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Abstract. For spatially extended conservative or dissipative physical systems,
it appears natural that a density of characteristic exponents per unit volume
should exist when the volume tends to infinity. In the case of a turbulent
viscous fluid, however, this simple idea is complicated by the phenomenon of
intermittency. In the present paper we obtain rigorous upper bounds on the
distribution of characteristic exponents in terms of dissipation. These bounds
have a reasonable large volume behavior. For two-dimensional fluids a
particularly striking result is obtained: the total information creation is
bounded above by a fixed multiple of the total energy dissipation (at fixed
viscosity). The distribution of characteristic exponents is estimated in an
intermittent model of turbulence (see [7]), and it is found that a change of
behavior occurs at the value D = 2.6 of the self-similarity dimension.

To Freeman J. Dyson, Res Jost, and Arthur S. Wightman

The relation between physics - real physics — and mathematics - real mathematics -
has not been an easy one in the last thirty years. It took vision to see that this relation
is possible and fruitful now as it was in the times of Archimedes, Newton, and
Einstein. Res Jost in Zurich, Freeman Dyson and Arthur Wightman in Princeton had
that vision, and made many others share it.

0. Introduction

The time evolutions of relevance to physics often define nonlinear differentiable
dynamical systems of the form

~ = F ( x ) , (0.1)

where x varies in a vector space or manifold which may have infinite dimension.
Let the initial condition x0 for (0.1) be replaced by x0 + δx0 if the following limit
exists γ

μ(x0,δx0) = lim-log||<5xf||, (0.2)
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it is called a characteristic exponent1. The multiplicative ergodic theorem of
Oseledec2 asserts that μ(xo,δxo) is well defined for almost every x 0 (and all δx0)
with respect to any invariant probability measure ρ under time evolution. If ρ is
ergodic, the characteristic exponents are independent of x 0 ρ-almost everywhere.
The presence of a characteristic exponent χ > 0 indicates sensitive dependence on
initial condition.

We may call spectrum the set of characteristic exponents associated with an
ergodic measure ρ (with multiplicities to be defined later). In the case of a
Hamiltonian system, and taking for ρ an ergodic component of the Liouville
measure, one finds that the spectrum is invariant under change of sign. For a
dissipative system, the choice of invariant measure is not obvious, and there is no
invariance of the spectrum under sign change.

For certain classes of physical systems a large volume limit exists (for
equilibrium statistical mechanics this is the thermodynamic limit). We want to
investigate the possibility of defining a large volume limit for certain dynamical
systems. The idea is that, if several systems with independent dynamics occupy
disjoint regions Λv..., ΛN, the spectrum of the joint system is simply the union of
the spectra of the subsystems (repeated characteristic exponents appear with
added multiplicity). If an interaction between the subsystems is introduced, one
may hope that this does not alter the spectrum much and that, in the large volume
limit, a number of characteristic exponents per unit volume may be defined.

In our present state of knowledge, it seems difficult to prove the existence of a
large volume limit for the spectrum of nontrivial dynamical systems. If that could
be done, one would like to know, for instance, if the density of the spectrum is
finite or infinite at 0 (i.e. for infinite relaxation times). In the case of a hamiltonian
system of hard spheres, Sinai [32] has obtained a lower bound to the sum of the
positive characteristic exponents divided by the volume. In this paper we shall be
concerned with viscous fluids. We shall on one hand give rigorous upper bounds
on the spectrum, and on the other hand estimate the distribution of characteristic
exponents in an intermittent model of turbulence. Because of intermittence, taking
the large volume limit is more delicate than one might imagine, but a simple
answer is nevertheless obtained.

1. Characteristic Exponents for the Navier-Stokes Equation

Let Ω be a bounded domain in lRd (d = 2 or 3). We assume that the time evolution
of the velocity field \ = (vv...,vd)oϊei viscous fluid contained in Ω is given by the
Navier-Stokes equation

(5v d\

Σ ^ F (1.1)

1 We have written δx as an infinitesimal increment of x more properly δx should be considered as a
dxt

"tangent vector," so that δx = δx0dx0

2 See Oseledec [22], Raghunathan [23], Ruelle [29], and Mane [19]
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supplemented by the incompressibility condition

F v = 0. (1.2)

Tn (1.1), v is the kinematic viscosity, p the pressure and g an external force. One
takes (1.2) into account by projecting (1.1) on a space of divergence free vector
fields this has in particular the effect of eliminating the pressure term — Vp.
External action on the fluid is obtained either via g, or by imposing a nonzero
velocity at the boundary of Ω. We follow Foias and Temam [6] in assuming that
dΩ is of class C 2 consisting of a finite number of connected components, and that
Ω is locally on one side of dΩ. The external force g is assumed to be square
integrable in Ω, and time independent. The velocity φ imposed on the boundary is
tangent to dΩ, independent of ί, and is assumed to extend to a divergence free
vector field with square integrable second derivatives in Ω. We shall assume that a
probability measure ρ with compact support in a suitable space of divergence free
vector fields is given so that it is invariant under the time evolution given by (1.1)
and (1.2).

If d = 2, there are good existence and uniqueness theorems for solutions of the
Navίer-Stokes equation, but if d = 3, we have to assume that time evolution is well
defined in a neighborhood of the support of ρ 3. One can then write a linear
"variational equation" of the form

at

for the time evolution of an infinitesimal increment φ = <5v of v (more appropriate-
ly, φ is considered as a tangent vector).

Even though we won't go into the details of Navier-Stokes theory, we want to
describe more precisely the Hermitian part J^(\(t)) of the operator Jf"(v(ί))
appearing in (1.3). Let D be the closure of the space of real C°° functions with
compact support in Ω with respect to the Dirichlet norm

1/2

Then D is a Hubert space and DcL2 = L2(Ω,dx). We denote by DdcL2®Wid the
/ d \ l / 2

corresponding space of vector fields, with norm | |φ| | = ]Γ ||φ | | 2 , and by Q)
V/=i /

(respectively 5£) the subspace of Dd (respectively L2 (x)IRd) consisting of divergence-
free vector fields. We denote by P the orthogonal projection L2(χ)lRdι->^f. The
unbounded self-adjoint operator J f(v) will be the restriction to 3? of PH(\) where
the operator H(v) on L2(χ)IRd is defined at first formally by

, (1.4)

3 For a discussion of the Navier-Stokes equation, see the monographs of Ladyzhenskaya [11], Lions
[15], Temam [33], and Girault and Raviart [9]. A review is given in Foias and Temam [6], and a
discussion from the point of view relevant here in Ruelle [28]
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The v which will occur belong to the support of ρ and may be assumed to have
square integrable derivatives (up to second order) in Ω v(t) depends continuously
on t (in fact real analytically) with respect to the L2 topology of the derivatives,
and suppρ is compact for this topology4.

The symmetric quadratic form

(φ, x) -r-1 ψ{x)

on DxD satisfies

where

\β(φ,φ)\ύ
JXj L2

On the other hand, by Sobolev type properties5 there are continuous embeddings
DcU{Ω,dx) for each r<oo if d = 2, and DcL6{Ω,dx) if d = 3. Thus, given α>0,
there is b > 0 such that

\β{φ,φ)\ύa\\φ\\2

D (1.5)

If A denotes the Dirichlet Laplacian, (1.5) expresses that the operator of

multiplication by — ι- is form bounded with respect to A. Therefore H(\) and jή?(v)
dxj

have natural definitions as self-adjoint operators corresponding to quadratic
forms on D 3 and Θ respectively6.

The Cwikel-Lieb-Rosenbljum theorem (see below) will imply that the spectrum
of Jf(v) is discrete. We denote by α(1)(v)Ξ>α(2)(v)^ ... the eigenvalues of Jf(v)
repeated according to multiplicity. Since

α(1)(v) = {max(φ, j f (v)φ) = φe Θ and (φ, φ) = 1},

the above estimates imply that α(1)(v) depends continuously on v with respect to

the L 2 norm of—A Replacing j f by jfΛ π acting on the exterior power ifAn (see

dXj

below), one sees that

eigenvalues of
of ρ.

/c)(v) also depends continuously on v. Therefore the
1

depend continuously on t when υ(0) belongs to the support

4 See Foias and Temam [6] and Ruelle [28]
5 See for instance Reed and Simon [24, II, pp. 112 and 113]
6 This is a consequence of what Reed and Simon call the KLMN theorem (see Theorem X.I7 in
[24, IT])
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Let μ ( 1 ) (v o )^μ ( 2 ) (v o )^.. . be the characteristic exponents, repeated according
to multiplicity, and corresponding to the initial condition v0 (where defined). We
also write

(remember that if the invariant probability measure ρ is ergodic, μ{k) is ρ-almost
everywhere constant). The sum of the largest n characteristic exponents μ{k)(v0) can
be estimated from the rate of growth of an element φ(1)(ί)Λ ... Λφ(n)(ί) of the
(Hubert space) exterior power J^ Λ " (see Ruelle [29] or Mane [19]). We have

£μ ( f e ) (v 0 )^ lim|log||φ<1)(ί) Λ ... Λφ<">(t)|| (1.6)

with equality for suitable φ(1)(0), ...,φ("'(0) (in fact most choices of initial vectors).
Notice that

Λ ... Λ Λ ... Λ φ ( n )(ί))

φ ( 1 ) ( ί ) Λ ... Λ φ ( " } ( ί ) , φ ( 1 ) ( ί ) Λ ... Λ — φ ( / c ) ( ί) Λ ... Λ φ ( π ) ( ί )
_ y \ ^

(φ( x \t) A ... Λ φ(n\tl JT(v(ί))Λ V x } ( ί) Λ ... Λ φ(n\t))

^ Φ ( " ) Therefore

l o g | | φ ( ί ) Λ ... Λφ("»(t) | |^Σ«< '£ )Wί))
at j_

Choosing φ(1)(0), ...,φ(n)(0) so that equality holds in (1.6), we find

Σμ(fc)(v0)^lίm^μίΣ«<fc)Wί)).
1 τ^°° I 0 1

The ergodic theorem therefore yields

/*> X J < k > (1.7)

2. Rigorous Estimates

An upper bound to the a(k\\) is obtained if ^f(v) is replaced by H(y) (abandoning
the restriction to divergence free vector fields), and if the d x d matrix (^.(x)) with

l) 2\dXj dx,
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is replaced in (1.4) by the diagonal matrix (w<5fj.), where w is the largest eigenvalue
of (Wij). The operator obtained is of the form

acting on L(χ)IRd; its eigenvalues are the eigenvalues bil) of vzj + w (acting on L)
repeated d times. In view of results of Lieb, Thirring, Cwikel, and Rosenbljum we
have, for λ^O,

Σ (b"+λyίLydμx[w+ϊ/2 , (2.1)
V

where the universal constants Lyd are finite for y + d/2 > 1 (see Reed and Simon [24,
IV] for a discussion of the Cwikel-Lieb-Rosenbljum theorem and Lieb and
Thirring [14] for a conjecture of the best value of the Lγd). In particular

w

jdx-^. (2.2)

We also have

/ λ
£ 1^1 number of eigenvalues of — A ^ -

\ V

by the Weyl estimate, where C 2 = - — , C 3 = - — ^ (we have denoted by | β | the
4π 6π

volume of Ω). The Weyl estimate assumes λ-+ oo and Ω fixed (see Reed and Simon
[24, IV, Theorem XIII. 78]) but we shall apply it to the equivalent situation where
λ is fixed and Ω-* oo. (The sense in which one has to let Ω-> oo can be read from the
proof of Theorem XIII.78 in [24, IV]. For instance, dilations of a fixed shape are
allowed.) We have thus

+ d/2 Tl+d/2

CJfll-j^. (2.3)

We shall now take d = 3 (because we want to use L 0 3 < o o ) and assume that
1

15π2

1

L13<C3. It has been conjectured that L 1 3 = j by Lieb and Thirring, this

satisfies our assumption since C 3 = • 2 . ,

Given the integer n > 0 w e choose λ = λ(\9n) such that

λ = 0 if n^L\dJ ""* v 3/2

w == L o 3 J <ixvvv ' 3 ^ — otherwise.

(2.4)
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We have thus, using (1.7), (2.1), and (2.3),

Σ μ{k)(Q)S$Q(dv) Σ ^ ( v ) g f ρ(dv)3 £ *(I)

fc=l fc=l ϊ = l
5 / 2

293

^3$ρ(dy)

i5/2

The right hand side is negative provided

or provided

(2.5)

In view of (2.4) we have

r - 2 / 3
^ 0 3 V

n \ 2 l 3 ( d x

so that

- ( ! β{dy)w\
and therefore (2.5) holds provided

\2/5 j 2/5'

which can be rewritten

\2/5 -3/2
.5/2

3/5

< V 3/2 _
\Ω\

In conclusion, if AT is the smallest integer such that Σ μik\θ) < 0, we have

N
limsup-—- <3L

D-oo \Ω\ ~
0 3

ι-[LtY
-3/2

ι;5/2
3 / 5

(2.6)

2.1. Theorem. Lβί ρ be an invariant probability measure for the Navier-Stokes time
evolution in a bounded region ΩclR ,̂ d = 2 or 3, with regularity conditions stated in
Sect. ί. We denote by \Ω\ the d-volume of Ω. If d = 3 we assume that ρ has compact
support in a domain where time evolution is well defined. Let μ ( 1 ) (ρ)^μ ( 2 ) (ρ)^. . . be
the characteristic exponents defined in Sect. 1.

(a) For every y ^ l , the sum of powers of the positive characteristic exponents
satisfies

$ ρ(dv) $ dxε,(x (2.7)
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where

is the rate of energy dissipation per unit volume, and the Kyd are universal constants.
(b) Let d = 3 and assume L13<C3 (see above). If N(ρ) denotes the smallest

N(Q)

number such that Σ μ(/c)(ρ)<0, then

(2.8)

where K is a universal constant7.

The first part of (2.7) is just convexity of £->max{0, ty}. To proceed we denote
by n(v,α) [respectively m(v,α)] the number of characteristic exponents μ(k\\)
[respectively of eigenvalues α(fc)(v)] which are ^ α . Assuming first y > l , we have

00 00 00

Σ {μik\y))y = y$(xy~in(v, α) dot = 7 ( 7 - 1) j α y " 2 rfα j n(
k:μ(k)(v)^0 0 0 α

0 / c = l

Therefore, using (1.7), we obtain

fc=l

m ( v , α )

X (α(ίί)(v))7

/t:flW(v)^0

The resulting inequality is of course also true for y = 1. Using (2.2) we have thus

for all 7 ^ 1 , and (2.7) is obtained by using

2 1^/fy. 3

Using this same formula we obtain (2.8) from (2.6).

Γ U \2/5j-3/2

7 We may take K = 3LO 3 1 —I——I 2" 3 / 4 . The conjectures of Lieb and Thirring give
L \ C 3 / J

L 0 3 = 4 π " 2 3 " 3 / 2 and L 1 3 /C 3 = 2/5, hence X = 0.8185156...
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2.2. Corollary. The Kolmogorov-Sinaί (KS) invariant8 h(ρ) satisfies

h(ρ)S\Q(dv) Σ Λ )
fc:μW(v)^O

ύKldv~1/2-3d/4 J ρ{dγ) dx εy(x)ll2+dl4. (2.9)

The inequality between KS invariant and characteristic exponents is proved in
Ruelle [25] this proof is for finite dimension but the result extends to infinite
dimension (Mane, private communication). If h(ρ) > 0, the (turbulent) viscous fluid
acts as a source of information (random number generator)9, and (2.9) relates the
information production and the energy dissipation. In particular, if d = 2, the rate
of information production is bounded above by a multiple of the rate of energy
dissipation (the proportionality constant is K12v~2).

2.3. Corollary. Let d = 3, and A be a compact attracting set. This means that A is
invariant under time evolution and has an open neighborhood U such that if the
initial condition is in U the time evolution is defined for all positive times, and
asymptotic to A. Then, the Hausdorff dimension HD(A) satisfies

'* sup

This follows from Douady and Oesterle [4] and Ledrappier [12]. The
finiteness of HD(A) follows already from Mallet-Paret [16] or Mane [18] (see also
Foias and Temam [6]).

3. Classical Approximation Estimate of the Distribution
of Characteristic Exponents

The conjectures of Lieb and Thirring [14] mentioned in Sect. 2 consist, for part of
the cases, in replacing a quantum mechanical expression by a classical approxima-
tion (see Reed and Simon [24, IV, Sect. XIII. 15]). In this section, we directly

compute a classical approximation for the density — of eigenvalues of 34?(υ).
da

Applying Jρ(dv) will give an approximation of the density of characteristic
exponents. We derive the relevant formulae, but do not discuss their validity.

Let P(p) be the orthogonal projection on the vector peIRd, and Q(p) = identity
— P(p). We denote by A(x) the matrix with elements \ (dvjdx. + dvjdx^). If d = 2,
QA(x)Q has two eigenvalues: 0 and σι(x,p)= —(p,A(x)p)/(p,p). If d = 3, QA(x)Q
has three eigenvalues: 0 and σt(x, p) ̂  σ2(x, p). The classical approximation for the
density of eigenvalues of Jf (v) is

dn ί d~1

d

8 The Kolmogorov-Sinai invariant is also called entropy this entropy corresponds to time evolution
and is not related to the thermodynamic entropy of the fluid
9 For a nice discussion of this point see Shaw [30]
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In the case d = 2, we write

so that the eigenvalues of A(x) are ± σ(x), and

J

= — meas{#e[0,2π] :σ(x)cos2#-α>0}
2v

= -meas<θe[-f,f] :si

where

- f if ξ<-\

argsinξ if | ξ | ^ l

? if <?>!

Therefore

Finally

ίβ
where <...> denotes an average over σ = σ(x) corresponding to \Ω\~1$dx. If we
approximate the characteristic exponents μ{k) by the eigenvalues of jήf, (3.1) may be
interpreted as an estimate for the density of characteristic exponents. An average
over v corresponding to \ ρ(d\) has then to be understood. Notice that (3.1)
interpolates between (4πv)- 1 for α-> — oo and 0 for α—>GO; the interpolation is
symmetric around α = 0.

In the case d = 3 we have

2

ί ^ Σ δ

We have written

where w(θ,φ) = (sinθcosφ?sinθsinφ,cosθ) and
σ1(x,M), σ2(x,M) are the roots of the equation

= -|(l+sgnί). The eigenvalues
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By rotational invariance, ψ(A + a) depends only on the spectrum of A + a.
Furthermore, ψ(A + a) is homogeneous of degree \ in its argument, and decreasing.
Clearly

ί4π ]Aa\ for α—• — oo ,

[0 for α->oo.

We obtain thus

da (2π)3 v3'

v ~ 3 / 2 ( 2 π 2 ) ~ 1 | α | 1 / 2 f o r α - > - ° 0 ' (32)

0 for α-+oo. l }

Again we have used (. . .) in (3.2) to denote the average \Ω\~1 j Jx [and jρ(dv)]. To

obtain more information on —, it is thus necessary to study the statistics of A.

da
Some numerical information on the moments is known for the case of isotropic
turbulence10.

4. Distribution of Characteristic Exponents in an Intermittent Model
of Turbulence (d = 3)

The experimental study of developed turbulence shows that the velocity gradient
takes large values on only a small fraction of the domain Ω. We may write

dvλ 1/δι dυ}

~j " dxi) + 2\ftx^ + ~dχ.

Therefore the vorticity (= curl υ) and the dissipation I ε = - V —ι- -\ J~ are
\ 2itj\dxj dxj I

concentrated on a small fraction of physical J-dimensional volume. This is the
phenomenon of intermittency. It may be modelled by assuming that the fraction of
volume occupied by "eddies of size J,"11 per unit interval of log/, is given by a
function β of /. We suppose that Ω is large and that energy is fed into the fluid at a
wavelength L (large eddy size). Usually L is of the order of the diameter of Ω and
the volume of Ω is |Ώ|~L 3 . A small eddy size η will correspond to dissipation.
The following is then a natural choice for β:

Ul/Lf ΐorL^l^η (inertial range)

\θ otherwise

where α>0 denotes a (universal) constant.
Frisch et al. [7] following Novikov and Steward [21], Mandelbrot [17], and

ideas of Kraichnan [10] have obtained a dynamical model of turbulence along the
above lines. This "/?-modeΓ generalizes the Kolmogorov theory of turbulence to

10 See Betchov [1] and Siggia [31]. I am indebted to Eric Siggia for indicating these references to me
11 The concept of eddy has varied between that of a rather well defined localized object, to that of a
mere label in Fourier analysis. The former view is accepted here
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allow for intermittency. We now briefly paraphrase the ideas of Frisch, Sulem, and
Nelkin. Throughout what follows we take d — 3.

As in the Kolmogorov theory, the energy cascades from large to small lengths.
Let ε be the mean energy dissipation (or injection, or transfer) per unit time and
unit mass. One introduces a characteristic time τ(l) (turnover time for eddies of size
I) and a characteristic velocity v(l) (velocity variation over distance / in active
region). These are related by the following natural conditions

t>(0~//τ(/), (4.2)

ε~l(β) υ{l)2/τ(l) for l^η (4.3)

(where ~ denotes approximate proportionality). The fact that the same τ(Q occurs
in (4.2) and (4.3) is a crucial dynamical assumption. The dissipation is naturally
given by

so that η satisfies

τ{η)~η2/v. (4.4)

From (4.1), (4.2), (4.3), and (4.4) one obtains

(4.5)

We shall here identify the number dn of characteristic exponents in the range
(a,a + da) with the number of eigenvalues a{k)(\) of J f(v) in this range (see Sect. 1).
The classical approximation (see Reed and Simon [24, IV, Sect. XIII. 15]) gives:

dn ~ phase space volume of the set of points (x, p) such that

- vp2 + V(x)e(a, a + da),

where we have
(dvt d

I1-

in)"

2 + α

2

-ε 4 ~
2 + α

α ε 4 ~ α L
2α

Thus
d π f J 3 73 c, 2 , T ^ \ x r J 3 4 π p 2 ( α , x )

fV(x)-a\112

where /?(«, x) = I . Hence

— - | Ω | J j8(/)— v

where /(α) is determined by τ(l(a)) = a"1.
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In view of (4.1) and (4.5) we have

299

2α 3α

for τ^τ(L) so that, for a^

\Ω\-1 ^ ~ v - 3 / V / 2 f ((ατ)" ι -1)1/2 dβ
da

,v-3/2αl/2
3α

where

We may thus write

3(2 -α)
/ =

aτ(η)

Clearly, 7 = 0 for αΞϊ φ j ) " 1 . To estimate 7 for

(i) if α > 2/5, i.e. | ^ | < 1, 7 « const,

(ii) if α = 2/5, i.e.

1 we distinguish 3 cases:

(iii) ifα<2/5, i.e.

Therefore

3(2-α)
2(2 + α)

for

for

J{a)-
{aτ(η))2(2 + «ϊ for α>2/5

log(αφ))"1 for α = 2/5

constant for α < 2/5

In all these cases, the moments of the distribution of positive characteristic
exponents satisfy W1 §akdn~β(η)η~3τ(η)~k. In particular, the number of char-



300 D. Ruelle

acteristic exponents per unit volume is -—- ~β(η)η~3. This is the natural ex-

pression, reducing to η~3 for the Kolmogorov theory, i.e., for α = 0 (see Ruelle

[27]).
Experimentally, it seems that α~0.3 to 0.5 1 2 so that the value 2/5 is not

excluded, and any of the three cases discussed above could conceivably occur.

5. Some More Remarks

(a) In an isothermal fluid the dissipation εy(x) is proportional to the rate of
entropy production. Our inequalities in Sect. 2 thus imply bounds on the
information creation in terms of entropy production. Since entropy production
corresponds to loss of microscopic information, this result has some philosophical
appeal Notice however that a real information balance should involve
Boltzmann's constant.

(b) The "barber pole" turbulence which fascinated Feynman (Feynman et al.
[5, II, Sect. 41-6]) appears in the flow between two concentric rotating cylinders
and consists of an helical turbulent band alternating with a "laminar" region. A
given element of fluid in the laminar region may enter the turbulent band and
leave it again after some time. To interpret this situation one would like to define
spatially localized characteristic exponents. Such a notion would also be useful in
meteorology (see Leith [13]). Because of the global nature of characteristic
exponents, a formal definition of "local characteristic exponents" is not easy to
formalize. One can however see what happens physically: a disturbance δv of the
flow can grow only in a region where the "potential" w of Sect. 2 (this is essentially
the dissipation) is sufficiently large. The positive contributions to characteristic
exponents come therefore from regions with large dissipation: in other regions
turbulence may be damped to a "laminar motion."

(c) We expect the decay of an eddy of size / into smaller eddies to depend
sensitively on initial conditions. The characteristic time for decay should thus be
the same as the characteristic time for growth of a small perturbation. From this
follows that it is reasonable to use the same "turnover-time" τ(l) in Eqs. (4.2) and
(4.3) of the jS-model.

Note that an eigenstate ψ{k) of Jf (v) will contribute most to the decay of a
certain eddy of size / if the contribution of this eddy to the eigenvalue a{k\y) is near
the maximum [which is ~τ(ΐ)~ *] . In the quantum mechanical picture such a state
is near the ground state, has simple geometry, and will yield a decay into a small
number of eddies of size not much smaller than /. In the opposite direction, very
excited eigenstates, which correspond to decay of an eddy into a large number of
small eddies, are associated with small eigenvalues of jf(v) and therefore long
lifetimes, and small contributions to decay.

(d) If we take a jg 2/5 in the β-model, we find that the density of characteristic
exponents per unit volume diverges at a = 0. This density is therefore infinite for

12 See Monin and Yaglom [20, Vol. 2, Sect. 25] (our parameter a is usually called μ in the literature).
The value α « 0.5 ±0.2 is given by a recent numerical simulation of Brachet [2] (I am indebted to Uriel
Frisch for this reference). See also Chorin [3] : α^0.5
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a SO (because the function φ of Sect. 3 is decreasing), and there is an infinite
number of characteristic exponents ~0 per unit volume. If we consider this
situation unacceptable, we are forced to take α<2/5.

(e) In the discussions of this paper we have not made a specific choice of the
invariant measure ρ. It is in principle possible to find ρ on the basis of its assumed
stability under small stochastic perturbations (see Ruelle [26] and references
quoted there). In particular, this should permit the determination of the parameter
a in the β model (Sect. 4), but the idea seems difficult to implement13.
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