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Abstract. The finiteness of the discrete spectrum of three body Schrodinger
operators restricted to certain symmetry subspaces is proved. The symmetry
subspaces are those associated with nonzero angular momentum and those
associated with two or three identical fermions.

I. Introduction

Investigation of discrete spectrum energy operators of three-particle quantum
systems without bound subsystems showed that the discrete spectrum of such
systems can be infinite even if the potentials between the particles decrease
arbitrarily rapidly (Elfimov’s effect). This possibility is realized (under some
additional conditions) for three-particle systems when energy operators h, of two
or three two-particle subsystems have virtual levels [1, 2] (see also [3]).

The presence of the operator &, virtual level in this situation is connected with
the existence of such solution ¢ of equation h,@=0 so that [Vo(x)|eZ,(R3),
PREL(R).

This article presents an investigation of the discrete spectrum of three-particle
operators in some symmetry spaces. It is proved that in these spaces Efimov’s
effect is absent! so that for short-range potentials the discrete spectrum is finite.

Our proof of the finiteness is founded, mainly, on the investigation of virtual
levels of two-particle Hamiltonians in the function subspaces from
Z,(R)OPDZ,(R) (see Sect. 3). It is established, in particular, (Theorem 3.1), that
in these subspaces the presence of virtual levels of a two particle operator is
connected with the presence of its zero eigenvalue as distinct from the case when
the symmetry is not taken into account.

The main results of the work are Theorems 2.1-2.5 which are formulated in
Sect.2 and proved in Sect.4. Theorem 3.1 is proved in Sect.3. All auxiliary
assertions and their proofs are in Sect. 5.

1 In physics articles this assertion appeared earlier [4] but this fact was not proved mathematically
rigorously
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2. The Basic Results

Let Z, be an arbitrary quantum system of 3-particles x; = (x®'~ 2, xB3=1 xB9) with

masses m;, x=(x,,X,,X;), H, be the energy operator of system Z, written after

invariant separation of center of mass motion and after introduction an inner
3

product (x,X), = Z myx; X;). It is easy to see that [6]
i=1
1,3
Hy=— %Ao + Z Vij(lxijl)a
(0, ), i<
—x,, 4, — is the Laplacian on

where x;;=x;

Jj?

3
R, ={x]x:(x1, Xps X3) D mixi=0}.
i=1

12

As to V;; we shall assume that

i;'k= V;j(,x1,)5 gz,[oc(Rs) s
I WillxhiPdx, =0 if |xj|—=c0 (2.1)
Jx1—x1|=1
(that is ¥;(x,)e Q(R?) [9]) and that
tV;j(t)engﬁ-) ) (2.2)

by virtue of [7] and condition (2.2) V(x,)= —[V,(x,)le # = {V(x,)|V(x,)e Q, Ve>0
the discrete spectrum of the operator —ed, + V(x,) is finite in Z,(R®)}. Since
V(x,)eQ the operator H, with domain Cj is essentially self-adjoint in Z,(R,).
With a slight abuse of notation we denote the self-adjoint extension of this
operator by H,.

Furthermore, given any invariant for H,, we denote by HJ the restriction of the
operator H, to the symmetry subspace B’C.%,(R,) of the given symmetry . Then
we denote for operator Hj the discrete spectrum as .#4(H{), the infinitely-multiple
point spectrum as .#,, (H{), the greatest lower bound of the essential spectrum
as y°.

We suppose everywhere =0,

As spaces B° we shall usually take spaces of the functions which are
transformed according to the multiplying irreducible representations of
Hamiltonian’s H, symmetry group. The spaces B’, used in the article, will be
constructed by projectors on the space of functions being transformed

i) according to the representation of the weight [ of the group 0*(3) — the
projector P [=0,1, ...,

i) according to the representation of the type «; of the group S; — the
projector P* i=1,2; here a; =(1,1,1) is the type of the antisymmetric repre-
sentation Sy; «, =(2,1) is the type of two-dimensional representation S,

iii) according to the antisymmetric representation of the group S, — the
projector P*(S,).

First we consider the system Z, of three identical particles.

2 The case p’ <0 was investigated earlier [8,9, 14,15]
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Theorem 2.1. Let B°=P*'%,(R,). Then the spectrum .# (HY) is finite and 0¢.7, ,(H{).

Theorem 2.2. Let B°=P*PO%,(R,). Then the spectrum $,(HS) is finite and
0¢.7,.,(HY).

Suppose now that the particles i and j in Z, are identical, and that the third
particle may or may not be identical to these two. Let S, be the permutation
group of particles i and j.

Theorem 2.3. Let B°=P*(S,)P'Y%,(R,). Then the spectrum J,(HY) is finite and
0¢.7 o0 (H?P)-

The next theorems do not require the presence of identical particles in the
system. Let /=0 be any integer number.

Theorem 2.4. Let
B = {p(0lp(x)e Z,(Ro) w(—x)=(—1)"""y(x)}, B"=PYB,.
Then the spectrum J,(H3) is finite and 0¢.7 . (H?).

Theorem 2.5. Let B°=P®.Z,(R,). Then there exists a number L>0 such that > L
the spectrum S (HY) is finite and 0¢.% . (HY).

3. On Virtual Levels of Energy Operators for Two-Particle Systems

Let us consider the operator
h,=—3(1—e)d,+ V(x,]), (3.1

where the function V(|x,|) satisfies the conditions (2.1), (2.2), e [0,4]. The operator
h, with the domain C3(R?) is essentially self-adjoint in #,(R?). We henceforth
denote by h, the self-adjoint extension of this operator. We denote its domain by
D(h,). By virtue of Corollary 2.9 [10] D(h,)=D(h,). According to [7] we denote by
L5V the closure of space W, in the norm || =V yll g, g3, 5" is the complete
Hilbert space with an inner product [, p]=(V @, V) fz(Rs).3 Since Vb>0

I lylPdx, b [lwlPlx, |~ 2dx, <4b2[yl?, (3.2)
|x1]=b
for weW}(R®, so this inequality holds for ¢e#{"(R3? too. Then
LR CL, 1o(R?) and therefore L§V(R?)C WH(Q) for any bounded region Q.
We remark that due to [7] the embeding operator Z{V(R3) in Z,(R3;|V]) is
compact, that is

“V|I1Pnz_1po|2dx1_’0 lf wm_”po at g;l)(Rl’a)‘ (33)

Let e be an arbitrary set of non-negative integers I'. Let P(e)= ), P"", and let h,(e)
l'ee

be the restriction of operator h, to P(e)D(h,). The operator P(e) is a projector in

Z,(R®). It is easy to see that P(e) is a projector in W, (R®) too and hence it can be

extended in Z{M(R3) as a projector. Let B(e)= P(e)ZSV(R3).

3 Here and everywhere (V@, Vy)g, 53 = j Vo, Vp)gsdQ
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Definition 3.1. We shall say the non-negative operator h,(e) has the virtual level if
the negative spectrum of h,(e) is not empty for any &€(0,%).

Theorem 3.1. Suppose O¢e, and that the operator hy(e)=0 has a virtual level. Then
i) the number 1,=0 is an eigenvalue of the operator hy(e),
ii) the eigenspace W~ corresponding to the number 1,=0 is in P %,(R3) and
dim# =2l,+1, where l,= 1}1612 r,

ili) 36 >0 such that (hsp,p)>0, Yye D(hy(e)), [y, u]=0 for all ue #".

Remark. If Oce and the operator hy(e) has a virtual level, then due to [5] the
number 0 cannot be an eigenvalue of the operator hy(e) as distinct from the case
O¢e. Just this distinction generates the principal difference in the structure of the
discrete spectrum of Hamiltonians of the 3-particle systems depending on the fact
whether the states with /=0 are permitted or not.

Proof. At first we shall prove
assertion A: if V(|x|) satisfies the theorem conditions and the function T, from
FV(RY) is the generalized solution on Ry * of the equation

T"—(1+1)0™*T(0)—2V(0)T(e) =0, (34)
then Tye Z,(Ry) for sufficiently large N and
T,=clg+Kg+K?*g+..), (3.5)

where ¢ is a constant, g=¢~", Kf= [ # (¢, ) f(O)dt, A (0,t)=— V()" 't if t =0,
H(o,t)=— V() o~ if te[N, o], V()=V(t)-Ql+1)" L

We note that V(t)e.%, ,,, and the generalized solution of Eq.(3.4) is the
solution of this equation almost everywhere on R) for N>0. By virtue of
Sobolev’s embedding theorem T,e C!(Ry) and Ty is absolutely continuous func-
tion on R}. It is easy to see that the relation holds for any o> N

T,(0)=(d, +IE V() Ty(t)t " 'dt)e' ™+ +(d, — i VO T, () tdtye ™t
where d; are constants depending on Ty(N), Ty(N). Since Ty(0)e Z,(Ry) then
d,+ z V(6 T,y(t)t " 'dt=0,
therefore the function T=Tyd; ' is a solution of the equation
Tio)=g(o)+ | (0.0 T 00 (3.6)

For the proof of assertion A it is sufficient to show the function
T,=g+Kg+K>g+... (3.7)
is in #,(Ry) and that it is the unique solution in Z{" of Eq.(3.6).

0
4 Ry={tlteR%,t= N}, Z{"(Ry) is a closure W} (R}) by the norm [y|= ”a—tw(t)} L2 R

5 The number N may be taken always so that d,+0
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By virtue of the properties of the function V(¢) and because ¢>0, one can
choose the number N so large that |Kg|<e|gl. From this and the fact that
g~e££2(R1{,) for N>0, it follows that the series (3.7) is convergent and that
T,e Z,(Ry). The operator K can be applied to series (3.7) term by term, and
therefore, KT, =T, — g so that T, is the solution of (3.6). It is verified directly that
Tye ZO(Ry).

Let us prove that the constructed solution of Eq.(3.6) is the unique one in
Z(RY). For this it is sufficient to check that the homogeneous equation f=Kf
has in Z{V(Ry) only a trivial solution if the number N is sufficiently large. Let
flo)e ZSV(Ry), obviously,

SIS+ Ijif’(t)dtl <IF(N) 4o

Therefore, the function f,(g)=f(0)-0~'/* is bounded in Rj. If f=Kf and
fe ZV(Ry) then

/1(0)l=sup AGH i 1 (0, DIt %0 124t
=0,5sup {1101}

when N is large enough. It follows f,(f)=f(t)=0 for te Ry if N is large enough.
The assertion A is proved.
Set

W= {p(x)lyp(x)e B'= PO Z{M(R3), hyw(x)=0 in a generalized sense}.

Let us prove
assertion B: if under the condition of the theorem W' @ for some />0 then
i) the subspace W' belongs to the domain of definition of the operator h, and is
the eigenspace of the operator h, corresponding to the number 1=0;
ii) every function p(x) from W' has the form
!

wx)= Y cnYin(0, @)R(x]), (3.8)

m=—1

where the function R(|x|) is independent of y(x)e W', c,, are constants depending
on y(x); Y, are spherical functions;

i) dim W' =(2I+1).

Let y(x)e W'. Then hop(x)= —14,p(x)+ Vip(x)=0.

Since PYy(x)=1y(x) we have

wx)= Y R,(0Y,0.9), (3.9)

m=—1

where g=|x|, 6, ¢ are the angular coordinates of x.
It is easy to see the function T,(0)=R,,(0)-¢ is the generalized solution in
ZIV(Ry) for N >0 of the equation

T, — U1+ 1)e~>T,(0)—2V(0)T,,(0)=0. (3.10)
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According to assertion 4 the function T, (9)e Z,(Rx) when N is sufficiently large.
Furthermore, p(x)e %, ,,(R%). That is why y(x)e Z,(R>). Since the operator h, is
self-adjoint and (p(x), hy@(x))=0 for any function ¢(x)e CX(R?) then y(x)e D(h,)
and hqw(x)=0.Statement i) from assertion B is proved.

Let us prove the statement ii). According to assertion 4 and by virtue of the
expansion (3.9) with |x|> N the equality (3.8) holds if we set R(|x[)= Tq(|x])Ix| ! for
|x| >N, where Ty(|x|) is the sum of the series (3.7).

Since two different eigenfunctions of the operator h, which belong to W'
cannot coincide for |x|> N, one can define a function R(|x|) so that the relation
(3.8) holds for all y(x)e W' Statement ii) is proved. Statement iii) results from ii).
Let us prove
assertion C: if under conditions of Theorem 3.1 W'=§ for some lee, then [=1,.
To prove this suppose [>1,. Then evidently, /=1 and due to assertion B there

is such a function R(|x|) such that
1

vx)= Y cuYmR(x)

m=—1

for all w(x)e W'. Further, we consider the function
P(x)="Y,0(6, ) R(1x]).

It is obvious that {(x)e W'. Set P(x)=Y, ,R(x|). Then
(ho®(x), P(x)) = (hoP(x), P(x)) + [o(lo + D)= 11+ 1)] - 10 IR(2)]? dt .

Since (hyP(x), P(x))=0, (he®(x),P(x))=0 then [y(l,+1)—II+1)<0 and con-
sequently I=1,. Assertion C is proved.

Let us begin immediately the proof of the theorem. Write
L, ={p(x)|pe B(e), Iyl =1}. Due to infh(e) <0 with >0 and hy(e) =0 it is easy to
see that

inf (Vp,p)=—3. (3.11)
weLo
Let y,, be a minimizing sequence for the functional (Vy, p) in Z,. We choose from
y,, a sequence which is weakly convergent in #$V. Abusing notation, we denote
this subsequence by ,,. We denote the limit function as u,. Evidently, u,e B(e) and
luol <liminfly, | =1.
By virtue of (3.11)

(Vug, ug)= "El_r,{}o (VP W) = — % (3.12)

Further, lu,|>0 because the equality luyl =0 contradicts (3.12). We set g=lu,l. It
follows that 0 <g =< 1. Since i, =u,q~ ‘€ %L, then (Viiy, iig) =q *(Vug,ug)=—q >
= — 1 and consequently g=1. Here |uy|=1, uoe %, and u, realizes inf(Vyp,y) in
Zo-

By a common way we check that u, is a generalized solution of the equation

hoto=— % A g+ Vuy=0.
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Due to assertions B,C the function u,e W" and statementsi), i) of the
Theorem 3.1 hold. Now we shall prove statementiii) of the theorem. Let u,
i=0,1,...,2], be an arbitrary basis in %,

L ={wx)lpx)eZLy, [y,ul=0 i=0,1,...,2]}.

In order to prove iii) it is sufficient to check the inequality

B= inf (Vy,p)>—3. (3.13)
yeLy
Suppose it were not correct, and let = — 3. From any minimizing sequence 1, for

the functional (Vy, p) in &, we choose a subsequence which converges weakly in
ZV. Let @ be the limit function. As for u, one can verify iie %, and hyii=0. By
virtue of assertions B, C we have iie #” but it is impossible, because the function #
being the weak limit of functions from %, satisfies the conditions [#,1,]=0
i=0,1,...,2l,. Thus, u¢# and B> —1.

Theorem 3.1 is proved.

4. Proofs of Theorems 2.1—2.5

Let Z,=(C,,C,) be an arbitrary breaking of the system Z, into two nonempty
subsystems C,, C,, C;nC,=#. For definiteness we suppose C, always consists
of two elements. We write

RO(ZZ)={xlxeRO, Y mx;=0, CleZz,xj=0j¢C1},
ieCy
R(Z,)=R,©R,(Z,)°, P(Z,), and P(Z,) are the projectors in R, on R(Z,) and
Ro(Z»).
We denote the operators I and A invariantly defined in Ry(Z,) and R(Z,) as
Vo(Z,), 40(Z,) and V(Z,), A(Z,), respectively. Let

ho(Z,)= _%AO(Z2)+ Vij(lxijl) (i)eCy,

G(Z,) be the group of operator h,(Z,) symmetry, 6=06(Z,) be the types of
irreducible representations of group G(Z,), P? be the projector in .%,(Ry(Z,)) on
the subspace of functions being transformed according to representation of the
type 6.
As in [6] (see also [10, p. 1337]) we define the concept inducing (<) of the
symmetry ¢ by the symmetry o and set
B(o;Z,)= @ P°ZL,(Ry(Z,)).

a<a
The restrictions of the operators 44(Z,) and hy(Z,) to B(c; Z,) will be denoted by
Ay(0;Z,) and hy(o; Z,), respectively. Let

q(Z,)=Py(Z,)x,EZ,)=P(Z,)x, xER,.

6 O in the sense of inner product (.,.),
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For any >0, N>0 we set
K(Zy; B)={x|xe Ry, 1a(Z,)l, S PIEZI,} 7,
S(N)={x|xeR,, |x|; <N}.

Proof of Theorem 2.1. Asin [11] to prove the theorem it is sufficient to show that
for all we D(HY) with supp{y} outside S(N) the inequality

Lly]l=(Hop,p)—ellylx|] 'I>>0

holds if N is large and ¢>0 is small. Evidently, the last inequality is satisfied if

3
Lilwl=050PowlI*+ 2 (Vi w)—elvled 1IP>0
L, j=1,i<j
for all we W} (Ry)NB°, supp {p}nS(N)=0. Let Z, be any breaking, and let
qg=q(Z,) and ¢=E(Z,) be the coordinates in R,. Under the conditions of the
theorem the function §(g, &) =w(x) xe R, is odd relative to the changing of g»> —g¢g
with an arbitrary fixed &(Z,). That is why the space B(g,Z,) consists of odd
functions and therefore P9B(c; Z,)=0, PYB(c;Z,)+0. We suppose the
operator hy(o; Z,) has a virtual level®. By virtue of Theorem 3.1 and since
PYB(g; Z,)+§ the number A=0 is an eigenvalue of the operator hy(c; Z,); the
eigenspace ¥~ corresponding to A=0 is in PYB(c;Z,) and dim# =3; let
®{°g(Z,));= 1,5 be an orthonormal basis of #. Let >0 be so small that®

K(Z%;B)nK(Z5; /) CS(N) if Z,+Z5. (4.1)

For every Z, and £¢>0, >0 we find numbers «>0, N >0 and functions u,, v,,
according to Lemma 5.2!° with ¢,=¢{"(g(Z,). Write “//-——(1— Zuﬁz)l/za
Yz, =Wuy,, P=1y7¥ . Then due to Lemma 5.2 Z2

Li[w]= ) L[y, ]+ Ls[#], (4.2)
Z
where
3
Lz[w.zz:' = % I ,VOWZZ, 1>+ Z (I/ijwlza WZZ)
i,j=1,i<j
3
— 4| [Vo(Z)gl 1> =5 Y el IVAZo) fil I = Felwz,lxlT 2, (4.3)
k=1

[e= W2, 4o(Z5) 97 @)ro(zn |1V o(Z2) 07172,
97,= ¥z, T Z fil&(Z,) ¢§(0)(q(Z2)) 5 44)
k=1

Ly[p]=L,[®]—ellplxl; 1%

1/2

7 For yeR, Y, =)
8 If the operator hy(c; Z,) has no virtual level, then operators hy(o'; Z’,) have no virtual levels for all
Z', as a consequence of the identity of particles, in this case the finiteness F,(Hg) is proved in [11] (the
finiteness of #,(H,) has been proved earlier in [15, 16])

9  The fulfillment of relation (4.1) with sufficiently small >0 is proved in [11]

10 All auxiliary assertions and their proofs are given in Sect. 5
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As far as V;;€ # and |x;|>yN for some y>0and all i,j,i+j if xesupp {y} then one
can establlsh as in [11] that L,[$]>0. Let us prove L,[y, ]>0. Set
Z,={(s,p),(1)}. Taking into account that ho(Z,) ¥ =0 we have

Lz[’Pzz] = % [1Vo(Z 2)9221 12 +(V, sp925 gzz)
(Ve e) + Vo, 02, 02,) — 4l IV (Z,) g, I

3
+3(A=4) [ IVAZ,)wz |17 =3 Y 1IVAZ) fil 17 (4.5)
k=1
We can choose functions ¢{* i=1,2, 3 belonging to different lines of irreducible
representation of weight 1 of the group O (3). Then
((p$0)’ (PJ )Ro(zz)=(§050)7Ao(Zz)(PE'O))RO(zz)=O if i%j

and therefore (g;,, 4o(Z,)9")g, (2, =0-
By virtue of Theorem 3.1 if >0 is sufficiently small

G—8) 1Vo(Z,)gz,l 11>+ (Vi92,.92,)>0.
Since V;;€ # then for sufficiently large N
elllV(Z 2)1/’zz| 12+ (( Valxs) + Vpl(xpt))lp227 lPzz) >0.

In consequence of (4.5) to prove the inequality L,[y, ]1>0 we need only show
that with a sufficiently small ¢>0

3
(1=6a) [[IV(Z)wz 17 —¢ X 1IV/Z,) filI>>0. (4.6)
k=1
Evidently

NVAZ) w2, 17 =V{Z2) gz, + kZ 1VAZ) £il 112

3
+2Re Y (VAZ,) £, 0. VAZ,)g2,)- @7

k=1

Let g* and f} be i’™ components of three dimensional vectors V(Z 2)gz, and
VAZ,) fi Since (g9, 4o(Z) 0 )rozy =0 k=1,2,3 almost everywhere in R (Z,)
then (¢', 4o(Z,) ¢\ f))=0 i,k=1,2, 3. By virtue of Lemma 5.3

3 <[3: (0.5 o)
-3

Re ) (VAZ) /0, V{Z 1) 92,)| <

k=1

3
£ 2 Y (=) g fio®1,  (48)
1i=1

where 6, = [V,0"(»)|*114,0>(y)|| ~ 2. Write 6=mind,. Then

=(1-9) Z Z Ig' Il feeil

k=1

3

Re Y (V(Z,) [0, V{Z2)g2,)

k=1

N £0,5(1=0) 1IVAZ ) gz, 12

+0,5(1-9) Z!IIV Z) Al
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From the last inequality and from (4.7) the relation (4.6) results if ¢ <(1 — 6¢)4.
Theorem 2.1 is proved.

Proof of Theorem 2.3. Let us suppose for definiteness that in the condition of the
theorem S, is a group of permutations of particles 1 and 2. Then for breaking
Z9=(C,,C,) with C,=(1,2) we can repeat all considerations of the proof of
Theorem 2.1 up to inequality (4.2). In this repetition ¥ =(1—u,), p=p¥". We
shall obtain ’

Li[ylz Lz[U’zg] +L;[w],
where Lz[’Pzg] and L,[{] are defined by relations (4.3), (4.4). As in Theorem 2.1
one can prove that Lz[lng] >0. Let us estimate L,[§]. Write
Q={x|x€Ry,|x;31>Ix53l}; 2, =Ro/2y,
x(x)=1xeQ;, 1(x)=0x¢Q;, v;=Py;.
By virtue of Lemma 5.4 Trp=0 if |x, 5| =]|x,,|, then y,e W} and

L;[p]=L;[y,] +L3I:IP2] .

Without any loss of generality we suppose [y;]|>0 i=1,2. Let us shown that
L;[w]>0 if N is sufficiently large. Setting Z ,5,={(23),(1)}, we have

L3[W1] =0, 5| 'Vo(Z(23))1P1| Il 2 +(V231P1, lP1)
+0,5] IVC(Z(zs))qu > +((V120x12) + Vis(x 1) v v0)
—2&lp, |x|7 1. (4.9)

Since supp {p,}N{K(Z3; 2)US(N)} =0 one can find a >0 such that xesupp {ip},
the relation |x,,|>yN holds and so |x,4| =0, 5yN if xesupp{y,}. Therefore, and
due to Vy,,V ;€ F; V(Z,3)=constV,  =constV,  with the fixed q(Z,), then the
inequality

0,25[[1V(Z3) Wil 11> +((Vy 20x12) + Vis(x13) wi, w,) >0
is satisfied when N is sufficiently large. By virtue of Courant’s inequality
8ell IVAZ 23)wil 2 = 2ellpyIxl; *[>>0.

Finally since y,€B(0y;Z,3) with B=P?Z (R,) and since h(a,;Z,3) =0 we
have
% ” |VO(Z(23))1P1I ”2 + (V3w 91)>0.

From the last three inequalities and (4.9) the relation L,[y,]>0 follows.
Analogously, we obtain L,[y,]>0. The theorem is proved.

Proof of Theorem 2.2. Let Bj be a subspace of B’ space which consists of
functions belonging to the second line of two-dimensional representation of S,
group. It is obvious that it is sufficient to prove the finiteness of the discrete
spectrum H, only on Bj. Since w(x,, x,, X3)= —p(x,, X, X;) for w(x,,x,,x;)e BY,
Bj is a subspace of the space P*(S,) P'©.%,(R,) from Theorem 2.3. That is why the
finiteness of discrete spectrum H, on B can be proved as well as the finiteness of
&(HY) in Theorem 2.3.
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Proof of Theorem 2.4. The theorem is proved as Theorem 2.1 because by virtue of
Lemma 3.2 [12] P°(Z,) B(c; Z,)=# for any breaking Z,; here P°(Z,) is a
projector P in space Z,(Ry(Z,)).

Proof of Theorem 2.5. As in the proof of Theorem 2.1 we shall show that

3
Lilwl=31Vepll?+ X (Vyw.p)—elylxl HI*>0
i,j=15i<j
for any function ye W}(R,)nB’ with supp {y} outside of S(N) if N is sufficiently
large and >0 is small. Suppose >0 had been taken so small that

K(Z,; BnK(Zy; B)CS(N) if Z3+Z,.

With these given >0, ¢>0 we shall construct functions u,, v,, according to
Lemma 5.1 and set g5, = PAZ,)wuy,, ¢,,=yuz, — gy, By virtue of Lemma 5.2

Li[ylz zZLZ[wZZ] +Ls[%1], (4.10)

1/2

where v, =yu,, p=y¥, ¥ = (1— Zui) ,
Z,

3
Lz[U’zz] = % [ Wolpzzl 12+ Z (I/ijlplp lez)_ 8”9022'36‘1_ 12
i,j=1,i<j
=&l IVo(Z,) P2, 117 = 3 clga,lEZ )T 15
3
Ly[@1=31Ve0l12+ X (Vyd, §)—2elPlxl; II*.
i,j=1,i<j
As in Theorem 2.1 we verify inequality L,[{]>0. Now we shall estimate the
functional L,[y, 1. Write Z,={G,j),(k)}, g=9z,, ¢=¢,, Since PO(Z,)g=y,
P(Z,)¢=0 then (V(Z,)h,Vo(Z,)g)=0 and (V;;¢,9)=0, therefore

3

0.50owz,l 17+ X (Viz,vz.)=311Vo(Z) vzl

i,j=1,i<j
+(Viulx) + ij(xjk))wzza ¥z,)+0,5(Vo(Z)gl ?
+(Vi9:9)+0,511Vo(Z,) 111 + (V8. ¢)- (4.11)

We remark that for the symmetry o considered in the theorem,
PY(Z,)B(o; Z,)+# is fulfilled. Consequently, due to assertion C (Sect. 3) the
operator hy(o;Z,) cannot have virtual levels on the spaces P*(Z,) B(s; Z,) with
[>0. That is why for some ¢, >0 independent of y we have

0,511Vo(Z) @l +(Vy, D) 2, 117o(Z,) 1112

and
0,5] ]Vo(Zz)U)z2| 2 +(V,~,-1Pzz, l/)Zz) 2e,[[IVo(Z,) 9l 2.
If N is sufficiently large then

ell “70(22)(!’22] 1>+ (Vi) + I/jk(xjk))wzzs ll)zz) >0,
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furthermore
4e | IVAZ )y, 1> —elly, Il ]*>0.
Hence L,[y,,1>0if
(1=10¢) [ IVAZ ) w | I>—clglé(Z )l HI*>0. (4.12)

It is obvious || |[V(Z,)w,,| > =1 1VAZ,)g] |*>0. To estimate |||V(Z,)g| | we remark
the function g(¢(Z,), &(Z,)) with fixed &(Z,) is in P9(Z,) #(Ry(Z,)) and since
9(g, £)e PYZ5(R,) then

1VAZ )gll? 211+ 1) [gI&(Z,)IT 1>
Hence (4.12) follows if (1—10¢) L(L+1)>c and [= L. The theorem is proved.

5. Auxiliary Assertions

Lemma 5.1. Given arbitrary numbers >0, e>0 for each breaking Z, into two
systems, one may choose numbers a€ (0, B), o, €(x, B) and real functions uy (x), v,,(x)
x€R, with piecewise continuous derivatives for |x|, >0 such that u, =(1—v})"?,
vz,=11if x¢K(Z,;p), v;,=0if xe K(Z,;x), and the next inequalities hold

{|l70u22|2 +|l701)zz|2} |Uzz|-2<8|x|1—2 (5.1
if xeK(Z,;PB)/K(Z,;0,),]x],>0;
{IVouz,|>+1Vovz, )} lug,| =% <elg(Z,)l; ? (5.2)

if xeK(Z,;u,)/K(Z,,a), |x|;>0.
Corollary. For any function we W3(R,) with supp{y} outside S(NN>O0 the
following inequality holds :
HPowl1> Z 1P owoz |11 + 1V owug,| 12
—ellpvg, XTI —ellwug,la(Z,)lT 2 (5.3)
Proof. Let »,(t) be such a real C*(R}) function such that
1. »,(t)=1if t =, »,(t) monotonicly increases for te[0, f].
2. ()1 =23(1))? >0 if t>B—0.
We choose a number o, sufficiently close to § and set
vz,()=0y(0) itz t=1g(Z))], JUZ I ug, =(1—v7 )2
Then
{IVovz,I* +1Vouz,|?} = {1+ (1 —uz,) "} IVovz,)* = {1+(1—vz,) "'}
(A+1GZRIEZH)IT DIEZ ), 2o S {o? +oP(1=0?) 7 1
(A4 pH oy (1 +ad) x| 2.
Since v(t)—0, ¢, —0, ¢,*(1 — »%)—0 when t— B — 0 one can choose the number «, so
close to f that
{2 +o2(1=22) 7 (L4 B g (1 +af) o] "2 <e

and therefore inequality (5.1) is holds.
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Write v (a,)=dy, »,(t)=d, -(In(e, /@) "' In(t/o). Let vy (x)=w,(t) if te[o,a,],
v, (x)=01f te[0,a], t=1q(Z,){ - |E(Z I} 1 At present functions Uz, Uz, are defined
for all xeR,,. It is obvious that to prove the lemma we must verify only (5.2) when
o> 0 is sufficiently small. Since |,(t)] <d; <1 if t<a, then

{Vouz,|I* +1Vovz,1*} lug | "2 =Vovs,|* {1+ (1 —v3) " uz?

<IPouy ) {1+ (1 —~dD) ™31 —dd) . (5:4)
Vo0, = Vo(Z,) vz, + VA Z o o, P = A2, 2
(A +10(Z )2 A2l D02 S+ D) EZ,)) 202 (5.5)

So far as
vt =di(ln(oy/0) 2 1EZ,)13 19(Z )] %,
then (5.2) follows from (5.4), (5.5) if « was taken so small that
(In(oy /) e>(1+a?) {1+ (1—d3) "'} di-(1—d3).
Lemma 5.1 is proved.

Lemma 5.2. Choose ¢>0, >0 arbitrarily, and let Z, be any breaking into two
subsystems. Construct functions v,, and u,, according to Lemma 5.1 with the chosen
values of ¢ and f. Let p,g, p€ W,(R,) be any functions with supports outside S(N),

g=yuz,— ¢.
Then: i) one can choose ¢>0 independent of v, g, ¢ such that

1V owl 2=l IVolpUzzl 12+ Wowuzz| ”2—3”1/)”22’36,1_ ! HIZ((zz,p)
—8¢[[IVo(Z)glll~> = cl PIEZ )T Rz py1kizai 5 (5.6)

il) if = Z 0(4(Z,)) f{&Z,)), where p{q) i=1,...,m are fixed functions from

Wi(Ro(Z,)) and fA&) are any functions from W3(R(Z,)), then one can choose N
independent of v, f,i=1,...,m such that

Vw12 2 11Vowugz, | 12 + 11Vowuy,) | —8ellIVo(Z,)gl II?

m

—ellpvz X HRzap — ; e IEZ)l ! fLON7. (5.7

Proof. From relations (5.1), (5.2) it follows that to prove (5.6) it is sufficient to
verify the inequality

[wuz|aZ )1 Rz pryxczsin S8 1Vo(Z2) gl
+cllPlé(Z )T ! ”IZ((ZZ;/X)/K(Zz;a) . (5.8)
Since [puy |* £2|g|*+2|¢|* and
811Vo(Z2)gl*—2lgle(Z,)IT 1?20,
then the inequality (5.8) will result from the relation
201a(Z ) Nz zaspyxizzsn S NRIEZIT Iz pyxzain
that is valid if ¢>2a"" because |g(Z,)|, > &(Z,)|, for r¢ K(Z,;a).
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Let us prove (5.7). For this, due to (5.6) it is sufficient to prove that

clPIZ; kzs pixazsn S 2 NEZIT - fill* (5.9)

i=1

Evidently
||¢|f(zz)|1_1||12<(zz;p)/x(zz;a)§m Z I |5(Zz)|1_I(Pifi||12<(zz;p)/x(zz;a)'
i=1

Since

A(Z)eQu={d(Z,)|la(Z,)|,> N1 + a2/},

resupp{o,(q) [} N{K(Z,; f)/K(Z,; )},

then [ |o(q)|> dg—0 with N—oco; that is why relation (5.9) holds for sufficiently
Q2

large I\llv The lemma is proved.

Lemma5.3. Let xeR3 yeR® g(x,y)eZ,(R%, f(x)eZ,(R%), o(y)eD(4,),
¢ =0(y) f(x) and (g(x, y), 4,¢(x, y)) =0. Then
l(g(x, y), pCc, MI=(1=90) llgll i1l ,
where
5=0,5[V,0l* lol =2 4,0l 2.

Proof. Let Fo=g|gll"'+olol~", F_=glgl™'—¢l¢| " Since (g,4,¢)=0,
then (Fs, P ¢4~ 1), 4,¢)=0 and therefore (Fa), 4,0)=F)V,0l? l¢ll~*. Hence

17,17 o1~ <1 Fg 14,91,

that is | Fo IZ1V,00% o]~ I4,4]~ ' =(26)"/?. Substituting F, and F_ and
squaring both parts of inequality we obtain

@) lgl~ ol ==3IF_IP+1=1-4,
g P gl gl ™t =—1+FF = —1+0.
The lemma is proved.
Lemma 5.4. Let particles i and j be identical, and suppose
Y(x) =w(xy, X5, X3)€ Co(Ry)
is antisymmetrical under the permutation x;~x; and P®yp=1yp. Then p(x)=0
if Ixul=Ixyl k=*i,J.

Proof. For definiteness let i=1, j=2. We find x; from condition xeR,: m,x,
+myx,; +myx; =0 and set @(x;,x,)=P(x;, Xp =7 (X X)) =YXy, X5 X3),
where m=mym;'. It is obvious that P@¢p=¢ and ¢(x;,x,)=—@(x,,x,).



Three-Quantum Particles 103

Expanding ¢(x,, x,) in spherical functions we shall obtain

Plxy,x,)= Zaﬁﬁf@p 02) Yy () Yy (),

where g, =|x,/, o; are angular coordinates of x;. Since P”¢p=¢, then ap?y2=0 if
(I;,m)%=(,, —m,). Therefore

1

('0: Z Z alm(QI’ QZ) le;ml(al) lezmz(az)’
1=0 m=—1
where a,,, =ay,,™. For each [ the vector {a;,, m=—1,...,1} is colinear to the vector
B, _,, of Clebsch-Gordan’s coefficients. That is why (see [13] p. 160) a,,(¢;, 0,)

=a;, _,(0,,0,) and consequently

1

(e zzo [azo Yiolory) Yiolo,) + Z (Y1) Y, (25)

Y, ) Ylm(az»}.

From this it follows that the function §(g,,0,,®;,%;)=@(x,x,) is symmetrical
under permutation o, <>, and therefore antisymmetrical under the permutation
010>

By virtue of this fact (g, ¢, o;, a,) =0 for all a;, o,. But the equality |x,|=|x,] is
equivalent to equality |x; —x;|=|x,—x5| with fiix;= —(x, +x,). Thus, we have
established that y(x)=0 if |x, ;| =|x,3|. The lemma is proved.
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