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Abstract. Let πt(x), i =!,...,</, xeZd, satisfy π^x) ̂  α > 0, and
π^x) +... + πd(x) = 1. Define a Markov chain on Zd by specifying that a particle
at x takes a jump of + 1 in the ith direction with probability ̂ (x) and a jump of
— 1 in the ith direction with probability ^(x). If the πf(x) are chosen from a
stationary, ergodic distribution, then for almost all π the corresponding chain
converges weakly to a Brownian motion.

1. Introduction

Let Zd be the integer lattice and let ei9i = l,..., d, denote the unit vector whose ith

component is equal to 1. Let

and suppose we have a function π:Zd-^S. Then a Markov chain Xn(j) on Zd is
generated with transition probability

+ 1) = x ± et\Xn(j) = *} =i^(xX (1.1)

and generator

d
Lπg(x} = £ fa(x){g(x + et) + gf(x - et)}.

i=ί

If the function π is chosen from some probability distribution on S, this gives an
example of a random walk in a random environment.

For any π, we can consider the limiting distribution of the process Xπ satisfying
χπ(0) = 0 and (1.1). Let α > 0 and set

and let Cα be the set of functions π:Zd-»Sα. The main result of this paper is:

Theorem 1. Let μ be a stationary ergodic measure on Cα. Then there exists beSa such
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that for μ—almost all πeCα, the processes

converge in distribution to a Brownian motion with covariance (hi δ^)
A special case of this theorem occurs when the π(x) are independent, identically

distributed random variables taking values in S*.
A similar theorem for diffusion processes with random coefficients was proved

by Papanicolaou and Varadhan [3], and a considerable portion of this paper is only
a restating of their proof in the context of discrete random walk. The crucial new step
is Lemma 4, which replaces Lemma 3.1 of their paper. This is a discrete version of an
a priori estimate for solutions of uniformly elliptic equations. The ideas of Krylov [2]
are used in the proof of Lemma 4; properties of concave functions are used to
estimate solutions to a discrete Monge- Ampere equation.

2. An Ergodic Theorem on the Space of Environments

Fix an environment πeCα, and assume Xπ(Q) = Q. Let Zj = (Zj,...,Z?) =
Xπ(j)-Xπ(j-l), and let ^j = σ{Z1,...,Zj}. Let Yj = π(Xn(j)). Then Ύj is
measurable with respect to ?Γ , and

Then Xn(n) = £ Zj is a martingale and

n- 1

Let Vl

n= Σ γίj Tnen tne in variance principle for martingales (see e.g. Theorem 4. 1
j=o

of [1]) states that Wn(t) = (W*(t),...,W%(t)) converges in distribution to the
standard Brownian motion on [Rd, where

Σ 4
Now suppose there exists a beS* such that

]im-π(Xπ(j)) = a.s..
n -> oo W j = o

Then by the above argument we can conclude that

converges in distribution to a Brownian motion with covariance (bt (50 ). Therefore,
in order to prove Theorem 1 it is sufficient to prove:
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Theorem 2. Let μ be a stationary ergodίc probability measure on Cα. Then there
exists beSa such that for μ — almost all πeCα,

lim-"χ π(Xπ(j)) = b a.s.. (2.1)
n -> ao J-Q

This is clearly an ergodic theorem and the idea of Papanicolaou and Varadhan
[3] is to find a measure on Cα so that a standard ergodic argument can be used.

We define the canonical Markov chain with state space Cα to be the chain whose
generator 5£ is given by

where τxπ(y) = π(y — x). In this chain, the "particle" stays fixed at the origin and
allow the environment to change around it (rather than having the particle move
around a fixed environment). If we define g0: C" -> U.d by g0(π) = π(0), and let &jπ
denote the (random) environment at the/h step of this chain, then (2.1) is equivalent
to

lim - Σ do(^Jπ) = b a.s. μ. (2.2)
n -> oo ^ j = Q

By standard ergodic theory we can prove (2.2), and hence (2.1), if we prove:

Theorem 3. Let μ be a stationary ergodίc probability measure on Cα. Then there
exists an ergodic probability measure λ on Cα which is mutually absolutely continuous
with μ and which is invariant under the canonical Markov chain &.

Clearly,

b= J g0(π)dλ(π).

To prove Theorem 3 we need some lemmas. For each n > 0, let Tn denote the
elements of Zd under the equivalence relation

(z1,...,zd)^(w1,...,wd) if—(z i — w^eZ for each i.

Then I Tn \ = (2n)d. If π: Tn -» S"χ, we may think of π as a periodic environment in Cα.
Let C" denote the set of such periodic environments. For πeC", let R^ denote the
resolvent operator

α

Ra.9(χ)= I

If g: Tn -> IR we define the usual LP norms (with respect to normalized counting
measure on TJ,

\\g\\ p = \(2n d

jceTn
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Lemma 4. There exists a constant c1 (depending only on d and α) such that for every

The proof of this lemma is delayed until Sect. 3. The next lemma follows from our
assumption that μ is stationary (see Parthasarathy [4] ).

Lemma 5. For each n, there exists ππeC* such that ίfμn is the probability measure on
Cα which assigns measure (2ri)~d to τxπnfor each xeTΠ, then

μn -> μ weakly.

Proof of Theorem 3. Let πneCJ be a sequence as in Lemma 5 with μπ->μ. Let φn be
the density, with respect to normalized counting measure on Tn9 of an invariant
probability measure on Tn for πn, i.e. Lπnφn = φn and || φn \\ 1 = 1. If Rn = R^n is the
resolvent corresponding to πw, then Rnφn = n2φn. If we consider Rn as a map from
Ld(Tn) to U°(Tn\ then Lemma 4 states that the map is bounded by c^n2. Therefore
R*:lϊ(Tn)-+Ldl{d-V(Tn) is also bounded by cvn

2. Since R%φn = n2φn, we get

Let λn be the probability measure on C",

Then λn is invariant under the canonical Markov chain J5? and

Since μn-*μ weakly, standard arguments give that λn has a subsequence converging
to a probability measure λ which is invariant under J&f. Also A <ξ μ and, in fact,

^
dμ

dμ g cf

Let E = {dλ/dμ = 0}. Since λ is invariant, λ(&E) = λ(E) = 0, and hence
(a.s. μ). Since μ is ergodic and λ^μ, μ(E) = 0, and hence μ<ζλ. Since μ and λ are
mutually absolutely continuous and μ is ergodic, λ is ergodic.

Example. Let d = 2 and μ be product measure with μ{π(x) = α} = μ{π(x) = 1 — α} = |,
where 0 < α < \. Then μ is not invariant under <£9ifB = {π(e^ = α}, then μ(B) = \,

but μ( ̂ fβ) = § + -. Although it is not easy to describe λ in this case, symmetry

considerations give that b = (̂ ,-|).
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3. Proof of Lemma 4

It remains to prove Lemma 4. Let

Let πeC«. If/:DM -> [0, oo) with/(x) - 0 for xedDn, let

where τ =inf {j:Xπ(j)edDn}, and Ex denotes expectation assuming Xπ(0) = x. We
will prove the following :

Lemma 6. There exists a constant c2 (depending only on d and α) such that for every

where

n\ xeDn

To get Lemma 4 from Lemma 6 is routine using the fact that the expected time until
hitting dDn is of order n2.

Fix n, and write D = Dn. If w : D -> [R, we define the second difference operators on
intD by

We will call u concave on D if A f w(x) ̂  0 for all xeint D and all ΐ (note this is weaker
than the usual definition of concave). We define the discrete Monge-Ampere
operator M on intD by

d

Mu = Π Δtu.
i=l

we will prove the following:

Lemma 7. Let f:D->[09 oo) be a function withf=Q on dD. Then there exists a
concave function z:D->[0, oo) such that

(i) z = 0 on dD,

(ii) (-l)dMz=fd on intD.

Moreover, there exists a constant c3 (depending only on d) such that

(iii) | |z|Lgc3n2 | |/ | |d.

Suppose that we have Lemma 7, and let us derive Lemma 6. Fix xeint D, and let
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Xπ(j) be the Markov chain induced by π with Xπ(0) = x. Then

E(z(Xπ(ΐ))-z(Xπ(0))= £ ±

Here we have used the inequality (α^ + ... +adbd)
d^.(al ...ad) (bί...bί).

Continuing as above we may deduce

E[_z(Xπ(j Λ τ)) - z(Xπ(0)) + iα ' £ AΓ /(*„(*:))] ̂  0.
fc=0

Letting j go to infinity,

and Lemma 7 then gives the required bound.
To prove Lemma 7, let jtf be the set of all concave functions u on D satisfying

(i) u = 0 on dD,

(ii) (- l) d Mw^/ d onintD.

We first note that $4 is non-empty: let h:D -> [0, oo) by

MX) = Φ + 1)- 1*1(1*1 + 1),

where \ ( x l 9 . . . 9 x d ) \ = \ x t \ + ... + \xd\ One can check that (- ΐ)dMh^2d and hence
βhεjtf for jS sufficiently large.

It is easy to check that if w1 ? w2ej/, then min(w1 ? w2)ej/; in fact, if we let

z(x) = inf w(x),
wej/

one can verify that ZEJ&. It remains to be shown that (— ί)dMz=fd. Suppose
(- l)dMz(x) > (f(x))d for some xeintD, i.e.

;-eί)-2z(x)):

Let γ < z(x) be such that

et) + z(x-ea-2y) = (f(x)Y.

and set

1*00v(y)- ,
γ y = x

Then again one can check that vejtf, contradicting the minimality of z.
We now wish to estimate z. For xeintD, let

/(x) ={(«!,..., αd)eKd :z(x + β£) - z(x)
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Note that meas (7(x)) = ( - l)dMz(x) = (f(x))d. We state the next easily provable fact
as a lemma:

Lemma 8. Let aεRd, b > 0, and let r be the affine function r(x) = a-x 4- b. Suppose
r(x) ^ z(x) for every xeD and r(x0) = z(x0)for some x0eintZλ Then αe/(x0).

Now let z = || z || ̂  and let xeint D with z(x) = z. Assume z > 0. Let

Fix aeA. If b ̂  f z, then α x + b > z ̂  z(x) for every xeD. Therefore there exists a
least b (depending on a) such that a x + b^ z(x) for all xeD. It is easy to see that
a-x0 + b = z(x0) for some x0eD, and since

0 χ0 + fe = α x + fo + α (x0 — x)^|z>0,

x0eintD. By Lemma 8, 0e/(x0). Therefore

^ U /M,
xeintD

meas(^) ̂  meas((J/(x)),

^ Σ ((/M)d

xeD

Since meas(^l) = (zd)(c4n)~d for some c4, we get
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