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Abstract. Quantum gravitational bubbles may be used to obtain a non-
perturbative approximation to the path integral of quantum gravity. There are
three basic types of bubbles CP2, S2 x S2, and K3, and in this paper the
propagation of elementary spin-1 particles in CP2 is investigated. To date
information about the propagation of particles other than scalars has been
obtained by making approximations to the basic bubble types. The work
presented here represents the first exact calculation. It is found that spin-1
particles scatter very strongly, particularly at low energies, which is at odds
with both physical observation and the earlier work on this subject. Possible
explanations for this discrepancy are offered.

1. Introduction

The idea of spacetime foam is that the dimensional character of the gravitational
constant allows very large fluctuations of the metric and even the topology on
scales less than the Planck length. Such a foamlike structure cannot be handled by
ordinary perturbation theory but it might be treated by a different approximation
scheme, that of gravitational bubbles [1,2]. In these references the authors use
gravitational bubbles to calculate the behaviour of particles of spins 0, \, and 1 in
the quantum gravitational vacuum. In this paper, I shall discuss a similar
calculation, the results of which are at odds with those of Hawking et al. In order
to appreciate the discrepancies and possible resolutions it is necessary to discuss
how one arrives at the foam model.

Consider some fields, φ, propagating through a gravitational vacuum from
some "in" region to some "out" region. In keeping with the usual assumptions of
quantum field theory, I shall assume that there are such "in" and "out" regions
which are asymptotically flat, and where the interactions and fluctuations may be
turned off. The scattering amplitude for this propagation may be evaluated via the
Euclidean path integral

<Φ<JΦm> = ί ®[0,£ |exp(-/[0,£ | ) , (1.1)
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where the integral is performed over all fields φ which agree with φin and φout in
the asymptotic regions, and all asymptotically Euclidean (AE) metrics [3]. The
action, J[g, φ\ is assumed to be Einstein, however the quantum gravitational
bubble method can be used with any action, and the results will be similar to those
derived here.

If we perform the integral over the fields φ for a fixed metric g, then we obtain
the scattering amplitude for the fields propagating in that background. Therefore
we may view (1.1) as being the average over all metrics of the scattering amplitudes
(φout\φ ιn) in each background, weighted by the probability that the particular
background metric will appear in a vacuum fluctuation. The consequence of using
a different gravitational action will be to change the weight factor given to a
particular metric fluctuation, or gravitational bubble.

A useful way of handling AE metrics is by adding a point at infinity, and
making a conformal transformation so as to render the metric regular everywhere.
This is the analogue of the way in which Euclidean space, R4, is compactified to S4

in Yang-Mills theory. The reason that such compactification is helpful is that zero
rest-mass particles obey equations with simple properties under conformal
transformations. Even if one is dealing with massive fields, one can regard them as
being effectively zero mass when compared with the Planck mass. Therefore, in
practice one usually considers (1.1) to be an integral over all compact Riemannian
metrics, where the fields, φ, obey some suitably modified "boundary" conditions at
the point of compactification.

Hawking et al. [1, 2] introduce what they call the finite dimensional ap-
proximation to simplify the path integral in two stages. First they assume that
the fluctuations of the background involve only single Riemannian metrics, each
one localized in some small region, and it is also assumed that these individual
metrics are non-interacting. This is just like the dilute gas approximation of Yang-
Mills theory. The second approximation is far more drastic. The aim is to
represent all Riemannian metric fluctuations by a family of simple topological
units, called "bubbles," which are described by a finite number of parameters.
Therefore, to compute (1.1) one obtains the scattering amplitude for each bubble,
weights it with exp(-Action) and averages this over all parameter values.

Hawking et al. [1,2] have observed that by taking topological sums (cutting
and pasting) of combinations of CP2, anti-CP2, K3, anti-K3, and S2 x S2, it is
possible to build a compact, simply connected 4-manifold of any Euler
characteristic and Hirzebruch signature. From the generalized Poincare conjec-
ture it follows that any compact, simply-connected 4-manifold can be built up to
homeomorphism by topological sums of these manifolds. (The four dimensional
Poincare conjecture has been proved for topological manifolds by Freedman
[4].) It must be stressed that this does not mean that the metric structure can be
built in this way, but simply the topology. It is suggested in [1,2] that one should
use the manifolds listed above as bubbles in the finite dimensional approximation.
The parameters of this family of topological units must include not only those
which describe the metric on the manifold, but also the position, size and
orientation of the bubble between the asymptotic "in" and "out" regions. A good
physical analogy is if we have a mixture of colloids of several different oils in water.
The colloids consist of droplets of oil of all different sizes. One now asks how light
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scatters off this mixture, and the ensuing calculation is formally very similar to that
for these gravitational bubbles.

The similarity of this technique to the dilute gas methods of Yang-Mills theory
is evident, but here the bubbles do not comprise an exhaustive list of solutions
minimizing the Einstein action. The bubbles are not even gravitational instantons.
Furthermore, it is very difficult to determine the correct weight factor for each
bubble in the path integral. Clearly, the approximations that have been made are
somewhat Draconian. However, the beauty of the gravitational bubble approach
is that it is non-perturbative, and if one believes that non-trivial gravitational
effects are due to topology, then one can at least get some indication of the higher
order effects of the quantum gravitational vacuum by calculating how each bubble
scatters elementary particles.

Hawking et al. [2] give details of their calculations of scattering massless
particles by bubbles. These calculations are not very extensive because K3
has an impossibly complicated family of metrics [5-7]; none of the Green's
functions on S2 x S2 are known and only the scalar Green's functions on CP2 were
known until recently [8]. However, Hawking et al. made an approximation to
S2 x S2 by a conformally flat manifold with conical singularities, and they used this
to estimate how higher spin particles propagate in foam. Their results suggest that

Ik -k V
the scattering amplitudes are of order 1

 2

 2 , where s is the spin, kί and k2 are

the "in" and "out" momenta, and mp is the Planck mass. At first sight it may
appear that such scattering would violate momentum conservation. However,
what happens is that several particles must scatter in the same bubble in such a
way that energy-momentum is conserved overall [2]. This amplitude shows that
low energy scattering is very strong for elementary scalars, and extremely weak for
higher spin elementary particles. This is not inconsistent with observation since no
elementary scalars have been observed, and the higher spin effects are beyond
measurement at present.

The calculation to be discussed here is for the scattering of spin-1 particles by a
bubble with topology of CP2 and a metric conformal to the standard Fubini-
Study metric.

The result takes a rather different form to that in references [1,2]. Most
particularly, there is very strong scattering at low energies, contrary to the usual
observation that light travels in straight lines in empty space. This result does not
necessarily ruin the foam model, there are some technical properties of this metric
on CP2 which may mean that it is inappropriate to use it. This will be discussed in
Sect. 6.

In Sect. 2 I shall give a cursory description of CP2, a more complete discussion
may be found in references [8] and [9]. In Sect. 3, I describe how to attach a
conformal null infinity, J>, to the asymptotically Euclidean space obtained from
CP2 by sending a point to infinity, and then obtain the appropriate initial data for
massless spin-1 particles. The inner products on J are discussed in Sect. 4, and in
particular how to use the CP2 Green's functions to propagate from J to J. The
Green's function is introduced in Sect. 5, and the inner products are evaluated.
Finally, the impact of my results on foam is considered in Sect. 6.
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2. The Geometry of CP2

The traditional way of describing CP2 is in the complex coordinates (ζv ζ2), where

1
ρ2(C) Σ ζfdC (2.1)

and

ρ2(Q = α 2+ £ | q 2 . (2.2)

One requires three such coordinate patches to cover the entire manifold the patch
(d, (2) excludes a CP1 ^ S 2 at (f = 00. This CP 1 is in fact a bolt [10] that is to say
the metric (2.1) has a Killing vector field which vanishes on this surface. The

symmetry group of CP2 is , and the stabilizer of a point is a copy of U(2)

[11]. Here U(2) is locally isomorphic to SU(2)xU(l), and if one considers the
stabilizer of the origin of the CP2, ζ1=ζ2 = 0, then the factor of SU(2) serves to
rotate the CP1 at infinity, and the Killing vector field corresponding to the U(l)
factor is the Killing field which vanishes on the bolt.

The metric (2.1) is Einstein-Kahler with cosmological constant A— —j, and has
a

Kahler form:

= igjuζ A dί>

J . \2< 3)

For my purposes, it is more convenient to adopt real coordinates defined by

j j j ) , 7 = 1 ,2 ,3 , (2.4)

where (α, b, n) is an orthonormal triad in R3. If this triad is (left) right handed then
the Weyl tensor of the CP2 is (anti-) self-dual. The choice of rij and a handedness
therefore determines the complex structure of the CP2, and clearly there is an
S2 x 7L2 worth of such structures. For the pressent I shall assume that (α, b, n) is
right handed the modifications to what follows for left handed systems are trivial.

In the real coordinate system the metric is

a
2

+ njη

j

μσx
σnkη

k

vλx
λ) , (2.5)

J""* Q2(X.

where ρ2(x) = a2 + x2 and ηι

μv are the self-dual 'tHooft matrices:

0 0 1 0\

2 _ I 0 0 0 - 1
ηuv~ l - i o o 0

0 1 0 0/
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which generate right-handed rotations in SO (4). The Kahler form now takes the
simple form:

Jμ = ntfμ , (2.7)

where ημ

v is numerically equal to ημv. The Riemann tensor is just

_Λ

_ j j 4-2T T ) (2R)
J aδu βy ' J <xβu yδ) ' V̂  °/

The Hodge-DeRham Green's function satisfies

(-Πx + Λ)G%(x,y) = δ«γδ(x,y) (2.9)

and has been obtained in [8] :

(2.10)

(2.11)

(2.12)

where α and γ are indices at x and y respectively and the " |" between a and y is a
notation adopted to separate indices belonging to different endpoints.

In order to set up the initial data, I will need the parallel propagator [12] for
geodesies on CP2. That is, the two point vector τα

y(x, y) which satisfies the equation
of parallel transport along the geodesic from y to x, and also has τa

y(x, x = δa

y. The
geodesic structure is nearly trivial, ajid it is no difficult task to show that

(2.14)

Finally, for convenience I shall adopt the notation, ημv = nkη
k

μv, and

x'v = ημvx
μ a n d y'v = ηvμy

μ. (2.15)

(Note the change of indices.)
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3. Null Infinity and the Data

In order to consider the scattering of particles by a CP2 bubble one must first go to
an asymptotically Euclidean space, M, obtained from CP2 by sending the origin to
infinity and conformally transforming, the metric to

Q'μv = Ω2gμv. (3.1)

A neighbourhood of the origin of CP2 is mapped to the asymptotic region of Aί,
and one may identify the sphere at infinity of M with the unit sphere in the tangent
bundle at the origin of CP2. Thus the asymptotic region of M may be complexified
and a Lorentzian section can be defined in the tangent plane at infinity. This
Lorentzian section clearly cannot be extended into the manifold since the Weyl
tensor is self dual. However, asymptotically Lorentzian sections are sufficient since
the physically measurable quantities, the data, are defined there only. We may
therefore attach an J> to M, and this may be conformally mapped back onto CP2.

Obviously there are many possible choices of conformal factor in the foregoing
construction. Here Ω is fixed by requiring that R(g'μv) = 0 and that

Rμvl
μΓ = 0 on J, (3.2)

where lμ is the null vector tangent to J. Then one obtains

where b is a constant scale factor.
The gravitational action of g'μv comes purely from the boundary term, and is

given by

I0 = ^bVa2. (3.4)

The metric g' defined by (3.1) and (3.3) is asymptotically Euclidean as
advertised. The Weyl tensor has the correct asymptotic behaviour as one
approaches the sphere at infinity. However, on the Lorentzian section of the
asymptotic region, the space-time is not flat at J specifically, the Weyl tensor does
not vanish.

In order to study the structure of J> it is simpler to work in CP2. Under the
conformal map (3.3), J> is mapped to a complex cone through the origin of CP 2 ,
described by

x μ = lμvf, (3.5)

where lμ is some null vector at x = 0. Equation (3.5) describes a geodesic, and v' is
an affine parameter. Let P, pμ, / μ , and fμ be a null tetrad at 0, such that fμf

μ

= — lμpμ = 1. Define a null tetrad P, nμ, mμ, mμ on J> by parallel transport along the
geodesic described by (3.5). It should be pointed out that the tilda over fμ and mμ

does not indicate that these vectors are the complex conjugates of fμ and mμ. The
tilda is intended to denote that these four quantities are the analytic continuations
of vectors which are complex conjugates in Lorentz space.
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From (2.14) and (2.15) it follows that

2a2

1

"2?1

1

ϊa2

1

2a
lvx + (x' f)x'Ί, (3.6)

where the dot product denotes the inner product with respect to the flat, diagonal
Euclidean or Lorentzian metric. Self duality of ημv implies that (x' •/) = 0 and (xf p)
= (x' •/). Therefore mμ propagates trivially, and mμ twists this is a manifestation of
the fact that the anti-self-dual part of the Weyl tensor vanishes.

One can define local coordinates on J> by normalizing lμ to have a component
of \ in some timelike direction, and setting up polar coordinates (θ, φ) to describe
the direction of lμ. In this system I shall take

dxv v' \dθ sinθ dφ
" (3.7)

. 3 ]/2(d id
J dxv υ' \dθ sinθ d

Then the relevant Newman-Penrose coefficients for J> are:

-; ρ = lμ;vm
μmv=-9

σ = lμ. vm
μmv = - -\-t (x' -f)2 σ = lμ. vm

μmv - 0,

<x-β= -mμ.vm
μfti>= -ί ]/2cotθ,

Ό

1/2 COt0 1 . ^ , ^ 2 ( ^ ί^t_r\ίM f»fv\ (3 3)1

Observe that J has right handed shear σ, but that the left handed shear, σ,
1/

vanishes. Also note that as ι/->oo, σ= j(ημvl
μfμ)->oo, and hence «/ has

singular shear as one approaches the complexified neighbourhood of the bolt. If
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one approaches the bolt even slightly away from a null direction, the factors of

-2 2 serve to prevent divergences in the shear and Weyl tensors. On null

directions these factors become - j . Hence the null cone through the origin is

peculiar in that it blows up at the bolt and yet the interior and exterior of the cone
are well behaved as x-*oo. This is probably a major factor contributing to the
discrepancy between my scattering calculations and expectations.

The null hypersurface initial value problem is treated very thoroughly in [13].
On a null surface the field equations do not yield constraints on the data, but
determine the normal derivatives of the data out of the surface from the data on
the surface. For a Maxwell field one needs to specify only Fμvl

μmv and FμJ
μmv.

Hawking et al. [2] have shown that if one conformally maps a flat«/ to the origin
in a similar manner to the foregoing analysis, then the data for plane waves of
momentum kμ in the asymptotic region becomes:

v'3

eiωb2/v'

v'3
δ{θ-ι

sinθ

9k)δ(φ-φk)
sin#

i7 m v π i7 w~v ΛT

eiω δ(θ-θk)δ(φ-φk)
rμvι m u , rμvι m i\ / 3 ._ Q yj.y)

for self dual data, and

FJμmv=0; F Frh^N^—^-^" "k;~yΎ ΎkJ (3.10)
μ μ v sinθ

for an anti-self-dual field. Here N is a normalization constant, θk and φk are the
angular directions of the plane waves on </, and ω = — /cμnμ. It is elementary to
show from the field equations that the data must also satisfy

FμvlV=±Fμvm
μmv (3.11)

with + or — for self-dual or anti-self-dual data respectively.
This may be generalized to the case of CP2, where J is not flat, by simply

dictating that in (3.9) and (3.10) P, mμ, mμ, and nμ must be a parallel transported
tetrad. Naturally (3.11) remains true.

To construct a gauge potential for this data on CP2 I shall take the light cone
gauge

if and only if

Λ

μ = h1mμ + h2mμ-h3lμ. (3.13)

Then

F lμmγ = — Γ T T O ^ I H — τ ~ j ( χ f ^ / ) 2 ^ 2 > (3-14)
v dv av
1 d

where I have used (3.8).
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For anti-self-dual data we may take

iN eίωb2/v' δ(θ-θk)δ{φ-φk)

ωb2 ήnθ

421

(3.16)

and for self-dual data

-jNe
iωb2lv'

_
2'ωb2

δ(θ-θk)δ{φ-φk)
smΊ?

(3.17)

The choice of h3 is undetermined at present, this represents the remaining gauge
freedom. Aμl

μ corresponds to the fixed gauge freedom of the background, and
h3 = Aμn

μ contains the information about gauge propagating from J> to J>'. From
(3.11) it can be shown that

dh.

δυ'

dυ'

(self-dual)

(anti-self-dual).

Hence I may choose h3 by the further gauge condition VμA
μ = 0. The initial data is

summarized in Table 1.

Table 1. Initial Data for Maxwell Fields on the Null Cone
through the Origin of CP2

Gauge Conditions: A lμ = 0, F Aμ = 0

Anti-Self-Dual-Data

FJμmv=N
e'ωblv δ(θ-θk)δ(φ-φk)

ι/3 sinθ

_ -iNemb*/v δ{θ-θk)δ(φ-φk)

— ^ 7
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Self-Dual-Data

F.ιvl
μmv = N —

μ υ smt?

d l , 2

'δt/^v ^ = ^ x ' " 2

iN eίωb2/v> δ(θ-θk)δ{φ-φk)
2 ωb2 v' ύnθ

4. The Inner Product

In order to calculate the scattering amplitude one must set up a quantized
Maxwell theory in the neighbourhood of «/. The Cauchy data obtained in the
previous section provide a set of mode functions with which to define particle
states. The inner product between mode functions on a hypersurface, Σ, is

IMi,A2) = iSAlF2μv-AΊFlμvdΣ\ (4.1)
Σ

where At is a gauge potential for Fv Each term of (4.1) is separately gauge
invariant, as can be verified by integration by parts within the hypersurface. The
inner product can be used to obtain inner products involving the Maxwell field
operators. Annihilation and creation operators are then defined on «/, and the
Cauchy data appropriate to a one particle state may be obtained. Normalization is
fixed by the commutation relations. The details may be found in [2] here I shall
merely state that the Cauchy data is to be taken as in the last section, with
normalization constant N = 2b2π~112.

Consider a gauge potential satisfying Maxwell's equations in a region V with
boundary Σ. Then

= 0. (4.2)

Define a field

B\x) = j A»{y)&yG\{x, y) - G'μ(x, y)^yA"(y)dV(y), (4.3)
V

where £?y is the Hodge-DeRham operator at y:

and Ga

μ(x, y) is the Hodge-DeRham propagator satisfying (2.9). Using these facts
in (4.3)

A\x)- J(VfG*μ(x9y)(VvAηdV(y)
v
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However using Green's theorem in (4.3)

B\x) = - f A»(y)VvG\(x, y)dΓ(y).
Σ

Hence

A\χ) = - f A»(y)VvG«μ(x, y) + G\(x, y)(VμA*)dF{y)
Σ

(4.4)
V

It is elementary to show that

where

The constant c is subtracted because it is a zero mode of — •• Consequently the
last term of (4.4) is pure gauge. Anti-symmetry may be restored to (4.4) by adding
another pure gauge term. Therefore

A\x) = - f A»{y)VvG\{x, y) + G?(x, y)(VμA»)
Σ

+ pure gauge terms. (4.5)

It should be noted that in order to derive this I assumed that the hypersurface
Σ bounded the volume V; in my case Σ is made up of two null hypersurfaces.
However it may be shown that the Cauchy data is sufficient if I take one such
surface. From now on I shall assume that Σ is a null hypersurface.

Equation (4.5) may be integrated by parts within the hypersurface to yield

A« = - 2 j A"(y)G V; v](x, y) ~ Gα|"(*, y)Alμ, v]dΣ\y)
Σ

+ gauge terms, (4.6)

and therefore the inner product (4.1) may be used with the Hodge-DeRham
Green's function to propagate the Maxwell potential up to gauge transformations.
The S-matrix element for a spin-1 field i 1 on Σ 1 propagating to a spin-1 field A2

on Σ2 may now be written up to a phase factor as:

S = / l 2 U 2 , / I l (G,X 1 ) ) , (4.7)

where the inner product IΣ in (4.7) is defined by (4.1).
There is a further simplification that may be made before explicitly calculating

the integral. Consider the expression

J = 2ίA'Blaίβ]-AlatnB'dΣl>, (4.8)
Σ

where Σ = J>,Aa is the Cauchy data in Table 1 and Ba is an arbitrary vector field.
With the coordinates chosen in Sect. 3, the volume element is

= $υ'2lpdυ'smθdθdφ,
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where lβ^-j = ^-7 is a null generator on J>. Suppose, for the sake of simplicity, that

A\x) represents an anti-self-dual Maxwell field, then

v'2
= J 2Λ[a. β][ - lβn%By) + nflβ{myB

y)-\ — dv' sin θdθdφ. (4.9)

However

and

Substituting this into (4.9) and integrating both terms by parts, using (3.7) and
(3.8), one obtains

d 1

dv' v'

Finally using ρ=— and that Γ°βl
amβ = 0 for all connection coefficients, the

immediately preceding expression reduces to

j h 1 [BΛ. βΓmβ - Bβ. al
amβ~\ — dv' sin θdθdφ

Σ 4

Hence

J = 4\h1B[a>β]nι«dΣβ. (4.10)
Σ

The self-dual case is more complicated since J is not flat in this sector, but the
result is just the same

(4.11)

These expressions are very satisfactory because the integrands manifestly extract
the self-dual or anti-self-dual parts of BΛ, and contain only the primary data, hx

and h2 in each case respectively.
The scattering amplitude may now be written

5 = 1 6 J j Gίaιmy^ςriQυi(x)i2(y)dΣβ{x)dΣδ(y)9 (4.12)
Σi Σ2

where ji(x)q\ and j2(x)qa

2 are either h^ίrf or h2(x)mα depending upon the nature
of the initial and final data.
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5. The Scattering Amplitudes

The Maxwell equations decouple into the self-dual and anti-self-dual parts

Fμv

;v = 0 o VA

AφAB = 0 and VA

A'φA.B. = 0. (5.1)

Consequently (anti-) self-dual data can only propagate to (anti-) self-dual data.
Hence the spinor form of G[aβ]\[yδ] should have one pair of self-dual indices and
one pair of anti-self-dual indices. This is true in CP2, save for one small detail. The
Kahler form (2.3) yields a self-dual Maxwell field, F = 2J, such that Fμv.v = 0;
furthermore, this Maxwell field is a non-trivial co-cycle, that is, it has no globally
defined gauge potential. The presence of this topologically non-trivial zero mode
gives rise to complications in the form of G[aβ]\[yδ], even though it cannot
contribute to G α ) r Indeed, it may be shown directly from (2.10) that

Jaβ(x)Jγδ(y)G[a,mγ,δ](χ,y)= - ^ , (x + y).

To discover the origin of this parity violation, consider the expression for Ga\γ(x,y)
in terms of eigenmodes:

k
where \pk

a are the eigenvectors of the Hodge DeRham operator, and λk are the
eigenvalues. These eigenvectors may be obtained in terms of scalar eigenmodes
and gauge covariant constant spinors [8, 14]. From this one can show that for

the only parity violating term contained in G[α β^[y δ] is

However, in addition, there are some terms involving the ̂ -function, δ(x,y). All
these terms are also parity violating. The ̂ -function contributions are precisely
what are needed in the S-matrix integral in order to cancel the term (5.2).

Observe that

= 0.

Hence

which establishes that these ^-functions serve to do the necessary cancellations in
the case of sources in Euclidean space. The case of propagation from J to J> is
more complicated since one is now integrating a ^-function over two three-
dimensional surfaces. However there will be a non-zero contribution from the
points where the initial and final hypersurfaces intersect, and this must cancel with
the contribution arising from (5.2). The simplest way to proceed, therefore, is to
compute G[aβ]\[yδ] and neglect all parity violating terms of this nature.
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One can simplify the calculations by removing some gauge terms from G α ( r

Define

P ±^J1^
ab 4π2{\-L)dx«df

Hφ = Eφ-Gab. (5.4)

Observe that

and

^ = ^ + έ ^ z l o g ( 1 - L ) 4 (5 6)

Equation (5.4) shows that

H*=iLj^)^w-w> (5 7)

and in particular, H contains no log terms. Equation (5.6) demonstrates that the
remaining log terms contained in Gα|y are pure gauge. This is to be expected since
massless fields on CP2 should obey Huygens principle. Therefore the integrand of
(4.12) may be computed from (5.3) and (5.7).

The angular integrations in (4.12) may be done immediately to obtain

ω\b2lv'\ /Jω2b
2/u'

h
where

Define

where I am using the notation of (2.15). Then, for x2^y2 = Q (since both xμ and yμ

are null vectors):
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2

a2(T-L)

2a2

= -4/a2(x' qi)(y' q2)- -2~Λ -(q1 q2)

{2a2(I-a2)(qi-q2)-(I-a2)(x' qi)(y'-q2)[_a\\~L)V

+ (y'-q1)ίJ(x-q2)-(I-a2)(x'-q2ft+(yq1)l(I-a2)(x-q2) + J(x'-q2

(5.12)

Note that the first term of (5.12) has precisely the form of (5.2).
Introduce the geometric factors

In spinor form one may write k? = kfkf, t]μv = ηA^,A,B,, and then modulo
factors of A, B ~ ηABk^k2, C^η^kfkf. The condition ημv = niη'μv, where n2 = ί is
equivalent to detηAB=ί, which is in turn equivalent to

C1C2=-hA2 + B2). (5.14)

The integral (5.3) is easier to evaluate by making the change of variable

u = b2/v', v = b2/u'. (5.15)

Then

r 2 Ab* r Bb*

uv uv

and

a\4 u2v2

(ί-L) \b) loLuυ

where ot = 2a2A, β = b\A
Using this in (5.11) and (5.12), and allowing for parallel transport of qx and q2

by (3.6), one gets massive cancellations which reduce the central part of the
integrand of (4.12) to

KJl*,β'\\[y,δγi(ilι2(l2

(5.16)
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where εf = + 1 or — 1 if qt = mi or mf respectively. Again note that the first term is
precisely the contribution arising from the topologically non-trivial zero modes of
the Maxwell equations, and therefore this term is to be ignored. The remaining
term manifestly preserves parity.

Substituting (5.16) into (5.8) we get

— π^h^Λ2 °° °° 1

g = f f
2π3ωω j ^ Λ

f f c c
2π3ω1ω2 j ^ Λ [αwt + jS]3

Integrating both terms twice by parts one obtains

b* 7 °C iωίU iω2v !
5 = Ϊ 6 ^ Λ _V ' * 2 ίotuυ + β']

This integral is the same as was obtained by Hawking et al. [2] in their calculations
for scalar propagation. The result is that 5 = 0 if ω x and ω2 have opposite sign, and
if ωί and ω2 have the same sign then

S=—-2—(l+εJίl-e^CίM- + ( l + ε 2 ) ( l - ε 1 ) C 2

2 — )\J0(p), (5.17)

where

P^-2hXA2;pω^. (5.18)

Note that k\ and kμ

2 are both future directed null vectors, so A = \(k1 fc2)<0, and
hence p2 > 0.

It should be remembered that (5.17) represents the scattering due to the
secondary non-causal pole of the propagator. (The primary pole is that for causal
propagation in flat space as if the CP2 bubble was not present, and has been
excluded by assuming that k\ and k\ are not parallel.) Like the results of Hawking
et al. [2], this amplitude corresponds to either two particles coming in at J~ and
disappearing, or two particles emerging from J>+ with nothing going in at J>~'.
This is just the non-causal nature of the pole manifesting itself. It does not cause
physical problems, since in the foam model one has to average S over positions
and orientations of the bubble, and this ensures conservation of total energy and
momentum.

A more detailed discussion of the causality properties of these Green's
functions may be found in a forthcoming paper by Hawking.

The similarity of this work with previous foam calculations ends here. There is
a glaring anomaly in (5.17) which renders it at odds with the conventional foam
picture. The functional dependence of S should be J2(p) and not J0{p). As it stands
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(5.17) predicts very large amplitudes for low energy scattering of spin-1 particles by
gravitational bubbles.

6. Conclusions

The conventional viewpoint on scattering of elementary particles by foam states
Ik k \s

that for low energies the scattering amplitudes shall be of order 1
 2

 2 . This was

deduced from a collection of approximate calculations. One can also exhibit an
argument based upon the WKB approximation to support this claim. My result
shows that spin-1 particles scatter very strongly at low energies, indeed, the
amplitude diverges as one of the incoming photon energies becomes vanishingly
small. This would mean physically that if one observed a light source in a vacuum,
it would be like observing it through a very dense fog. There are two possible
explanations: either foam is wrong, or that the Fubini-Study metric (2.1) is not an
appropriate Euclidean metric to be included in foam calculations. The latter seems
more likely since J> is highly irregular, having a non-zero shear which also diverges
at one point. The Weyl tensor also does not vanish on J>. Therefore we cannot
strictly analytically continue the AE metric (3.1) to a metric which is flat and
Lorentzian at infinity. The curvature persists all the way out into the asymptotic
region. This may well explain why one has strong scattering, it certainly explains

Ik k
the failure of the WKB argument supporting S ~ 1

 2
2

This paper therefore contains a cautionary tale. The indiscriminate claim that
any gravitational instanton or AE metric may be used to obtain information
about a Lorentzian scattering problem, is plainly dubious. Furthermore, one must
be much more careful about precisely what sort of metrics one is going to consider
in the Euclidean path integral (1.1), clearly one cannot include too great a
contribution from (2.1).
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