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Abstract. We give a general bosonic construction of oscillator-like unitary
irreducible representations (UIR) of non-compact groups whose coset spaces
with respect to their maximal compact subgroups are Hermitian symmetric.
With the exception of E 7 ( 7 ) , they include all the non-compact in variance groups
of extended supergravity theories in four dimensions. These representations
have the remarkable property that each UIR is uniquely determined by an
irreducible representation of the maximal compact subgroup. We study the
connection between our construction, the Hermitian symmetric spaces and the
Tits-Koecher construction of the Lie algebras of corresponding groups. We
then give the bosonic construction of the Lie algebra of EΊ{Ί) in SU(8), SO(8) and
U(7) bases and study its properties. Application of our method to E1{Ί) leads to
reducible unitary representations.

1. Introduction

Recently, Cremmer and Julia [1] have discovered a set of non-compact invariance
groups in the bosonic sectors of N = 5,6,8 extended supergravity theories in four
dimensions, thereby generalizing the non-compact invariance group of the N — 4
theory found by Cremmer, Ferrara and Scherk [2]. The vector field strengths in
these theories and their duals get transformed into each other under the action of the
non-compact group G and form a linear representation, whereas the scalar fields
transform non-linearly as the coset space G/H where H is the maximal compact
subgroup of G. The full invariance has the form G g l o b a l (x) H l o c a l as in the two-
dimensional generalized σ models [3].
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Julia and Cremmer conjectured that the composite gauge fields associated with
H l o c a l may become dynamical at the quantum level just as in the two-dimensional
CPN models [1]. Ellis, Gaillard Maiani and Zumino (EGMZ) have extended this
idea and postulated that in N = 8 supergravity in addition to the vector bound states
other bound states (fermionic as well as bosonic) form whose effective interactions at
low energies correspond to a spontaneously broken grand unified theory based on
SU(5) with three families of quarks and leptons [4,5]. Again in analogy with CPΉ

models [6] it was suggested that the bound states in extended supergravity theories
may fall into linear representations of Gg i o b a l [7]. Since the global invariance for
N = 4, 5, 6, 8 supergravity theories are all non-compact, their unitary repre-
sentations are infinite dimensional. In fact, an infinite set of bound states seems to be
needed for giving superheavy masses to the unwanted helicity states in the EGMZ
program [5] or the extensions thereof [8].

In a previous publication we have given a construction of a class of oscillator-like
unitary representations of some non-compact groups including those appearing in
extended supergravity theories [9]. Our purpose in this paper is to present an
extension of our method for constructing unitary irreducible representations (UIR)
and point out its connection to other mathematical structures; in particular to
Jordan triple systems [10] and Hermitian symmetric spaces [11]. The plan of the
paper is as follows: in Sect. 2 we give the bosonic construction of the Lie algebras of
Ref. [9] in a generalized form which allows one to construct larger classes of UIRs.
Specifically this section contains a construction of the Lie algebras of SP(2n, M\
SO(2n)*, SU(m,n) and SO(m,n) in terms of boson annihilation and creation
operators, some of which are well known in the literature [12,13]. We then present,
in a generalized form, the extension of the standard construction which yields only
the Lie algebras of the non-compact groups of supergravity. This extension uses
boson operators transforming exactly like the vector fields in the corresponding
supergravity theories. (The construction of EΊ{Ί) is deferred to Sect. 5.) In Sect. 3 we
point out that with the exception of SO(ra, n){mφ2 and n ψ 2) all the Lie algebras of
Sect. 2 decompose as L = L+ ®L° ®L~, where L° is the Lie algebra of the maximal
compact subgroup H that contains an Abelian U(l) factor, L+ and L~ space are
conjugate to each other and carry opposite U(l) charges. This decomposition shows
that the coset space G/H is a Hermitian symmetric space and the Lie algebra L can
be constructed from a so-called Hermitian Jordan triple system. This Jordan
structure is discussed and the Tits-Koecher construction of Lie algebras from
Jordan triple systems is given. In Sect. 4 we formulate our general method for
constructing UIRs for non-compact groups with a Jordan structure in the Fock
space of the corresponding boson operators. Section 5 contains the construction
of the Lie algebra of £ 7 ( 7 ) which does not have a Jordan structure with respect to
its maximal compact subgroup SU(8). Rewriting the Lie algebra of EΊΠ) in the
SO(8) basis we show its triality properties. We then give the U(7) basis of E 7 ( 7 ) and
indicate its connection to the Kantor construction of the Lie algebras of the E series
in terms of antisymmetric tensors of rank three [14,15]. This suggests a possible link
between their emergence in N = 8 extended supergravity theories in various
dimensions and the Kantor construction.

In the last section we show how applying our methods to the case of EΊ{1) leads to
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infinitely reducible unitary representations, which may still be of relevance to
supergravity [16]. We then mention a method due to Gell-Mann for constructing
UIRs of E 7 ( 7 ) on certain coset spaces of its maximal compact subgroup SU(8)
[17,18]. We conclude with the suggestion that in addition to the unitary
representations constructed by using boson operators transforming like the vector
fields one can construct further classes of unitary representations using boson
operators transforming like the scalar fields in supergravity theories via the operator
methods developed by Gursey and his collaborators [19].

2. Bosonic Construction of the Lie Algebras of a Class of Non-Compact Groups

In this section we give a bosonic construction of the Lie algebras of the non-compact
groups Sp(2n, U), SO(2n)*, SU(π,m) and SO(w,m) in a more general form than the
one considered in Ref. [9]. This generalization is trivial on the Lie algebra level in the
sense that it corresponds to taking direct sums, but as we shall see later, it leads to the
construction of a much larger class of UIRs by our methods. The Lie algebras
SP(2w,R), SO(2rc)*, SU(n,m) and SO(n,2) have a Jordan structure with respect to
their maximal compact subalgebra as explained in the next section. The non-
compact groups that come up in extended super-gravity theories in four dimensions
all have a Jordan structure with respect to their maximal compact subgroups. The
only exception is the non-compact group E 7 ( 7 ) of N = 8 supergravity [1] which does
not have a Jordan structure with respect to its maximal compact subgroup SU(8).
We treat the bosonic construction of EΊ{Ί} separately in a later section.

Consider N pairs of boson annihilation and creation operators a{{K\ b^K) and
a\{K\ b](K), where i = l,...,w denotes a U(n) index and K = 1,...,JV labels the
different pairs which can be infinitely many in certain cases of physical interest as is
shown in the Appendix. We shall denote the creation operators by upper indices;
thus at(Kf = aι(K), bt{Kf = b\K\ They obey the canonical commutation relations

i δiδKL

9 (2.1)

iai{K\aj{L)-]=O = lbi{K\bj{L)\

The U(ή) generators are then

J? = aM aII + bII bw, (2.2)

where the dot product represents a sum over the generation index K, i.e.,

aw a n Ξ £ am(K)an(K).
K=ί

The U(n) algebra can be extended to the Lie algebra of a non-compact group with a

maximal compact subgroup U(n):

a) U(ft)->SP(2n,[R):

The symmetric diboson operators

Sij=aί'bj + aj'hi; Sί / = ai b / + a j bί (2.3)
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together with the J™ obey the commutation relations

[S o , Skίl = δljή + δ]!) + δ)l\ + δ\Ik

j9

\-i:,Sijl=-δ?Snj-δ™Sin, (2.4)

[ C S i J ] = ̂ Sm j" + 5iS£m,

which corresponds to the Lie algebra of Sp(2rc, U) in a so-called split basis.

b) U(w)-+SO(2n)*:

The antisymmetric diboson operators

Aij = *i'bj-*ybi9 (2.5)

Ai / = aί b J ' - a / b ί,

and the I™ satisfy

[/;,i,]=- ,̂-^4, (2.6)

This is the Lie algebra of SO(2n)* with maximal compact subgroup U(«) in a split
basis.

Instead of considering the particular combination I™ one can also take the
operators

(2.7)

which generate the Lie algebra of S(U(w) x U(n)). These operators together with the
non-symmetrized diboson operators

Uij-ti+p (2.8)

give us the Lie algebra of SU(n, ή).
If the indices of the boson operators a and b run differently, i.e., for αί? i = 1,..., n

and bu,μ = 1,..., m, then the operators

: b v b μ <5 (̂b; b ), (2.9)
m

1 1 λ

n m m λ
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Together with the diboson operators

l/^=ίΐ' (2'10)

generate the Lie algebra of SU(m, n)

\_Pi.,Ukμ-\=δk

jU
iμ-ί-δi

jU
kμ, (2.11)

\P),P\\=δ)P\-δ\P),

ίK,uiλ-\ = -δ»λviv + -
m

\_Rμ:,υiλ] = δλ

vυ
iμ --δ»

m n

The following subset of the above operators

i(P)-P{)9 Wv-Rv

μ\ (Uiμ + Uiμ\

generate the SO (n,m) subalgebra of SU(n,ra). Of the non-compact groups
SO(π, m) only those for which n = 2 or m = 2 have a Jordan structure as explained in
the following section.

Now we repeat the above extension procedure by considering annihilation and
creation operators transforming like the antisymmetric tensor representation of
U(rc). This is of interest as one obtains exactly the Lie algebras of the non-compact
groups occurring as global symmetries in extended supergravity theories and
nothing else [9]. We now have

ίaij(K\akl{L)-]=δKL{δk

iδ
ι

j-δ\δ%

bkl(L)-] = δKL(δkδlj - δ\δ% (2.13)

j L)] = 0 = [b^Kl bkl(L)l

where

aij(K)=-aji(K); &y(K) = -bn{K)

i j . . . = l, . . . ,n X,L, . .= 1,...,N.

It is easy to see that the n = 2 and n = 3 cases revert to the standard construction in
the form discussed under a) and b) above. New algebras are found only for n = 4, 5,6,
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7,8 and the diboson operators that extend the U(n) generators aίfc a ; k •+- bjk-bίk to the
Lie algebra of a non-compact group all have the form

and

Λin-Λ"'in = pil
Λ ~ ε

Thus for n = 4 we have the dibosons

β - = ί β « w a υ bH, (2.14)

which, together with Q° = ϊ(a°' a u + b o biJ) representing the trace of U(4) generate
the SU(1,1) algebra

[β°,β+] = β + , (2.15)

[β°,β"]=-β-

With the remaining SU(4) generators T) = ain-»jn + bjn-bin - δ)Q° the resulting
extension is U(4)->SU(4) x SU(1,1).

For n = 5 one has the first simple Lie algebra of a non-compact group. Again we
split the U(5) generators into the trace

β = a υ a u + b u b
y , (2.16)

and the SU(5) part:

T) = ̂ -Άjk+bjk-bik-^δ)Q, (2.17)

and use the diboson operators

A i = ^ijklm*jk'\>lm, (2.18)

to arrive at the algebra of SU(5,1):

ip (2.19)

LQ,AJ=4Ai9

[Q,Al~]= -4Λ\

Under the action of the SU(5,1) group the boson operators ai}{K) and bίj(K)
transform into each other and form a 20-dimensional representation of SU(5,1).

Finally, we treat n = 6: there are 15 diboson operators ε07dmλJa
feί bm" and their

conjugates. With the 36 generators of U(6) one thus has a total of 66 operators,



Oscillator-Like Representations 165

suggesting SO(12)*. However, the algebra does not close, because unlike the U(5)
case, SO(12)* does not have a 30 dimensional representation corresponding to
α ι 7(K)Θ bίj(K). The simplest way to remedy the situation is to introduce two SU(6)
singlet boson operators v(K) and W(K) in order to build up the 32 dimensional semi-
spinor of SO(12)*. Indeed this 32 dimensional representation of SO(12)* decom-
poses a s l ® 1 5 ® 1 5 © l with respect to SU(6). The correct diboson generators now
are

Aίj = ±εijklmnakl-bmn + - ί = ( a i j v* + bij w1), (2.20)

whereas the SU(6) and U(l) generators are given by

T) =

Q = amπ amn + bm, bm" - όv^v - 6w wf. (2.21)

They satisfy the commutation relations of SO(12)*

[_Aij9 A
kl] = \{δk Tlj + δlj Ί\ - δ\ T) - δ) T\)

lQ,Aij']=-4Aij9 (2.22)

IT), Akl^\ = δkAίl + δljAki - \δ)Ak\

[β, Aij~\ = 4Aij.

From the basis we have chosen for the Lie algebras above, it may not be obvious
what non-compact form of the respective groups we are dealing with. Since we are
interested in constructing unitary representations we assume implicitly that we are
working in a Hermitian basis, i.e., all the generators of our group are Hermitian
operators. In the above bases this is not the case. Therefore, we must take suitable
linear combinations of the operators above to go to the Hermitian basis in which all
the generators Ht of the group are Hermitian and the structure constants/ίj7c defined
by [H;, Hj] = ίfijkHk are all pure real. Then the operator \]{g) = exp (iH^1)
representing a general group element is unitary (wι are real group parameters). It is in
this basis that we calculate the Killing metric so as to determine the form of non-
compactness.

3. Lie Algebras with a Jordan Structure and Hermitian Symmetric Spaces

We define a simple Lie algebra with a Jordan structure as a Lie algebra L that has a
three-dimensional graded form, i.e.,

L = L~®L°®L+, (3.1)

where L° contains the generator Q of an Abelian U(l) factor such that L° =H ®Q
and [β,H] = 0, [L+,L+] = 0, [ β , L ± ] = + L ± . In addition we have a conjugation1
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such that (L+)τ ^ ί Γ , L o t s L°. Because of the grading and simplicity of the algebra
we have [ L ° , L + ] ^ L + , [ L 0 , L - ] ^ L - , [ L + , L - ) ^ L ° .

All simple Lie algebras L with a Jordan structure can be related to the so-called
Jordan triple systems by the following simple method [20,21]. Denote the elements
of L that lie in the L+ subspace by Ua and the elements of the L~ space by I/*, where a
belongs to some vector space V. Further denote the commutator of Ua and U\ as Sab

a b a l (3.2)

Because of the grading [I7β, [/J = 0 = [t/J, l/J]. Through the commutator of Sab

with L/c one defines a triple product (abc) in the vector space V:

[ S β b , t / J = t7 ( f l f tc). (3.3)

Then all the commutation relations can be expressed in terms of the triple product

(abc) by using the Jacobi identities.

Jacobi identities impose two conditions on the triple product:

(abc) = (cba\ (3.5a)

(ab(cdx)) - (cd(abx)) - (a(dcb)x) + ((cda)bx) = 0. (3.5b)

These conditions define a Jordan triple system [10]. Therefore, given any Jordan
triple system one can construct a Lie algebra with a Jordan structure as above. This
construction of a Lie algebra with a Jordan structure is known as the Tits-Koecher
construction [20,21]. It has also been extended to Lie superalgebras with a Jordan
structure [22,23].

A Jordan algebra with a symmetric product a b =\(ab + ba) defines a Jordan
triple system with the triple product

(abc) = a (b c) - b-(a c) + (α fe) c (3.6)

that satisfies the conditions (3.5a) and (3.5b).
Below we list the Lie algebras L and their respective subalgebras L° that can be

constructed from various Jordan algebras using the Jordan triple product (3.6).

Jordan Algebra

n
Γ(d)

L°

U(n)

SU(n) x SU(«) x U(l)

U(2«)

£ 6 x U(l)

SO(cί + 1) x SO(2)

L

Sp(2«)

SU(2n)

SO(4n)

Ei

SO(d + 3)

where jj8, jf, J^ denote the Jordan algebras of n x n real symmetric, complex
Hermitian and quaternionic Hermitian matrices respectively. Here Jl is the
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exceptional Jordan algebra of 3 x 3 Hermitian octonionic matrices. Γ(d) denotes the
Jordan algebra of y matrices in d dimensions

yμΊv = i{yμ, yv} = δμv! μ,v = l,... d.

Rectangular n x m matrices over the real numbers (R, complex numbers C and
quaternions H define a Jordan triple system under the triple product [22]

{abc)=abτc + cbτa, (3.7)

where the bar denotes conjugation over the underlying division algebra M, C or H
and T is transposition. The corresponding Lie algebras L and L° are

Jordan Triple
System

κl
K€ SU(π)

xU(l)

S

L°

SU(n) x SU(m) x U(l)

x SU(n) x SU(m) x SU(m)

lU(2π) x SU(2m) x U(l)

SO(10) x SO(2)

L

SU(B-

S U ( π
xSU(w

SU(2π -

E,

f m)

+ m)
+ m)

Vim)

where K^ € 'H refers to the Jordan triple system o f π x m matrices over U, C and H.
In the case of (2 x 1) octonionic matrices K^ the triple product is modified to be
(abc) = {{abτ)c + (bάτ)c — b(άτc)} + {a<r+c} due to the non-associativity of
octonions.

In the above we have denoted all the Lie algebras L° and L with the compact
form of the corresponding groups. In general they will be Lie algebras of the non-
compact form depending on the underlying Jordan triple system. All simple Lie
algebras with a Jordan structure can be constructed from a suitable triple system
[24].

Now if we denote the groups corresponding to the Lie algebras L and L° as G
and H, then the coset space G/H is a Hermitian symmetric space. Hermitian
symmetric spaces are all Kahlerian and they can in general be represented in the
form of a tensor product [25].

M o x Mγ x M 2 x Mr,

where M o is the quotient of a complex Euclidean space by a discrete group of pure
translations and each Mt(i > 0) is one of the following Riemannian symmetric
spaces:

SU(p + q)/S(U(p) x υ(q)\ SO(2n)/U(π),

SO(n + 2)/SO(n) x SO(2), E6/SO(10) x SO(2),

Sp(2n)/U(π), EΊ/E6 x U(l).

From this classification it follows that all simple Lie algebras have a Jordan
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structure with respect to some suitable subalgebra except for the Lie algebras of G2,
F 4 and E 8 . For the detailed study of the connection between symmetric spaces and
Jordan triple systems we refer the reader to Refs. [11] and [26].

All the Lie algebras of the non-compact groups [except for SO(m, n), where both
m and n are different from 2] considered in the previous section have a Jordan
structure with respect to the Lie algebra of their maximal compact subgroups. Of the
remaining Lie algebras of the non-compact groups with a Jordan structure with
respectto their maximal compact subgroup, the Lie algebras of £ 6 ( _ 1 4 ) and EΊ{_25)

can be similarly constructed from boson operators. In the next section we give a
general method for constructing certain classes of UIRs of non-compact groups with
a Jordan structure with respect to their maximal compact subgroup.

4. Oscillator-Like Unitary Irreducible Representations of Non-Compact Groups with
a Jordan Structure

The Lie algebras of the non-compact groups constructed above have a Jordan
structure with respect to the Lie algebra of their maximal compact subgroup:

; (L+f^L-, (L°f ̂  L°,

where the L~ and L+ subspaces correspond to the non-compact generators
constructed in terms of diboson annihilation and creation operators. In Ref. [9], we
have given a construction of a certain class of UIRs of non-compact groups with a
Jordan structure in the case when L~ (and L+) generators were constructed in terms
of diboson annihilation (and creation) operators only. Here we give the same
construction in a more general form when we have an arbitrary number of pairs of
boson operators a(K\ b(K\ k = 1,2,..., N instead of a single pair as was done in Ref.
[9]. On the Lie algebra level this extension is trivial in the sense that it gives us a
direct sum of N copies of the same Lie algebra. However, this simple extension
enables us to construct larger classes of UIRs of the respective groups [27].

Consider now the Fock space constructed from the tensor product of Fock
spaces of individual boson operators. The vacuum |0> in our Fock space will be a
tensor product of the individual vacua |0)

. . | 0 ) . (4.1)

It is annihilated by all the annihilation operators.

al{K)\0y=0 = bi(K)\0y9 K = 1,...,ΛΓ. (4.2)

Choose a set of states | φA > in our Fock space which is annihilated by all the diboson
operators in the L~ space and transform as a certain representation of the maximal
compact subgroup generated by L°:

L~\ψΛy = 0. (4.3)

Then the infinite number of states generated by applying the operators L+ on | φA >
form the basis of a unitary representation of the non-compact group G:

\ψΛ>, L + \ ψ A ) , ( L + ) 2 \ ψ A ) , . . . . (4.4)

Now if \φA} are chosen such that they transform like an irreducible repre-
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sentation of the maximal compact subgroup generated by L°, then the correspond-
ing representation of the non-compact group is also irreducible. The proof of this
theorem, which was given in Ref. [9], is very simple and uses the Jordan structure of
the non-compact group in a crucial manner.

With the exception of the second construction of SO(12)* [see Eq. (2.20)] the LΓ
spaces of all the Lie algebras constructed in Sect. 2 involve diboson annihilation
operators only. The states in our Fock space that are annihilated by L~ involving
diboson annihilation operators only, are a linear combination of the states of the
form

\0}, (4.5)

and of the form

lbί(i)γί[_bj(2)γ\...ibk(N)TN\oy. (4.6)

These states transform in general like a reducible representation of the maximal
compact subgroup H. However, using suitable projection operators one can project
out the irreducible components. The possible irreducible representations of H that
can be constructed this way depends on the number N pairs of boson operators a
and b. For example in the case when a{K) and b(K), (K = 1,...,N) transform like the
fundamental representation of SU(rc), then the irreducible representations of SU(w)
that one can obtain by this method have Young tableaux with at most N rows. This
is simply due to the fact that the largest totally antisymmetric representation of
SU(n) that one can construct from N copies of boson operators is of rank N. Of
course, if N ^ n any representation of SU(τt) can be constructed by repeated
application of the creation operators followed by a projection operator. In Young
tableaux notation we have

\0>*>(mK,0A...)JJ = l,2,...n (4.7a)

la\K)TK laj(QTL 10> M™κ + mL, 0,0..) + (mKi mL, 0,...), (4.7b)

[V( '°>
=>(ml9 0,...) ®(m2,...) <x)... ®(mjv,0,0,..), (4.7c)

where {m1,m2,..., mn) denotes a representation with a Young tableau which has mι

number of boxes in the /th row. The maximal compact subgroups in our case have a
U(l) factor whose generator in most cases corresponds to the boson number
operator. Each one of the states constructed above has a definite U(l) charge.

The remarkable feature of the unitary representations above is that they are
uniquely determined by the initial state | ψA > that is annihilated by the L~ space and
the irreducibility of the representation follows directly from the irreducibility of
\ψA} under the maximal compact subgroup H. This is a general property of the
representations belonging to the discrete series [28]. Furthermore the condition
L~\φAy could be interpreted as an holomorphicity condition and thus we would
expect the above representations to belong to the holomorphic discrete series [29].

We should note that the use of boson operators for constructing UIRs of non-
compact groups is certainly not new in physics. They have been used from time to
time to construct representations of certain non-compact groups of physical
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interest, using most often one set of boson operators which leads to only two UIRs
[see Ref. [12] for a comprehensive list of references]. What our formulation does is
to give a unified treatment of the oscillator-like representations of all non-compact
groups with a Jordan structure in the most general form. The irreducibility of the
resulting representations that was proven in individual cases by the brute force
method of calculating all the Casimir operators follows simply from condition (4.3)
and the Jordan structure [9]. Furthermore, the use of an arbitrary number of pairs of
boson operators enables us to construct infinite classes of UIRs.

5. Bosonic Construction of the Lie Algebra of Non-Compact Group EΊ{Ί)

The Lie algebra of E 7 ( 7 ) with a maximal compact subgroup SU(8) was constructed
in Ref. [9] in terms of a pair of boson annihilation and creation operators
transforming like the antisymmetric tensor representations of SU(8). Here we give
the same construction using an arbitrary number N pairs of boson operators. They
satisfy the commutation relations:

, flu(L)] = 0 = lbi}{K), bkl(L)l (5.1)

i , j , k , l . . . = 1 , 2 , . . . 8 ; K , L , . . . = l , . . . , N ,

a n d

ai](K)=-aJl(K); blJ(K)= -bμ(K).

The SU(8) generators are taken as

T) = a™ a,m + b,m-bim -|-5}(a<" a w + b w bw), (5.2)

where the dot product again denotes summation over the generation index
K = 1,...,N. They satisfy the commutation relations

[Ti

pT\-\=δ)T\-δ\T). (5.3)

Now the 133 dimensional adjoint representation of EΊ decomposes under the
SU(8) subgroup as

133 = 63 070,

where 61 stands for the adjoint representation of SU(8) and 70 corresponds to the
totally antisymmetric rank four tensor representation. This suggests that as the 70
non-compact generators of E 7 ( 7 ) we take

Vijkl = *w'bm + kzijkimnPq*
mn'*>pq, (5-4)

where indices inside brackets [ ] are all antisymmetrized. The operator Vijkl is
totally antisymmetric in its indices and satisfies

l/f ijklmnpq y _ yijkl /C ς.\
v ijkl 4 | f c Vmnpq—V ? \ J J)

which reflects the fact that the representation 70 of SU(8) is self-conjugate. The
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operators Vijkl do indeed close into the generators of SU(8):
ΓT/ Ί/abcd-] .1 ηrm oabcdnpqr
Lvijkl>y J — 6bijklmpqr l n b s

CT?, Vijkl-] = isίjklnpqr V™™ - \b™ Vijkh (5.6)

[ T m yijkl^ = _ l8ijk

That the resulting Lie algebra is that of EΊ follows from the fact that it is the only
simple Lie algebra of dimension 133. T o determine whether it is the Lie algebra of
non-compact E 7 ( 7 ) with the maximal compact subgroup SU(8) one has to look at the
Killing form. The Killing metric turns out to be

10025)51

ιmnpq, (5.7)

showing that in a Hermitian basis it gives us the Lie algebra of E 7 ( 7 ) .
The Killing metric determines the quadratic Casimir operator C 2 up to an over-

all constant. For E 7 ( 7 ) we choose this constant such that

(5.8)

This construction of E 7 ( 7 ) from boson operators corresponds to an operator
formulation of a realization of E 7 in a 56 dimensional space by H. Freudenthal [30].
Remarkably enough the Casimir operator C2 is exactly the quartic symplectic
invariant on the 56 dimensional fundamental representation space given by
Freudenthal. In our case the operators atj (fe^ ) and bίj(aίj) get transformed into each
other under the action of E 7 ( 7 ) and form the 56 dimensional fundamental
representation.

The non-compact group E 7 ( 7 ) is the global invariance group of the bosonic
sector of the largest possible supergravity theory (N = 8) in four dimensions. The
natural SO(8) symmetry of N = 8 supergravity first gets extended to a global SU(8)
symmetry via a chiral-dual transformation, i.e., it acts on the spinor fields of the
theory as chiral transformations and on the spin one fields as duality rotations which
transform the electric and magnetic field strengths into each other [1] . Then this
compact SU(8) symmetry is enlarged to the non-compact £ 7 ( 7 ) which is realized
non-linearly over the 70 scalar fields of the theory corresponding to the coset space
E 7 ( 7 ) /SU(8) [1] . Thus, it would be interesting to rewrite E 7 ( 7 ) Lie algebra in an
SO(8) basis. Doing this turns out to be the same as going to the Hermitan basis:

Consider the following Hermitian linear combinations of E 7 ( 7 ) generators:

C1 T/ _j_ Ί/ίjkl . Of O / ^ Q\
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Note that since we are working in an SO(8) basis we are not making any distinction
between upper and lower indices. These operators satisfy the commutation
relations:

Γ/j A Ί — Lip pnμvρ _ p \A
\~sxijkl'>rxaβyδΛ 6\oίjklmμvpc'aβγδ ^ijklmμvp^aβγδnμvp^^-mn

Γ A C "1 _ i o C _ l c C
\- mm uijklΛ 6oίjklnμvpumμvp 6 ijklmμvpL)nμvp'>

L^mn? ^ijkli ~ ~6εijklnμvp^mμvp ~^~ ~6είjklmμvp^nμvp ~~ ̂ mn^ijkU (5.ID)

Γ/J A ~\ — _ LP A _i_ l c A
L^mrv ^ίjklJ ~ β^ijklnμvp^mμvp ' β^ijklmμvp^nμvp?

ΓC C "I _ _ (λP P¥Vp I i n p \A
L°ijkl> °aβyδ-l ~~ \6t'ίjklmμvpbaβyδ * 6bijklmμvpbaβyδnμvp)Si-mni

ΓC A 1 — ^ _ i p Pnμyp\kp p \ C
L°ijkh ^aβyδJ V 6cijklmμxρcaβyδ ~ 6cίjklmμvpc'aβγδnμvρJ'Dnm>

t j , ίC, . . . , c x , p , . . . — i , . . . , o , ε f j W — 2 4 t,ijklμvp λb

The number of independent T4IJ7C/ is 35 and so is the number of independent Sijkl.
8

Since ^ ^ ^ ^ O , there are also 35 independent Smn. Therefore, under the SO(8)
n = l

subgroup generated by Λmn the adjoint representation of EΊ decomposes as

which corresponds to the decomposition of the generators as

m = Amn®Smn®AίJkl®Sίjkl. (5.12)

These three 35 dimensional representations of SO(8) are all inequivalent and are
related by the principle of triality [31] which generalizes the well-known triality
among the three 8 dimensional representations 8F, 8L and 8 R of SO (8), namely the
vectors 8F, left-handed spinors 8L and right-handed spinors 8 R, respectively [32]. In
fact the exceptional group F 4 has the same structure with respect to its SO (8)
subgroup, i.e., its adjoint representation 52 decomposes as

0 8 R . (5.13)

From the following Kronecker products

8 * 0 8 ? = ! + 2 8 + 35*, i = V,L,R,

£ f 08* = 1 + 2 8 + 35*, (5.14)

ij, k = V,L,R taken in cyclic order.

it follows that the representations 35F, 35L and 35 R correspond to symmetric
traceless tensors in vector, left-handed spinor and right-handed spinor indices in
eight dimensions, respectively. The triality principle also implies that

35k + ..., (5.15)

Uj, k = F, L, R in cyclic order.
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A unitary operator representing an element of the group E 7 ( 7 ) can now be written

as

JJ(n\ — βiiwijAij + v*Jsιj + WijkiAijki + vιjkιSijkι)

UHg)U(g) = l, (5.16)

where wij9 υij9 wijkl and ι?yw are real parameters with the same tensorial properties
as the respective operators, i.e.,

wtj = - wji Vij = Vji and vu = 0,

Vijkl = ^ijfci Ξ ~2ΛείjklmnpqVmnpq

Now if we define the boson number operator as N = am" aWII + bm"*bmM we find that
the SU(8) generators have zero boson number

[ N , T - ] = 0 , (5.18)

and the non-compact generators Vijkl do not have a well-defined boson number
since they involve disoson creation as well as annihilation operators. This is a
reflection of the exceptional feature of E 7 ( 7 ), whose adjoint representation decom-
poses as the adjoint plus a real irreducible representation with respect to a maximal
compact unitary subgroup. [The only other group with this property is SO(6,1).]
The operator N which lies outside of E 7 ( 7 ) does however still generate an
automorphism of its Lie algebra.

A maximal rank compact subgroup with respect to which the additional
generators in E 7 ( 7 ) split into complex representations is U(7). If we take as the SU(7)
generators Tβ, where A,B = 19...,7 and as the U(l) generator Tg = — T\9 then
under this U(7) the Lie algebra of E 7 ( 7 ) decomposes as

Vijki = VABCD ® VABCS = 35 0 35, (5.19)

i j , fc,/=l,. .8; A,B9C9D = 19..Ί.

Denoting the generators VABC8 as AABC and VΛBC8 as AABC we can write the E 7 ( 7 ) Lie

algebra in the U(7) basis as a direct sum

L = FA®AABC®{Ti®Tl)®AABC®FA, (5.20)

L = L~2 φ Γ 1 ®L° ®L+1 ®L+2,

where FA stands for TA and FΛ for TA. We see that with respect to the U(l) generator
Tg the Lie algebra has a five dimensional graded structure. This is a more general
structure than the Jordan structure and all simple Lie algebras have a five
dimensional graded structure with respect to a suitable maximal subalgebra. We
shall call this type of a five dimensional graded structure a Kantor structure [14].
The construction of Lie (super) algebras from Jordan (super) triple systems has been
extended to this more general case [14,22]. The ternary algebra that gives us the Lie
algebra of E7 in a U(7) basis in this more general construction corresponds to
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antisymmetric tensors of rank three in seven dimensions [14]. In fact, Kantor's
construction yields the Lie algebra of the exceptional group Ed when the underlying
ternary algebra is the antisymmetric tensors of rank three in d dimensions with a
suitable triple product [15]. This construction gives finite dimensional Lie algebras
Ed for d ^ 8 and leads to infinite dimensional Lie algebras [14] for d > 8. Now
the N = 8 extended supergravity theory in d dimensions has non-compact Ed(d) as its
global invariance group [33], and all these theories are obtained from the 11
dimensional simple supergravity theory by dimensional reduction. The fundamen-
tal boson field that enters this latter theory is an antisymmetric tensor of rank three.
Thus the Kantor construction of E series suggests a possible link between the
emergence of these groups and the presence of antisymmetric rank three tensor fields
in N = 8 supergravity theories.

6. Unitary Representations of EΊ{1)

If we apply the methods of Sect. 4 to E 7 ( 7 ) for the construction of unitary
representations we find that the resulting representations are reducible. This can be
seen easily as follows. Consider a set of states | ψA ) transforming as an irreducible
representation of the maximal compact subgroup SU(8) that is constructed by
acting on the vacuum state with the creation operators a u and bij. By repeated
application of the non-compact generators ViJkl on | φA ) we can generate an infinite
set of states:

\ΨΛ>, viJkl\ψΛ>, vmvmnpq\ψAy,... (6.i)
which form the basis of a unitary representation of E 7 ( 7 ) . The Vijkl transform as the
self-conjugate representation 70 of SU(8) and the product

vijklvmnpq = Hvijkh vmnpq} + ±[vijkh vmnpq\

transforms as the reducible (1 -h 720 -h 1764)sym + 63a n t i s y m representation of SU(8).
The fact that the product contains a singlet of SU(8) means that every irreducible
representation of SU(8) that occurs in the infinite set of states (6.1) will reappear
again after two applications of the Vs. Thus the multiplicity of an irreducible
representation of SU(8) that occurs in the unitary representation defined over the set
of states (6.1) is infinite. This means that the resulting unitary representation is
infinitely reducible as a consequence of the well-known fact that the multiplicity of
an irreducible representation of the maximal compact subgroup inside an UIR of a
non-compact group is less than or equal to its dimension [34]. Though reducible,
these representations may still be of relevance for physical applications [5,16].

Application of our method to the second construction of SO(12)* [see
Eqs. (2.20)-(2.22)] gives reducible unitary representations as well. In this case even
though we have a Jordan structure there are no states transforming like an
irreducible representation of U(6) that is annihilated by the L~ space.

The fact that one gets infinitely reducible unitary representations in the case of
SO(12)* and E 7 ( 7 ) suggests the use of coherent states to construct UIRs of these
groups. In fact there is a method due to Gell-Mann for constructing a class of UIRs
of some non-compact groups on certain coset spaces of their maximal compact
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subgroup [17, 18]. His method does apply to £ 7 ( 7 ) and is particularly simple for
determining the multiplicities of the irreducible representations of the maximal
compact subgroup inside a UIR of the non-compact group. For example, one
possible coset space on which to realize UIRs of EΊ{Ί) is SU(8)/Sp(8). In this case the
multiplicity of an irreducible representation of SU(8) in an UIR of E 7 ( 7 ) constructed
by his method is determined by the number of Sp(8) singlets that representation
contains [17]. The reason why Gell-Mann's method cannot be applied to our
construction of E 7 ( 7 ) is due to the fact that the boson operators we use transform
linearly under the SU(8) subgroup rather than non-linearly as some coset space of
SU(8) satisfying certain criteria [18]. On the other hand our construction of the non-
compact groups of supergravity parallels very closely their emergence in super-
gravity and the boson operators we use correspond to the vector fields in these
theories. The reducibility of some of the resulting representations seems to be
necessary for the compatibility of supersymmetry with the non-compact in variance
in N = 4 — 8 supergravity theories [16, 35].

The only basic bosonic fields that transform non-linearly in supergravity
theories are the scalar fields which sit on the coset space G/H of the non-compact
group G with respect to its maximal compact subgroup. The action of G on the
scalar fields can be represented as a generalized linear fractional transformation [1]
indicating that the scalars can be considered as a Gelfand-Z-basis of G [36]. Gursey
and his collaborators have given an operator formulation of the construction of
UIRs in a Z-basis a la Gelfand in the case of some smaller non-compact groups [19].
By these operator techniques one can construct new classes of unitary repre-
sentations of these groups using operators corresponding to the scalar fields in
supergravity theories, which may be of relevance as well for physical applications.

Note Added

We would like to thank the referee for bringing to our attention two related works
on the unitary representations of non-compact groups, namely

1) M. Kashiwara and M. Vergne, "On the Segal-Shale-Weil Representations and
Harmonic Polynomials," Inventiones Math. 44 (1978) 1-47.

2) R. Howe, "Classical Invariant Theory," and "Transcending Classical Invariant
Theory," Yale University Preprints, unpublished.

Of particular relevance in the work of Kashiwara and Vergne is the construction
of a series of new unitary irreducible representations with highest weight vectors of
the group U(p,q) and the metaplectic group Mp(n), which is the two-sheeted
covering group of the symplectίc group, by decomposing tensor products of
harmonic representations into irreducible components. For the non-compact
groups of supergravity their method corresponds to the construction of unitary
irreducible representations in terms of scalar fields as suggested in the last paragraph
of Sect. 6 above. R. Howe's papers which deal mainly with invariant theory stress in
particular the analogy, noticed by previous authors, between Clifford algebras and
the spin representations on the one hand and the Weyl algebra and the oscillator
representation on the other.
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Appendix—Current Algebra of Diboson Fields

As an illustration of how our boson operators can be related to a field theory
context, we construct a current algebra of free boson fields. We will also see in this
example that the so-far unspecified vectorial character of our operators ax acquires a
specific meaning: the components of the vector represent various Fourier modes
αz(k). Another point of interest is that the construction involves a bosonic version of
the Pauli-Gursey (PG) transformation [37].

We first start with a set of boson fields φt transforming (for simplicity) as an
irreducible representation of a global symmetry group H. The bosons can be scalars
or vectors, but in the latter case the study of the algebra is simpler if they are taken to
be massive, so that gauge related quantization problems are avoided. The
generators of H can be then immediately written down as integrated charges
obtained from the standard currents, which are always of the form φ]dμψj.

Next, we extend H by PG-like transformations which mix φi and φ\. This gives
rise to new currents of the form φidμψj and φ\dμφ^. The original PG of course
applies to fermions φ and leaves the free massless Lagrangian and even certain gauge
couplings invariant (up to a total divergence). The new difermions §dvψ\j/ and
\dυ\jβ\l/\ together with the usual ^dυxjβφ charges, can sometimes close into a new
algebra of a compact group. In contrast our bosonic version of PG and the resulting
diboson generators only leave the equaltime free boson field commutators invariant
and can lead to both compact and non-compact groups.

The main features of the construction can be understood with the example of a
single complex scalar field. The diboson charges are most conveniently written by
defining the two-component field ψτ = {ψί,ψ2)

 w i t n [38]

fmf i
m ,

(A.I)

so that the similarity to fermions becomes more evident. The equal-time com-
mutation relations between φ and qj* now translate into (other combinations vanish)

Iψjix, 0), φ , 0)] = (t3)xβδ
3(x - y), (A.2)

indeed displaying a similarity to harmonic oscillator operators or spinor field
anticommutation relations: there is no (i) on the right-hand side and the fields ψ and
ψ* appear on the left-hand side, instead of the less symmetrical φ, φ^ pair. The τ 3

signature on the right-hand side originates from the fact that Ψι{ψ2)
 a c * s hke an

annihilation (creation) operator; for example, for the E2 = m2 modes φ1 ~ ak and
ψ2 ~ ak I*1 t m s formalism the U(l) charge operator is

(A3)
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As mentioned before, massive spin one is no problem: we just let φ -^>Ab,φ-*Eb>
ψ -> φb(b = 1,2,3) and sum over the space index binQ3. The resulting Q3 is, of course,
nothing but the usual \dυ(AξEh -f EξAh). Thus it is not surprising that similar but
more complicated non-compact symmetries hold for vector bosons in extended
supergravity. Since the vector index can be trivially added, we go on with our simple
scalar example.

In the φ basis one can introduce a bosonic version of the Pauli-Gϋrsey
transformation of the form

ψiβ9 (A.4)

where a, b are in general complex and Maβ is a 2 x 2 matrix. This does not leave the
Lagrangian invariant, but it is canonical in the sense of preserving the field
commutators when M satisfies [39]

(τ3)./> = \a\2(H)aβ - \b\2Maμ{τ3)μMβ (A.5)

This gives rise to two possibilities and conditions:

a) M = / o r τ 3 ; | α | 2 - | b | 2 = l,

b) M = τ1ovτ2; | α | 2 + |fc|2 = 1. (A.6)

Conditions (a) and (b) suggest the groups SU(1,1) and SU(2) respectively. Indeed,
taking M = 1, applying Eq. (5) on Eq. (3), and then picking from the results the
diboson SU(1,1) generators

(A.7)

this expectation for (a) is verified. Of course ak(ac

k) represent particle (antiparticle)
destruction operators. The exponential time dependence can be absorbed into the
operators through ak^ake~iwt, hence it will not be written down again. Note that
M — τ3 duplicates the algebra and M = τx gives charges such as §dvφφ or jdυφφ
with different Lorentz transformation properties; we consider them no further.
Here M = τ2 gives vanishing charges on account of Bose statistic, but when fields φt

representing a U{n) group are considered, n(n — 1) combinations of the type
ψjiτ2ψh φkτ2ψ

ι become possible, extending the U(n) to compact SO(2n). These have
the form

Λ M ί/ A. i- _—.

The Lie algebra of compact bosonic EΊ can also be represented through such
operators. Returning to the set β ± , β 3 , we find
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where the clear SU(1,1) signature is seen in the first commutator. The extension of
this current algebra representation to cases where the initial symmetry is bigger than
U(l) can obviously be effected by re-interpreting our former expressions: for
example, â  b7 could now be taken to mean £ ^ ( k ) ^ — k) in the non-compact cases

and af bt be identified with £at(k)^-(k).
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