s$x is a generator.

It follows that δ is a generator.

Remark. The assumption that s$x is an AF-algebra could be replaced by the
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hypothesis that each of the ideals j/ τ(y)*j/%) in j / τ has an approximate identity
consisting of projections. This is the only property of AF-algebras used in the proof.
In particular the proof applies if stfτ is simple with unit, but this is already a
consequence of [15, Theorem 1].

Proof. If s0 does not have an identity, adjoin one and extend δ and τ in the obvious
manner. The hypotheses in Theorem 3.1 are then still fulfilled and we may assume
from now that srf has an identity.

The strategy of the proof is as follows: We prove that the restriction of δ to each
of the spectral subspaces jtfτ(y) is a generator of a group of isometries. Actually, we
restrict δ to subspaces of j/τ(y) of the form stfτ(y)P, where P are suitable smooth
projections in an approximate identity for stf\y) * srf\y). We then perturb δ by an
inner derivation δ_Q= — ad(g) implemented by an element Qestfτ to obtain a
derivation δ~Q = δ + δ_Q such that δ~Q{P) = 0, and hence δ~Q leaves j/τ(y)P
invariant. The derivation δ~Q still satisfies the same hypotheses as δ, in particular
δ~Q\srfτ is a generator. Kishimoto-Robinson introduced in [15] an explicit
isometry bet ween. jtfτ(y)P and a closed subspace of sdτ. (Actually this is a simplified
account, and we have to work in a tensor product.) Transporting δ~Q by this
isometry, we get an operator on the closed subspace of srfτ which is a bounded
perturbation of δ ~Q, and therefore is a generator there. It follows that δ~Q\ s/τ(y)P is
a generator. Perturbing back with a suitable 1-cocycle in stf, we obtain the group
generated by δ.

Observation 1. If yeG, there is a net (Pα) of projections in stfτ(y)*stfτ(γ) such that:

1. Each Pe(Pa) is a finite sum P = ΣX*Xk, where Xke<%?τ(y)nD(δ).
k

2. If Ie j/ ' (y), then limXPα = X, where the limit exists in norm.

Proof. j/τ(y)*^τ(y) is an ideal in j / τ , and as stfτ is an AF-algebra, it follows that
stfτ(y)*stf\y) has an approximate identity (P'β) consisting of projections. There is a
canonical projection from s4 onto j/τ(y) commuting with <5, and hence jtfτ(y)r\D(δ)
is dense in s/τ{y). It follows, [11], [16], that for any ε > 0 there are a finite number of
elements Ykesrfτ(y)nD(δ) such that

If Y= Σ Y* ̂ k> t n e n Yε£#τ(^D(δ\ and as P'β is a projection, the spectrum of Y is

contained in a small neighbourhood of the set {0,1}. Let/eC°°([R) be a function
which is 0 in a suitable neighbourhood of 0 and f(x) = x~1/2 in a suitable
neighbourhood of 1, such that Pa = Pβ ε=f(Y)Yf(Y) is a projection. Then
f(Y)eD(δ) by [20], or [7, Corollary 3.2.33] and hence PaeD(δ). Furthermore, \\P'β
— Pβε || is dominated by a constant, only depending on ε, which vanishes as ε -»0.

Thus, if the set of (β, ε) is ordered by (j8, ε) < (β\ ε')iiβ<β' and ε' ̂  ε, the net Pα

has the property that l imZP α = X, for all Xejrfτ(y)* ^τ(y). But thenlimYXPα =
α α

YX, for Xej/τ(y), Ye^(7)^X7)*. But if g is a non-negative real function such that
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g(0) = 0 and g(x) = 1 for x ^ δ, then Ύ— g(XX*)estfτ(y)stfτ{y)* and

|| g{XX*)X - X || ^ || (g(XX*)X - X)(X*g(XX*) - X*) | | 1 / 2

2-2g(XX*)

It follows from the relation above, by letting δ-+0, that ΓimXPα = X, for all

If Xk = 7 k / ( n then Xke^τ{y)n D{δ) and Pα = £ X*Xfe. This ends the proof of

Observation 1.

From now we fix a yeG and a projection P = k> where each

and
k ) . Put Q = δ(P)P - Pδ(P)9 δQ(

δ(X) - δQ(X) for XeD(δ).

Then Q is a skew-adjoint element in s/\ and it follows that δ~Q is a closed

*-derivation satisfying the same hypotheses as δ in Theorem 3.1. Furthermore

δ-Q{P) = Q, [14].
Let <S' be the restriction of ( Γ e to D((5') = ^α(y)PnD((5). As

(5~Q(P) = 0 it follows that δ' is a densely defined closed operator on j/α(y)P.

Observation 2. The operator ό' is the generator of a strongly continuous one-
parameter group Sζ of bounded operators on s

Proof. We follow closely an argument from [15]. Recall that
N

P= Σ ^*^-ConsidertheC*-dynamicalsystem(.5^^ = «s/(g)MΛΓ,G,τ),whereMN
k=l

is the N x N matrix algebra, and τ(g) = τ(gf) (x) z, where z is the trivial action. Let
δ = δ ~Q (x) i with D((5) = D(δ) ® z. Then τ and 5 satisfy the same properties as τ and δ.
Define

XN

0

0

0

... 0

... 0

... 0

Then
P 0

0 0

.0 0 ... 0_

and hence Kis a partial isometry, and FK* is a projection in j^nD(<5). Furthermore

0 ... 0"

0

ό

0

όj
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Thus Observation 2 follows once we can show that the restriction δ', of δ to
^N{y)V*Vis a generator.

To this end, we define an isometric isomorphism φ from the Banach space
j/τ

N(y)F* V onto the Banach space # / F * by φ(A) = AV*, for Aej*?l{y)V* V. Then
φ~1(B) = BV for Bejrff

NVV*, and hence

φδ!φ-\B) = S'(BV)V* = δ{BV)V*.

But as B = £ F F * , we have by the derivation property δ{B) = J(£F)F* + £F<5(F*).
Thus φδ'φ-\B) = δ{B) - BVδ(V*\ for all Be^N VV*. Define an operator p on ^ τ

N ,
by p{B) = δ(B)-BVδ(V*), for B e D ( 5 ) n ^ . Since J is the generator of a one-
parameter group of automorphisms on sfτ

N, and the operation of right multipli-
cation by - VS(V*) is a bounded operator on st\, it follows that p is the generator of
a strongly continuous one-parameter group, [7, Theorem 3.1.33]. The restriction
φδ'φ ~λ of p to s/τ

N V F* is then a generator, and as φ is an isometry, δ' is a generator.
This completes the proof of Observation 2.

Next, define a unitary cocycle Γ? in j / τ by

where etδ~Q here denotes the one-parameter group of ^-automorphisms generated
by δ~Q = δ — δQ on s4τ. Then ί-^Γp is a continuous map into the unitaries in j / τ

satisfying the cocycle relation

and the differential equation

see Sect. 2.
Define a strongly continuous one-parameter family Tζ of maps from s^\y)P into

^\y) by

Observation 3. lϊXe^τ(y)PnD(δ), then Tf(X)eD(δ) for all ί, ί-* Tf(X) is diEferenti-
able and

for all teU.

Proof. As XeD(δ) we have XeD(δ~Q) and hence XeD(δ') and

—Sf {X) = S'(S?(X)) = {δ- δQ)(S?(X)).

It follows from Lemma 2.1 that ΓfeD(δ~Q) = D{δ), and (d/dt)Γ? -
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QΓf = δ{Γf) + Γ?β. Thus Tp{X)eD(δ\ t-+T*(X) is differentiable and

r + Γ?(δ(Sf(X)) - QS?(X)

= δ(Tt

p(X)).

This proves Observation 3.

Observation 4. If Xe^\γ)P, then ||Tf(X)|| = | |X|| for all teU.

Proof. Let etδ again denote the automorphism group generated by the restriction of
δ to sέτ. We first argue that

Tp

t{X)*Tt

p{X) = etδ{X*X)

for all teU. Assume first Xe^\y)PnD{δ). It follows from Observation 3 and the
derivation property that the following calculation is valid

Tp

t(X)*T?{X)-e?\X*X)

= ]ds^{e«-s)δ{
J

o ds

t

= J ds e«-s)ό( - δ(Tζ(X)*Tξ(X)) + δ(Tζ(X)*)Tζ(X)
0

+ Tζ(X)*δ(T%X)))

0

Thus

|| TP(X)II2 = \\TP(X)*Tt

p(X)\\ = \\etδ(X*X)\\ = \\X*X\\ = \\ X\\2.

As PeD{δ\ srfτ{y)Pc\D(δ) is dense in j^\y)P9 and as each Tp is bounded,

Observation 4 follows.

Observation 5. The restriction δy of δ to jafτ(y) is the generator of a strongly
continuous one-parameter group of isometries on stfτ{y).

Proof. The operators ± δv are dissipative by [4, Lemma 4.3], and by the Lumer-
Phillips theorem it suffices to prove that (λ — δ)(D(δy)) is dense in -j/τ(y) for a positive
and a negative real number λ, see [7, Theorem 3.1.16]. This follows from the
differential equation in Observation 3 as in [9, page 360-361], or as follows: Assume



Derivations Commuting with Abelian Gauge Actions 361

that XesJτ(y)PnD(δ), where P is as in Observation 1, and assume that λ > 0. We
will show that XeR(λ - δy). Define

00

Y= \dte-λtT*(X\
o

where Tp is defined before, Observation 3. The integral converges because of
Observation 4, and Observation 3 implies that YeD(δ) with

\ d t e (
o 0 at

= J dt^(e-λtT^(X)) + λ J dte~λtTp

t{X)
at

Thus X - (λ - δ)Y and I e # ( A - (5). It now follows from Observation 1 that R(λ-δ)
is dense. This ends the proof of Observation 5.

Theorem 3.1 is now an immediate consequence of Observation 5 and [15,
Proposition 2].

4. Gauge Actions of the First Kind

In this section, which is largely independent of the previous one, we will consider the
following problem: Let si be a C*-algebra, τ an action of a compact abelian group
on si, δ a generator on the fixed point algebra siτ. Assume that δ has closed densely
defined extensions to si which commute with τ, and let δι,δ2 be two such
extensions. What is the relation between δx and δ2 ?

We will actually consider this problem in a special setting.

Theorem 4.1. Let si be a UHF-algebra ofGlimm type n00, i.e. si = ® MI5 where the
ιeL

index set L is infinite and each Mt is a full n x n-matrix algebra M. Let Gbe a compact
abelian group acting on M and let τ be the corresponding infinite tensor product action
of G on si. Let a be an automorphism of si such that

ατfef) = τ(g)<x, for all geG,

and

OL(X) = X forallXesi\

It follows that there exists a geG such that oc = τ(g). In particular, ifδu δ2 are
closed ^-derivations of si such that δt τ(g) = τ(g)δifor all geG, i = 1,2, and δλ \siτ

= δ2 \siτ, and <5X \siτ is a generator on siτ, then there exists a one-parameter subgroup
of the action τ with generator δ0, such that D(δ2) π D(<51)nD((50) is a joint core for the
three derivations and δ2=δ1+δ0 on this core.

Remark. Actually we prove the slightly stronger result that the groups etδ i mutually
commute for i = 0,1,2, and the relation etδ2 = e

tδOetδl is valid for all teU.
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Lemma 4.2. Adopt the same hypotheses on s/, τ as in Theorem 4 h but G may be any
subgroup o/Aut(M). Let (j^,π,Ω) be the cyclic representation of si defined by the
unique trace-state ω on sd, [7, Definition 2.3.18']. It follows that π{s4τ)''nπ(,s/)" = Q,
and in particular π(stfτ)" is a factor.

Remark. It is known that the restriction of ω to siτ is a factor state; for a sharp result
in this direction, see [21, Theorem 4 in Sect. III]. As the closed cyclic subspace
generated by s/τ in Jf is a proper subspace of Jf7, Lemma 4.2 requires a separate
proof.

Proof. Although this probably could be proved using techniques from [12], we will
use an argument based on an idea from [17]. Let 5(oo) be the group of all finite
permutations of the index set L. There is a canonical action α of S(oo) on si = (x) M ι 5

ιeL

and, as shown in [17], there is a unitary representation seS(oo) -> U(s)esiτ such that
α(s) = Ad(l/(s)) for all seS(oo).

As ω is invariant under all automorphisms of si, ω is α-invariant. As ω is the
product of the normalized traces on Mx for all /, it follows by approximating with
finite tensors that ω is clustering with respect to the action α, i.e. for any A, Be si and
ε > 0, there exists an seS(oo) such that \ω(Aφ)(B)) — ω(A)ω(B)\ < ε. It follows that
ω is external among the α-invariant states [7, Theorems 4.3.22 and 4.3.20]. As ω is a
trace, the cyclic vector Ω is separating for π{si)". If Uω is the unitary representation
of S(oo) on Jf, defined by

Uω(s)π(A)Ω = π(φ)(A))Ω

for all Aes#,seS(co), then it follows from extremal invariance of ω that

C7ω(S(oo))'= CO,

[7, Theorem 4.3.20]. As each Uω(s) implements the same automorphism of π{stf)" as
π(U(s)), and π is a factor representation, it follows that there exists a unitary operator
j(π(y(s)))eπ(j/y such that

Uω(s) = π(U(s))j(π(U(s))l

and hence

π(4'nπ(ί/(S(oo))) ' = π(j/) / ;n C/ω(S(oo))' = CD.

But as C7(S(oo))6.5/τ it follows finally that

Proof of Theorem 4 I. Let α be an automorphism of s4 commuting with τ such that
α|j/ τ = id. As the trace state ω on .o/ is α- and τ-invariant, α and τ extends by σ-weak
closure to π(s/)"9 and as the projection P{X)= \dgτ{g){X) extends by σ-weak

G

closure to π(srf)'\ we have that π(siτ)" is the fixed point algebra for the extended τ.
Hence the extended α restricts to the identity on this fixed point algebra, and the
extended α commutes with the extended τ. But Lemma 4.2 implies that π(siτ)" is a
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factor, and it follows from Robert's version of Pontryagins duality theorem that
there exists a geG such that α = τ(g). (A general version of Roberts's theorem is
proved in [2, Appendix C], the special version used here can also be found in [10].)

Finally, let δl9 δ2 be two closed *-derivations on stf commuting with τ such that
δχ \s$τ = δ2\stfx is a generator on s$τ. It follows from Theorem 3.1 that δl9δ2

generates groups etδ\ etδl on jrf, and then etδl \s$τ = etδl \sdτ. Hence, by the first part
of the theorem, there exists for each t e U an element g(t) eG such that etδ2 = τ(g(t))etdl.
By [2, Appendix B~] we may assume that G acts faithfully, and hence g(t) is unique.
Here τ(g(s)) commutes with etόi and etδl by assumption, for s,teU and hence t ->g(t)
is a one-parameter group. Also t->τ(g(t)) = etd2e~tδl is strongly continuous and it
has a generator δ0 which is a closed densely defined ^-derivation. As esδo and etdι

commute for all s, ί, we get a strongly continuous representation by 1R2 by (s, t)
-^esδoetδί. The C1-vectors D((50)nD(ί31) for this representation are invariant under
both esδo and etδ\ It follows from etδl = etδoetdι that these vectors are contained in
D(<52) and are invariant under eί<52. Hence these vectors are a core for both δ09 δί and
δ2, [7, Corollary 3.1.7]. Thus D(δo)nD(δί)nD(δ2) is a joint core for δ0, δx and δ 2 .

It follows from etδl = etδoetδi that δ2=δ1+δ0 on this core.
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