Commun. Math. Phys. 87, 81-87 (1982)

Weak Convergence of a Random Walk in a Random Environment

Gregory F. Lawler

Department of Mathematics, Duke University, Durham, NC 27706, USA

Abstract. Let $\pi_i(x)$, i = 1, ..., d, $x \in Z^d$, satisfy $\pi_i(x) \ge \alpha > 0$, and $\pi_1(x) + ... + \pi_d(x) = 1$. Define a Markov chain on Z^d by specifying that a particle at x takes a jump of + 1 in the *i*th direction with probability $\frac{1}{2}\pi_i(x)$ and a jump of -1 in the *i*th direction with probability $\frac{1}{2}\pi_i(x)$ are chosen from a stationary, ergodic distribution, then for almost all π the corresponding chain converges weakly to a Brownian motion.

1. Introduction

Let Z^d be the integer lattice and let e_i , i = 1, ..., d, denote the unit vector whose i^{th} component is equal to 1. Let

$$S = \{ (p_1, \dots, p_d) \in \mathbb{R}^d : p_i \ge 0, p_1 + \dots + p_d = 1 \},\$$

and suppose we have a function $\pi: \mathbb{Z}^d \to S$. Then a Markov chain $X_{\pi}(j)$ on \mathbb{Z}^d is generated with transition probability

$$P\{X_{\pi}(j+1) = x \pm e_i | X_{\pi}(j) = x\} = \frac{1}{2}\pi_i(x), \tag{1.1}$$

and generator

$$L_{\pi}g(x) = \sum_{i=1}^{d} \frac{1}{2}\pi_i(x) \{g(x+e_i) + g(x-e_i)\}.$$

If the function π is chosen from some probability distribution on S, this gives an example of a random walk in a random environment.

For any π , we can consider the limiting distribution of the process X_{π} satisfying $X_{\pi}(0) = 0$ and (1.1). Let $\alpha > 0$ and set

$$S^{\alpha} = \{(p_1, \ldots, p_d) \in S : p_i \geq \alpha\},\$$

and let C^{α} be the set of functions $\pi: \mathbb{Z}^d \to S^{\alpha}$. The main result of this paper is:

Theorem 1. Let μ be a stationary ergodic measure on C^{α} . Then there exists $b \in S^{\alpha}$ such

that for μ —almost all $\pi \in C^{\alpha}$, the processes

$$X_{\pi}^{(n)}(t) = \frac{1}{\sqrt{n}} X_{\pi}([nt])$$

converge in distribution to a Brownian motion with covariance $(b_i \delta_{ii})$

A special case of this theorem occurs when the $\pi(x)$ are independent, identically distributed random variables taking values in S^{α} .

A similar theorem for diffusion processes with random coefficients was proved by Papanicolaou and Varadhan [3], and a considerable portion of this paper is only a restating of their proof in the context of discrete random walk. The crucial new step is Lemma 4, which replaces Lemma 3.1 of their paper. This is a discrete version of an *a priori* estimate for solutions of uniformly elliptic equations. The ideas of Krylov [2] are used in the proof of Lemma 4; properties of concave functions are used to estimate solutions to a discrete Monge–Ampere equation.

2. An Ergodic Theorem on the Space of Environments

Fix an environment $\pi \in C^{\alpha}$, and assume $X_{\pi}(0) = 0$. Let $Z_j = (Z_j^1, \ldots, Z_j^d) = X_{\pi}(j) - X_{\pi}(j-1)$, and let $\mathcal{F}_j = \sigma\{Z_1, \ldots, Z_j\}$. Let $Y_j = \pi(X_{\pi}(j))$. Then Y_j is measurable with respect to \mathcal{F}_j , and

$$P\{Z_{j} = e_{i} | \mathcal{T}_{j-1}\} = P\{Z_{j} = -e_{i} | \mathcal{T}_{j-1}\} = \frac{1}{2}Y_{j}^{i}.$$

Then $X_{\pi}(n) = \sum_{j=1}^{n} Z_j$ is a martingale and

$$\mathscr{E}(Z_{j}^{i_{1}}Z_{j}^{i_{2}}|\mathscr{T}_{j-1}) = \begin{cases} 0 & i_{1} \neq i_{2} \\ Y_{j-1}^{i_{1}} & i_{1} = i_{2} \end{cases}$$

Let $V_n^i = \sum_{j=0}^{n-1} Y_j^i$. Then the invariance principle for martingales (see e.g. Theorem 4.1 of [1]) states that $W_n(t) = (W_n^1(t), \dots, W_n^d(t))$ converges in distribution to the standard Brownian motion on \mathbb{R}^d , where

$$W_n^i(t) \equiv (V_n^i)^{-1/2} \sum_{j=1}^{[nt]} Z_j^i.$$

Now suppose there exists a $b \in S^{\alpha}$ such that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \pi(X_{\pi}(j)) = b \text{ a.s.}.$$

Then by the above argument we can conclude that

$$X^{(n)}(t) = \frac{1}{\sqrt{n}} X_{\pi}([nt])$$

converges in distribution to a Brownian motion with covariance $(b_i \delta_{ij})$. Therefore, in order to prove Theorem 1 it is sufficient to prove:

Random Walk in Random Environment

Theorem 2. Let μ be a stationary ergodic probability measure on C^{α} . Then there exists $b \in S^{\alpha}$ such that for μ —almost all $\pi \in C^{\alpha}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \pi(X_{\pi}(j)) = b \text{ a.s..}$$
(2.1)

This is clearly an ergodic theorem and the idea of Papanicolaou and Varadhan [3] is to find a measure on C^{α} so that a standard ergodic argument can be used.

We define the canonical Markov chain with state space C^{α} to be the chain whose generator \mathscr{L} is given by

$$\mathscr{L}g(\pi) = \sum_{i=1}^{d} \frac{1}{2}\pi_i(0) \{g(\tau_{e_i}\pi) + g(\tau_{-e_i}\pi)\},\$$

where $\tau_x \pi(y) = \pi(y - x)$. In this chain, the "particle" stays fixed at the origin and allow the environment to change around it (rather than having the particle move around a fixed environment). If we define $g_0: C^{\alpha} \to \mathbb{R}^d$ by $g_0(\pi) = \pi(0)$, and let $\mathscr{L}^j \pi$ denote the (random) environment at the *j*th step of this chain, then (2.1) is equivalent to

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} g_0(\mathscr{L}^j \pi) = b \text{ a.s. } \mu.$$
 (2.2)

By standard ergodic theory we can prove (2.2), and hence (2.1), if we prove:

Theorem 3. Let μ be a stationary ergodic probability measure on C^{α} . Then there exists an ergodic probability measure λ on C^{α} which is mutually absolutely continuous with μ and which is invariant under the canonical Markov chain \mathcal{L} .

Clearly,

$$b=\int_{C^{\alpha}}g_0(\pi)\,d\lambda(\pi).$$

To prove Theorem 3 we need some lemmas. For each n > 0, let T_n denote the elements of Z^d under the equivalence relation

$$(z_1,\ldots,z_d) \sim (w_1,\ldots,w_d)$$
 if $\frac{1}{2n}(z_i-w_i) \in \mathbb{Z}$ for each *i*.

Then $|T_n| = (2n)^d$. If $\pi: T_n \to S^{\alpha}$, we may think of π as a periodic environment in C^{α} . Let C_n^{α} denote the set of such periodic environments. For $\pi \in C_n^{\alpha}$, let R_{π}^n denote the resolvent operator

$$R_{\pi}^{n}g(x) = \sum_{j=0}^{\infty} \left(1 - \frac{1}{n^{2}}\right)^{j} L_{\pi}^{j}g(x).$$

If $g:T_n \to \mathbb{R}$ we define the usual L^p norms (with respect to normalized counting measure on T_n),

$$\|g\|_{p} = |(2n)^{-d} \sum_{x \in T_{n}} (g(x))^{p}|^{1/p}$$
$$\|g\|_{\infty} = \sup_{x \in T_{n}} |g(x)|$$

Lemma 4. There exists a constant c_1 (depending only on d and α) such that for every $\pi \in C_n^{\alpha}$, $g: T_n \to R$,

$$\|R^ng\|_{\infty} \leq c_1 n^2 \|g\|_d.$$

The proof of this lemma is delayed until Sect. 3. The next lemma follows from our assumption that μ is stationary (see Parthasarathy [4]).

Lemma 5. For each n, there exists $\pi_n \in C_n^{\alpha}$ such that if μ_n is the probability measure on C^{α} which assigns measure $(2n)^{-d}$ to $\tau_x \pi_n$ for each $x \in T_n$, then

 $\mu_n \rightarrow \mu$ weakly.

Proof of Theorem 3. Let $\pi_n \in C_n^{\alpha}$ be a sequence as in Lemma 5 with $\mu_n \to \mu$. Let ϕ_n be the density, with respect to normalized counting measure on T_n , of an invariant probability measure on T_n for π_n , i.e. $L_{\pi_n}\phi_n = \phi_n$ and $\|\phi_n\|_1 = 1$. If $R_n = R_{\pi_n}^n$ is the resolvent corresponding to π_n , then $R_n\phi_n = n^2\phi_n$. If we consider R_n as a map from $L^d(T_n)$ to $L^{\infty}(T_n)$, then Lemma 4 states that the map is bounded by c_1n^2 . Therefore $R_n^n : L^1(T_n) \to L^{d/(d-1)}(T_n)$ is also bounded by c_1n^2 . Since $R_n^*\phi_n = n^2\phi_n$, we get

$$n^{2} \|\phi_{n}\|_{d/(d-1)} \leq c_{1}n^{2} \|\phi_{n}\|_{1} = c_{1}n^{2},$$

$$\|\phi_{n}\|_{d/(d-1)} \leq c_{1}.$$

Let λ_n be the probability measure on C_n^{α} ,

$$\lambda_n(\tau_x \pi_n) = (2n)^{-d} \phi_n(x).$$

Then λ_n is invariant under the canonical Markov chain \mathscr{L} and

$$\left\|\frac{d\lambda_n}{d\mu_n}\right\|_{d/(d-1)} \leq c_1.$$

Since $\mu_n \to \mu$ weakly, standard arguments give that λ_n has a subsequence converging to a probability measure λ which is invariant under \mathscr{L} . Also $\lambda \ll \mu$ and, in fact,

$$\int_{C^{\infty}} \left| \frac{d\lambda}{d\mu} \right|^{d/(d-1)} d\mu \leq c_1^{d/(d-1)}.$$

Let $E = \{d\lambda/d\mu = 0\}$. Since λ is invariant, $\lambda(\mathscr{L}E) = \lambda(E) = 0$, and hence $\mathscr{L}E \subset E$ (a.s. μ). Since μ is ergodic and $\lambda \ll \mu, \mu(E) = 0$, and hence $\mu \ll \lambda$. Since μ and λ are mutually absolutely continuous and μ is ergodic, λ is ergodic.

Example. Let d = 2 and μ be product measure with $\mu\{\pi(x) = \alpha\} = \mu\{\pi(x) = 1 - \alpha\} = \frac{1}{2}$, where $0 < \alpha < \frac{1}{2}$. Then μ is not invariant under \mathcal{L} , if $B = \{\pi(e_1) = \alpha\}$, then $\mu(B) = \frac{1}{2}$, but $\mu(\mathcal{L}B) = \frac{3}{8} + \frac{\alpha}{4}$. Although it is not easy to describe λ in this case, symmetry considerations give that $b = (\frac{1}{2}, \frac{1}{2})$.

Random Walk in Random Environment

3. Proof of Lemma 4

It remains to prove Lemma 4. Let

$$D_n = \{(z_1, \dots, z_d) \in Z^d : |z_1| + \dots + |z_d| \le n\},$$

$$\partial D_n = \{z \in D_n : |z_1| + \dots + |z_d| = n\},$$

int $D_n = D_n / \partial D_n.$

Let $\pi \in C_n^{\alpha}$. If $f: D_n \to [0, \infty)$ with f(x) = 0 for $x \in \partial D_n$, let

$$Qf(x) = E_x \sum_{j=0}^{\tau} f(X_{\pi}(j)),$$

where $\tau = \inf \{j: X_{\pi}(j) \in \partial D_n\}$, and E_x denotes expectation assuming $X_{\pi}(0) = x$. We will prove the following:

Lemma 6. There exists a constant c_2 (depending only on d and α) such that for every $f:D_n \rightarrow [0, \infty)$,

$$\|Qf\|_{\infty} \leq c_2 n^2 \|f\|_d$$

where

$$||f||_d^d = \frac{1}{|D_n|} \sum_{x \in D_n} (f(x))^d.$$

To get Lemma 4 from Lemma 6 is routine using the fact that the expected time until hitting ∂D_n is of order n^2 .

Fix n, and write $D = D_n$. If $u: D \to \mathbb{R}$, we define the second difference operators on int D by

$$\Delta_{i}u(x) = u(x + e_{i}) + u(x - e_{i}) - 2u(x).$$

We will call *u* concave on *D* if $\Delta_i u(x) \leq 0$ for all $x \in int D$ and all *i* (note this is weaker than the usual definition of concave). We define the discrete Monge-Ampere operator *M* on int *D* by

$$Mu=\prod_{i=1}^d \Delta_i u.$$

we will prove the following:

Lemma 7. Let $f: D \to [0, \infty)$ be a function with $f \equiv 0$ on ∂D . Then there exists a concave function $z: D \to [0, \infty)$ such that

- (i) $z \equiv 0$ on ∂D ,
- (ii) $(-1)^{d} M z = f^{d}$ on int D.

Moreover, there exists a constant c_3 (depending only on d) such that

(iii) $||z||_{\infty} \leq c_3 n^2 ||f||_d$.

Suppose that we have Lemma 7, and let us derive Lemma 6. Fix $x \in int D$, and let

 $X_{\pi}(j)$ be the Markov chain induced by π with $X_{\pi}(0) = x$. Then

$$E(z(X_{\pi}(1)) - z(X_{\pi}(0)) = \sum_{i=1}^{d} \frac{1}{2}\pi_{i}(x)\Delta_{i}z(x)$$
$$\leq -\frac{1}{2}\alpha |Mz(x)|^{1/d}$$
$$= -\frac{1}{2}\alpha f(x).$$

Here we have used the inequality $(a_1b_1 + \ldots + a_db_d)^d \ge (a_1 \ldots a_d) \quad (b_1 \ldots b_d)$. Continuing as above we may deduce

$$E[z(X_{\pi}(j \wedge \tau)) - z(X_{\pi}(0)) + \frac{1}{2}\alpha \sum_{k=0}^{(j-1) \wedge \tau} f(X_{\pi}(k))] \leq 0.$$

Letting *j* go to infinity,

$$\frac{1}{2} \alpha Q f(x) = E_{x2} \frac{1}{2} \alpha \sum_{k=0}^{\tau} f(X_{\pi}(k)) \leq z(x).$$

and Lemma 7 then gives the required bound.

To prove Lemma 7, let \mathcal{A} be the set of all concave functions u on D satisfying

(i)
$$u \equiv 0$$
 on ∂D ,

(ii) $(-1)^d M u \ge f^d$ on int D.

We first note that \mathscr{A} is non-empty: let $h: D \to [0, \infty)$ by

$$h(x) = n(n+1) - |x|(|x|+1),$$

where $|(x_1, ..., x_d)| = |x_1| + ... + |x_d|$. One can check that $(-1)^d Mh \ge 2^d$ and hence $\beta h \in \mathscr{A}$ for β sufficiently large.

It is easy to check that if $u_1, u_2 \in \mathcal{A}$, then $\min(u_1, u_2) \in \mathcal{A}$; in fact, if we let

$$z(x) = \inf_{\substack{u \in \mathscr{A}}} u(x),$$

one can verify that $z \in \mathscr{A}$. It remains to be shown that $(-1)^d M z = f^d$. Suppose $(-1)^d M z(x) > (f(x))^d$ for some $x \in int D$, i.e.

$$(-1)^d \prod_{i=1}^d (z(x+e_i)+z(x-e_i)-2z(x)) > (f(x))^d.$$

Let $\gamma < z(x)$ be such that

$$(-1)^d \prod_{i=1}^d (z(x+e_i)+z(x-e_i)-2\gamma) = (f(x))^d.$$

and set

$$v(y) = \begin{cases} z(y) & y \neq x \\ \gamma & y = x \end{cases}$$

Then again one can check that $v \in \mathcal{A}$, contradicting the minimality of z.

We now wish to estimate z. For $x \in int D$, let

$$I(x) = \{(a_1, \dots, a_d) \in \mathbb{R}^d : z(x + e_i) - z(x) \\ \leq a_i \leq z(x) - z(x - e_i)\}.$$

Random Walk in Random Environment

Note that meas $(I(x)) = (-1)^d Mz(x) = (f(x))^d$. We state the next easily provable fact as a lemma:

Lemma 8. Let $a \in \mathbb{R}^d$, b > 0, and let r be the affine function $r(x) = a \cdot x + b$. Suppose $r(x) \ge z(x)$ for every $x \in D$ and $r(x_0) = z(x_0)$ for some $x_0 \in \text{int } D$. Then $a \in I(x_0)$. Now let $\overline{z} = ||z||_{\infty}$ and let $\overline{x} \in \text{int } D$ with $z(\overline{x}) = \overline{z}$. Assume $\overline{z} > 0$. Let

$$A = \{a \in \mathbb{R}^d : |a| \leq \bar{z}/4n\}.$$

Fix $a \in A$. If $b \ge \frac{3}{2}\overline{z}$, then $a \cdot x + b > \overline{z} \ge z(x)$ for every $x \in D$. Therefore there exists a least b (depending on a) such that $a \cdot x + b \ge z(x)$ for all $x \in D$. It is easy to see that $a \cdot x_0 + b = z(x_0)$ for some $x_0 \in D$, and since

$$a \cdot x_0 + b = a \cdot \bar{x} + b + a \cdot (x_0 - \bar{x}) \ge \frac{1}{2}\bar{z} > 0,$$

 $x_0 \in \text{int } D$. By Lemma 8, $a \in I(x_0)$. Therefore

$$A \subset \bigcup_{x \in int D} I(x),$$

$$meas(A) \leq meas(\bigcup I(x)),$$

$$\leq \sum_{x \in D} ((f(x))^d.$$

Since meas $(A) = (\bar{z}^d)(c_4 n)^{-d}$ for some c_4 , we get

$$\bar{z} \leq c_4 n \Big[\sum_{x \in D} (f(x))^d \Big]^{1/d}$$
$$\leq c_3 n^2 \| f \|_d.$$

Acknowledgements. I would like to thank S. R. S. Varadhan for suggesting this problem and for bringing to my attention the work of Krylov. I would also like to thank Bob Vanderbei for useful discussions.

This paper was written while the author was a visiting member at the Courant Institute of Mathematical Sciences.

References

- 1. Hall, P., Heyde, C. C.: Martingale limit theory and its application. New York: Academic Press 1980
- 2. Krylov, N. V.: An inequality in the theory of stochastic integrals. Theor. Prob. Appl. 16, 438–448 (1971)
- 3. Papanicolaou, C., Varadhan, S. R. S.: Diffusions with Random coefficients. In: Essays in Honor of C. R. Rao. Amsterdam: North Holland 1982
- 4. Parthasarathy, K. R.: On the category of ergodic measure. Ill. J. Math. 5, 648-655 (1961)

Communicated by T. Spencer

Received May 20, 1982