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Non-Uniqueness of Solutions
of PercivaFs Euler-Lagrange Equation
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Abstract. Percival [5,6] introduced a Langrangian and an Euler-Lagrange
equation for finding quasi-periodic orbits. In [3], we studied area preserving
twist homeomorphisms of the annulus, using PercivaΓs formalism. We showed
that PercivaΓs Lagrangίan has a maximum on a suitable function space, and
that a point where it takes its maximum is a solution of PercivaΓs Euler-
Lagrange equation. Moreover, in the rigorous interpretation of PercivaΓs
formalism which we gave in [3], the solutions of PercivaΓs Euler-Lagrange
equation correspond bijectively to a certain class of minimal sets. (We will
prove this in Sect. 2.) In [4], we showed that PercivaΓs Lagrangian takes its
maximum at only one point. In this paper, we show that there exist C00 area
preserving twist diffeomorphisms of the annulus, for which there exists at least
one solution of PercivaΓs Euler-Lagrange equation where PercivaΓs
Lagrangian does not take its maximum. In other words, solutions of PercivaΓs
Euler-Lagrange equation need not be unique.

1. Statement of the Results

In this section, we recall basic notations, terminology, and results from [3] and
[4], and state the theorem which we will prove in this paper.

We will denote by 3F the class of homeomorphisms which was considered in
[3]. This is defined as follows.

We set /4 = {(x,j/)eIR2:0^j/^l}. We let T:A-+Ά be the translation T{x,y)
= (x+l,y). We let ̂  be the set of homeomorphisms of A which satisfy the
following two conditions:

1) / i s area preserving, orientation preserving, boundary component preserv-
ing, and fT= Tf.

2) (positive monotone twist condition) f(x,y)ί>f(x,z)ί if y>z. Here, px

denotes the first coordinate of/?, if p e ^ = !Rx [0,1].
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If r is a positive integer or oo, we let 3Fr denote the set of all C diffeomorphisms
in #" which satisfy ~, rί , ,

d{f(x,y)i)>Q

dx

Let /G<^\ Then / maps each boundary component of A onto itself and is
orientation preserving on it. Let / .=/ | !Rxi 5 z = 0,1. Since / T = 7/ the Poincare
rotation numbers ,.„, v

ρ(fλ= lim ^-^-, z = 0,l,

are defined.
Let B = B f= {(x,xf)e1R?:f0(x)^x' ^f^x)}. The conditions which we imposed

on / imply that it is defined by what is known in classical mechanics as a
generating function. A generating function is a continuous, real valued function
h = hf on B, which is continuously differentiate on the interior of B, such that

where hι{x,x') = dh(x,xr)/dx and h2(x,x') = dh(x,x')/dx'. Moreover, /zt and /z2

extend continuously to the boundary of B. The function h is uniquely determined
up to an additive constant. The existence of such a function h is well known in
classical mechanics. Note that h(x+l,xf+ l) = h(x,x'). For slightly more detail in
the construction of h, see [3].

The main object of our study is not /, but the mapping / of the annulus A/T
into itself induced b y / However, it is easier to state our results in terms of/

We let Yω=Yf ω denote the set of weakly order preserving φ :JR->1R such that

φ(t +1) = φ(t) + 1, fo(φ(ή) = φ(t + ω) ^UΦ(t)) >

and φ is continuous from the left. In [3], we proved:

Theorem. Suppose ρ(fo)^ω^ρ(f1). Then there exists φεYω such that

where η(t) = h1(φ(t\φ(t + ω)).

When ω is irrational, there exists a minimal set Σφ of the homeomorphism /
associated to φ. Explicitly, Σφ = Mφ/T, where Mφ is the closure of the set of
(φ(t\ η(t)\ where t ranges over all points of continuity of φ.

The existence of Σφ is the main significance of the above theorem. When /
admits an invariant circle of rotation number ω, we have that Σφ is the unique
minimal set in that circle. (This minimal set may be a Cantor set or the whole
circle.) Otherwise, Σφ is an invariant Cantor set.

It is convenient to introduce the quantity V= Vfi(O, defined by

In this notation, PercivaΓs Euler-Lagrange equation is Vω(φ) = 0. For φeYω

f{φ{t), η(ή) = {φ(t + ω),η{t + ω)), t e 1R,

where η(t) = h1(φ{t\ φ(t + ω)) is equivalent to VO)(φ) = 0. This means that the above
theorem is equivalent to the assertion that PercivaΓs Euler-Lagrange equation has
a solution.
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This motivates the following discussion of PercivaΓs Euler-Lagrange equation.
Let Ta denote the translation by a. In other words, Ta(t) = t + a. Obviously, if φ

is a solution of PercivaΓs Euler-Lagrange equation, then so is φTa. Moreover, if
φ' = φTa, then Σφ = Σφ,. This leads us to consider the quotient set
Xω=Xf ω = YJ~, where ~ is the equivalence relation defined by φ~φ'o3a,
φ' = φT^ (Note that this is different from theX ω defined in [3].)

1

In [3], we defined Fω(φ) = Ffιω(φ) = $h(φ(t),φ{t + ω))dt. This is Percival's
o

Lagrangian. We have Fω(φTa) = Fω(φ). Hence, Fω induces a function o n l ω , which
we also denote by Fω (or Ff ω). In [3, Sect. 4], we defined a metric d on Yω. It is
obvious from the definition of d that d(φTa, φ'Ta) = d(φ, φ'). Hence, we may define a
metric on Xm by _ _

d(φφ')
Provided with this metric, Xω is compact. This follows from [3, Sect. 5] : the space
which we denoted Xω there maps surjectively and continuously to the space which
we denote Xω in this paper.

Moreover, by [3, Sect. 6], Fω:Yω-»lR is continuous, so Fω:Xω->lR is con-
tinuous, since Xω has the quotient topology. Since Fω is a continuous function on a
compact space, it takes its maximum at some point. Moreover, when ω is
irrational, Fω takes its maximum at only one point [4]. In [3], we showed that
Percival's Euler-Lagrange equation is satisfied at a point where Percival's
Lagrangian takes its maximum.

This may seem obvious, in view of the fact that Vω(φ) is the first variation of
Fω(φ) in some formal sense. However, it is not obvious. Indeed, a point where
Percival's Lagrangian takes its minimum is rarely (if ever) a solution of Percival's
Euler-Lagrange equation. The fact that Percival's Euler-Lagrange equation is
satisfied at a point where Percival's Lagrangian takes its maximum was the main
step in the proof of the existence theorem in [3]. We believe that the methods of
[3] are new; they don't fit into any standard framework of the calculus of
variations. However, they are closely related to the ideas explained by G. D.
Birkhoff in [1] for finding periodic orbits in the billiard ball problem by
maximizing the perimeter of a polygon. It is obvious that one cannot find a
periodic orbit of the billiard ball problem by minimizing the perimeter. The fact
that Percival's Euler-Lagrange equation is satisfied at a point where Percival's
Lagrangian takes its maximum, but not a point where it takes its minimum, closely
parallels Birkhoff s theory of periodic orbits in the billiard ball problem.

In this paper, we show that Percival's Euler-Lagrange equation may have
solutions where Percival's Lagrangian does not take its maximum. Specifically, we
will prove:

Theorem. Let ω be an irrational number. There exists fe^F00 such that
ρ(/ 0 )<ω<ρ(/ 1 ) and Xf^ω contains more than one solution of PercivaΓs Euler-
Lagrange equation.

Note that there is some notational difficulty in saying exactly what Percival's
Euler-Lagrange equation is for φeXf ω. This is because
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Thus, Vj ω{φ) can only be defined as an equivalence class of functions, where two
functions are equivalent if they differ only by composition with a translation on
the right. However, the meaning of Vf ω(φ) = 0 is clear, since if one of the functions
in this class satisfies this equation, then they all do.

At first sight, the theorem of this paper appears to contradict results proved in
[3] and [4]. We have that F / > ω is the first variation of Fft(O in some formal sense.
On the other hand, we proved [4] that when ω is irrational, Fff(O is a strictly
concave function on X f ω, with respect to a suitable affine structure on X f ω. Since
the first derivative of a strictly concave function can vanish only where the
function takes its maximum, there is an apparent contradiction. But it is not real.

Roughly speaking, the reason that there is no contradiction is that the affine
structure onXfω defines a different "differentiable structure" from the "differenti-
able structure" we used to define the first variation. Here, we use the term
"differentiable structure" loosely. We do not attempt to formalize it. Since we do
not use the notion of "differentiable structure" in any of our proofs, it is not
necessary for us to formalize it.

To be more precise, we used certain test curves in [3] to compute the first
variation. But, straight line segments with respect to the affine structure are not
test curves of the type considered in [3]. In fact, Fω is not necessarily even
differentiable on straight line segments with respect to the affine structure.
Moreover, to the extent which we can define a first variation using straight line
segments as test curves, it seems that we get something different from Vω(φ). So,
there is no contradiction.

2. The Bijective Correspondence between Certain Minimal Sets
and Solutions of PercivaPs Euler-Lagrange Equation

and let f:Λ/T->A/Tdenote the induced homeomorphism. Let ω be an
irrational number satisfying ρ(/0)<ω<ρ(/1). In Sect. 1, we reviewed how a solution
φeYf>ω of PercivaΓs Euler-Lagrange equation gives rise to a minimal set Σφ of/
The set Σφ depends only on the equivalence class φ of φ inX^ ω. So, we can denote
Σφ by Σφ.

In this section, we will prove that the mapping φ^-^Σφ is a bijection of
{φeXfiϋ):Vfίω(φ) = 0} onto a certain class J^f>ω of minimal sets of/ Closely
related results are discussed in Katok [2].

Definition of JPf>(O. We let J?fi(O be the collection of subsets Σ of A/T with the
following four properties:

1) Σ is minimal for / i.e., Σ is closed and invariant, and it contains no closed
and invariant sets other than itself and the empty set.

Since A = lRx [0,1], we have an obvious identification A/T=(ΊR/Z) x [0,1]. Let

πλ \A/T=(WL/Έ) x [0,1]->1R/Z and ^ : R x [0,1]-»1R

denote the projections.
2) π^ΣiΣ-^JR/Z is injective.
Let πτ\A->A/Tdenote the projection. Let M = πγί(Σ). In view of 2), we have

that π J M M-^IR is injective. The standard order on 1Rinduces an order on nx(M\
and this defines an order on M, via π " 1 .
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3) / :M->M is order preserving.
f'Hx v)

4) If (x,y) e M, then lim ι =ω.
π ^ + oc n

It is obvious that if φe Xf>(0 is a solution of PercivaΓs Euler-Lagrange equation,
then ΣφeJίf ω. Moreover, if φ,φ'eXf ω are two different solutions of PercivaΓs
Euler-Lagrange equation, then ΣφΦΣφ,. The rest of this section will be devoted to
a proof of the following result.
Proposition. If ΣeJίf ω, then there exists a solution φeX^ω of PercivaΓs Euler-
Lagrange equation such that Σ = Σφ.

Proof Condition 4) in the definition of J^f^ω implies that Σ is infinite, since ω is
irrational.

Since Σ is compact and infinite, it contains non-isolated points. The set of all
non-isolated points forms a closed and invariant set. Since Σ is minimal for / it
follows that Σ contains no isolated points.

By a complementary interval of π^Z), we will mean a connected component of
R/Z\π1(Σ). Let Σ' be the quotient space of π1(Σ) obtained by identifying opposite
endpoints of complementary intervals of nx(Σ). Since πλ\Σ is injective, nx(Σ) is
infinite and has no isolated points, just as is the case for Σ. Hence, Σ' is
homeomorphic to the circle.

Condition 3) in the definition of Jtfi(ύ guarantees that f:Σ->Σ respects the
identifications in π 1 (Σ)«Σ, which define Σ'. Hence, we have an induced ho-
meomorphism/' \Σ'-+Σ'. Since Σ is minimal for/, we have that Σ' is minimal for/'.
It follows that / ' is topologically conjugate to an irrational rotation. Condition 4)
in the definition of Jtfi(O guarantees that the corresponding rotation number is
= ω (modi).

Let p:IR/Z-*X" be the unique extension of the projection π1(Σ)-+Σ' which is
constant on each complementary interval of π^Σ). Let h:Σ'-+]R/Έ be a ho-
meomorphism which conjugates / ' and the rotation through ω. The mapping
hp'.JR/Z-^IR/Z lifts to a continuous mapping ψ:lR-^IR which is weakly order
preserving and satisfies ψ(x + 1) = ψ(x) + 1.

The definition of h implies

hpiπjix, y)) = hp(x) + ω(mod ί), (x, y)e Σ.

As before, we let M = π ^ 1 £ . The above equation and condition 4) in the definition
of Jtf ω imply

ψ(πίf(x,y)) = ψ(x) + ω, (x,y)eM.

Since/0(x)^π 1/(x,j;)^/ 1(x), we then obtain

Let φ = I(ψ\ where / is as defined in [4]. In other words, I is left-continuous,
and

(x, x') E graph φo(x\ x) e graph ψ.
Then φeYft(O.

Let t be a point of continuity of φ. Then 0(ί)Gπ1(M) and is not the endpoint of
a complementary interval of πx(M). Let η(t) be such that (φ(t),η(t))eM. Let (x,y)
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= (φ(t),η(t)) and (x\y') = f(x,y). Since xeπxM and is not an endpoint of a
complementary interval of πxM, we have that ψ(x') is a point of continuity of φ.
Hence,

x' = φψ(x') = φψ(πj(x, y)) = φ(ψ(x) + ω) = φ(t + ω).

Since (x',j/)eM, it then follows from the definition of η that / = η(t + ω). Since
/(x, y) = (x'} / ) , we have y = h1(x,x'). In other words,

and η(t) = h^φit), φ(t + co)). It is easily seen that this implies that φ is a solution of
PercivaΓs Euler-Lagrange equation.

From the definition of φ, it follows easily that the closure of the set of φ(t) such
that ί is a point of continuity of φ is π 1 M. Moreover, (φ(t),η(t))eM by the
definition of η(t). Hence M = Mφ and so Σ = Σφ. •

In view of the proposition and the discussion preceding it, φ^-^Σφ is a bijection
of the set of solutions of PercivaΓs Euler-Lagrange equation in Xf>ω onto Jt^ω.

3. Examples where PercivaΓs Euler-Lagrange Equation
has more than One Solution

We wish to show that an example exists for every irrational number ω. It is clearly
enough to consider the case when 0 < ω < 1, since we may replace/by fTk. We will
give a single example which works whenever 0 < ω < l . In fact, in the example
which we construct, there is a one parameter family of solutions, for each irrational
ω in [0,1].

The fact that there is a whole one parameter family of solutions and not just
several solutions was suggested to me by Scott Shenker, who told me that
numerically there are scads of solutions.

A slight modification of our construction gives families parametrized by
several variables.

One parameter families of solutions can be defined for the mapping associated
to the generating function

Λ(x, x') = h k sin4πx,

whenever k is large enough. The main feature of this generating function which
permits the construction of a one parameter family of solutions is that sin4πx has
two large humps in the unit interval. Likewise, if we replaced sin4πx with a
periodic function of period 1 having n large humps in the unit interval, we would
get an (n— 1) parameter family of solutions. The function sinlπnx is an example of
such a function.

However, the mapping associated to the above generating function does not
map A into itself. Since we wish to produce an example which maps A into itself,
we need to modify the above generating function. We will use a generating
function of the form

u(x'-x)sin4πx

4 0 0 2 V { X ~ X ) + 8 0 0 4
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Here, we take u to be a C00 real valued function of real variable satisfying 0 ̂  u ̂  1,
w(ί) = lfbr - l ^ ί ^ 2 , M ( ί ) =

Such a function clearly exists. Set C= — — + ̂ r τ We take v to be a C00 function
2001 8004

of a real variable satisfying υ(t) = 0 for 0 g ί ̂  1, t?"(t) ̂  0 everywhere, t (ί) = ι;(l — ί),

y"(ί)^C, if - 2 ^ ί ^ - l or 2 ^ f ^ 3 ,

ι;(ί) = 2C(ί-f) if 3 ^ ί ,

= -2C(ί + f) if - 2 ^ ί .
Such a function clearly exists.

Our conditions on u and i; imply /ι12^(2001)~1 everywhere, since

1 ... , πu'(x' — x)cos4πx u"{x'— x)sin4πx
Λ « ( X X > = 2 0 5 Γ + I ; ( X " X ) + 2001 8004

We define/by
/(xy) = ( x ' / ) o \ , ,

[y =- dh(x9 x )/dx .

We must show that this defines a mapping of A into itself. In fact, / is single valued
dh(x9 x')

and everywhere defined in IR2, and f(Λ) = A. For, the equation y — — — - — can be

uniquely solved for x' as a function of x and y, since h12^(2001)~1 everywhere.
This means that / is single valued and everywhere defined on IR2. Moreover, the

dh{x,x') , δh(x,x') .
equations y — , y = — imply

x'-x+lOOO ^ ^ ._ ,
y = y = 2001 + 2 C ' l f X~X = 3>

x'-x+lOOO
2 C f ^ 2

Hence, f(A) = A. It is easily checked that
Next, we construct a one-parameter family of solutions of PercivaΓs Euler-

Lagrange equation for this /
Let

^ { φ 7 φ ( ( 0 ] ) [ 0 , | ] and

Let π :Y ω / ->X ω / denote the projection. LetX^ = π(Y )̂. It is easily checked that
Xa

ω is closed inXω. Since Fω :Xω->IR is continuous andX ω is compact, there exists
φaeXa

ω which maximizes Fω\Ka

ω, for any a satisfying 0 ^ α ^ 1.

Lemma 1. 7 / 0 ^ α ^ 1, then the element φa ofXa

ω which maximizes Fω\Xa

ω is a solution
of PercivaΓs Euler-Lagrange equation.

For notational reasons, it is somewhat simpler to work in Y£ than in Xa

ω. Note
that π:Y£-+Xa

ω is a bijection. Let φa = (π\Yχ1(φa). We will need the following
result, in order to prove Lemma 1.

Lemma 2. φa{(0,a])C [0.01,0.24] and φa((a, 1])C [0.51,0.74].
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Proof. Set φ = φa. Since 0 < ω < 1, 0 ̂  φ(t + ω) - φ(t) S 1 Hence u(φ(t + ω) - 0(0) = 1
and v{φ(t + ω)-φ(t)) = O. Hence

)-0(Q+lOOO)2

 | sin4π0(O
h{φ{ί\ φ{t + ω)) = +

Define
M0(O,0U + ω))= —

0'(O=o.oi

= 0(0,
= 0.24,

= 0.51,

= 0(0,
= 0.74,

if

if

if

if

if

if

4002 ' 8004

0 < 0(0 < 0.01

0.01^0(0^0.24

0.24^0(0^0.25

0.5^0(0^0.51

0.51^0(0^0.74

0.74^0(0^0.75,

and require that φ\t + 1) = 0'(O + 1 . In view of the fact that φe 7α, we have that φ'
is well defined and φ'e Ya. A calculus excercise shows that

h(φ'(t)9 φ'(t + ω)) ̂  h(φ(t), φ(ί + ω)),

with equality if and only if φf(t) = φ(t) and 0'(ί + ω) = 0(ί + ω). Hence,

with equality if and only if φ' = 0. Since we have assumed that φ maximizes Fω\ Y£
we must have φ' = 0, which implies the conclusion of Lemma 2. •

Proof of Lemma ί. In [3, Sect. 10], we showed that if Fω takes its maximum at
0e Yω9 then 0 satisfies PercivaΓs Euler-Lagrange equation. The reasoning we gave
there actually shows somewhat more: Suppose φεFω and φ does not satisfy
PercivaΓs Euler-Lagrange equation. We constructed a one-parameter family 0S of
elements Yω, defined for a^s^b, where a^O^b and a<b. (In [3], this family was
denoted by 0S, ψs, or ξs, depending on the case.) For each fixed ί, we had that 0S(O
depended twice continuously differentiably on s, the functions

(s,^ψ and (S,t)-^#
OS OS

are uniformly bounded and measurable in [α,fe]xlR, and — F ω ( 0 s ) | s = o φO.
7 US

Moreover, in the case a = 0, we had — Fω(φ)\s=z0 >0, and, in the case b = 0, we had

Suppose φa does not satisfy PercivaΓs Euler-Lagrange equation and take

0 = 0α. Then we have a one parameter family φ as above. Since (s,t)t->—^— is
us

uniformly bounded on [α, b~\ x 1R, it follows from Lemma 2 that φse Ya for all s
with \s\ sufficiently small. But Fω(φs)>Fω(φ) for all such s satisfying s > 0 or for all
such s satisfying s<0, according to the sign of —-Fω{φs)\s = 0. This contradicts the
assumption that φa maximizes Fω\Y£. s

This contradiction shows that φa satisfies PercivaΓs Euler-Lagrange
equation. •
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4. Some Other Invariant Sets

A slight modification of the construction in Sect. 3 gives an example of a ΣcΛ/T
which satisfies conditions 1, 2, and 4, but not condition 3 in the definition of Jίf^ω.

Let T1/2\A->AbQ defined by Tlj2(x,y) = (x + ̂ y). The mapping / defined in_the
previous section obviously commutes with Γ1/2, so it induces a mapping / on
Λ/Tll2, as well as the mapping / on A/T. The obvious projection of A/T onto
A/T1/2 is a 2-fold covering mapping. Take φ = φ° (or φ1) in the notation of the
previous section. Let ΣcA/T1/2 denote the image of ΣφCA/T under the obvious
projection.

It is easily seen that this Σ satisfies conditions 1, 2, and 4, but not condition 3 in
the definition of Jΐf>ω, where A/T is replaced by A/Tί/2.

5. Continuous Dependence of φa on a

It is easily seen that

in the notation of [4]. Hence I{Y£) is a convex set. Thus, I(φa) maximizes the
continuous, strictly concave function FωI over the convex, compact set I(l^). It is
easily seen that for any α, α'e[0,1] and any φe 1^, there exists φ'e Y^ such that
d(φ\φ)^\ά — a\. From this and the strict concavity of FωI, the continuous
dependence of the maximizing element φa on a follows easily.
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