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Abstract. The structure of the set of all translation invariant equilibrium states is
determined for all temperatures, for which the free energy is differentiable.
Models with several phase transitions are discussed rigorously.

1. Introduction

The class of ferromagnetic models considered in this paper includes the Ising model,
XY or Rotator model, Ashkin-Teller model, Zn-model, Potts model and so on. For
any temperature one can construct a translation invariant equilibrium state, < >°,
which is also an extremal equilibrium state (see Sect. 3). Moreover, if So is the
internal symmetry group (see Sect. 4) and S(β) the subgroup of So, which leaves < >°
invariant, then all equilibrium states are S^-invariant. In particular, when
S0 = S{β), there is no symmetry breakdown of So. On the other hand, when
S(β0) Φ So, all equilibrium states are S(βo)-invariant and therefore there is a natural
action of the quotient group S0/S(β0) on the equilibrium states. Using this action on
< )°, one obtains new extremal equilibrium states <( ) θ , θeS0/S(β0). Let λ be any
probability measure on S0/S(β0), which is translation invariant (with respect to the
action of TLd on S0/S(β0)). The state

ί λ(dθKΎ (1.1)
So/S(βo)

is clearly a translation invariant equilibrium state. The main result of Sect. 4
ensures, that all translation invariant equilibrium states at inverse temperature β0

are given by (1.1), if and only if the free energy is differentiable with respect to β at β0.
This result was already known for Ising ferromagnetic systems by the works of
Slawny [1] Lebowitz [2], [3], and Bricmont, Lebowitz, Pfister [4]. The main
technical tool is correlation inequalities [5], which are derived using ideas of
Ginibre in his basic paper on correlation inequalities [6]. One obtains in this way
results similar to those of Lebowitz in [2].
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In the second part of the paper (Sect. 5), one constructs simple models with
several phase transitions with symmetry breakdown. One can also consider gauge
models with several phase transitions associated with different Wilson loops. The
main tool is Ginibre inequalities [6]. This second part is almost independent from
the first part, except for notations, which are fixed in Sect. 2.

2. Notations

All models are defined on the lattice Zd, and the state space at xeΈd is the same for
all x. It is either the compact abelian group T= IR/2πZ, or the discrete subgroup of

{ JO ^

, fc = 0, 1,..., p — 1 >. The state space is always considered as a measure
P J

space with the normalized Haar measure. The configuration space G is the set of
functions on Zd with values in the state space. Here G is an abelian compact group
with the addition defined pointwise and with product topology. Its elements are
denoted by θ, φ, θt etc. Also G is a measure space (with the product structure) and the
normalized Haar measure is denoted by dθ. The configuration space has the
following important property: given any subset A CZά, the projection πΛ assigns to
each ΘEG its restriction ΘΛ on the set A. Let G(A) = πΛG and A = Zd\A. Then

G = G(A)xG{A), dθ = dθΛ®dθΛ, (2.1)

where dθΛ = πΛdθ.

Since G is a compact abelian group, it is natural to consider the dual of G, which
is isomorphic to the set Γ of all functions on Zd with finite support and values in Z, if
the state space is T, otherwise in Zp. Its elements are denoted by m, n, mi etc. By
convention

mθ = Yjm{x)θ{x). (2.2)
X

There is a natural action of Zd on G, respectively Γ. For example, the translate of m
by yeZd is the function my,

my{x) = m(x-y). (2.3)

For the sake of simplicity all interactions have finite range and are translation
invariant. Hence an interaction is defined by k local observables. The next
restriction on the choice of these local observables is of course essential for this
paper: All local observables are of the type

-J(rn)cosmθ, meΓ, J(m)>0. (2.4)

Alternatively an interaction is specified by a translation invariant function J on Γ,
such that

\ m* m< (2.5)
otherwise, v ;
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where — J{m^} cosmβ, ί = 1,..., fc, are the fc observables defining the interaction. For
any finite Λc%d and any Θ = (ΘA,ΘΛ)9 (see (2.1)), the energy of ΘΛ, given ΘΛ, is by
definition

H{θA\θλ)=-ΣJ{m)cosmθ, (2.6)
m

where the sum is over all m, such that the support of m has a non-empty intersection
with A. The Gibbs measure on A with boundary condition 0 is the probability
measure ( ) ^ o n G given by

Z(Λ\ΘΓ1

 eχp(-βH(φΛ\φΛ))dφΛ®εeΛ(dφΛ). (2.7)

The normalizing factor is

Z(Λ\Θ) = ί dφΛ exp( - βH(φA\θΛ)) (2.8)

and εθΛ(dφΛ) is the Dirac mass at 0^ on G(/i). The positive parameter β is the inverse
temperature. A probability measure μ on G is an equilibrium state if and only if for
all finite A and all observables f on G

(2.9)

The free energy is

f{β)=-\\imJ-\ogZ{A\θ) (2.10)
β ΛMLd\A\

which is independent of 0.

3. Correlation Inequalities

Let J be a fixed interaction given by the fe observables

- J K ) cos mf0, J(m ) > 0 , /=l,...,fe (3.1)

(see (2.4) and (2.5)). One of the first applications of Ginibre inequalities is to show
that

(A, C Λ2) => (cosmφ}°Λί ^ <cosmφ>°2 ̂ 0 , (3.2)

where < >^ is the measure (2.7) with θ(x) = 0 for all x e Έd. Using the symmetry of this
measure {φ-> — φ) one obtains

<sinmφ>^ = 0. (3.3)

Therefore

lim <exp/mφ>^ = <expίmφ>° (3.4)
A\TLά

exists for any meΓ. Since this set of functions on G is total among the continuous
functions, the limits (3.4) define uniquely an equilibrium state <( >0, which is
translation invariant. (The last statement follows from (3.2).) Another consequence
of Ginibre inequalities is the positivity

<cosm ίφ>°>0 i = l,...,k (3.5)

for the fe observables (3.1).
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Lemma 3.1 (Proposition 1 in [7]). For any finite A, θ, m and parameter α

<cos(mφ — <x)}θ

Λ ^ <cosmφ>°.

Using this lemma one proves very important properties for the state < >°, which
are summarized in the next corollary. The proof is given in [7].

Corollary 3.2. Let < > be any equilibrium state.
a) <(cosmφ)°^|<(cosmφ)|, meΓ,
b) if <cosraφ>° = <cosmφ>, then <sinmφ>=0,
c) <( )° is an extremal element of the Choquet simplex of all equilibrium states.

The state < >° is translation invariant and therefore it is a tangent functional to
the free energy [8]. If one adds — λcosnθ, A^O, to the local observables (3.1), then
one has a new interaction and a new free energy /(/?, λ) such that /(/?, 0) =f(β) (see
(2.10)). (If n — m{, then this is equivalent to change the coupling constants J{mj))

Corollary 3.3. For any neΓ, one has

-U0

Proof This is an immediate consequence of the convexity oίf(β, λ) with respect to λ,
and Corollary 3.2 a). •

Let G be a second copy of the configuration space G, whose elements are
denoted by θ'. Let

μ = O ° ® < > (3.6)

be the product measure on G x G of < >° and an arbitrary equilibrium state < > on
G.

Lemma 3.4 (see [5]). For any m, n, and λ^O

μ((cos mφ ± cos mφ') exp (± λ cos nφ cos nφ')) ̂  0.

Proof It is sufficient to prove the lemma for the measure

<->°Λ®<->ΘΛ (3-7)

with A and θ' arbitrary. The proof is now the same as in Ginibre [6] (see also [7],
where arbitrary θ' is taken into account). Indeed, after the use of the formula

2 cos a cos b = cos (α + b) + cos (a — b), (3.8)

and the change of variables

2φ(x) = φ\χ) + φ(x), 2φ\x) = φ\x) - φ(x), (3.9)

one obtains the needed factorization for exp(±λcosnφcosnφf) and therefore the
result. If one adds to the interaction the observable h-cospθ(0), and let /z-*oo, then
one obtains the case where the state space is Up. •

Corollary 3.5. //<cosmφ>°>0 and <cosnφ>° = 0, then (cos(mφ±nφ))° = 0.

Proof Let μ = < >0(x)< >0 in Lemma 3.4. Then

μ((cos nφ + cos nφ') exp (+ λ cos mφ cos mφ')) ̂  0. (3.10)
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On the other hand

exp( ± λ cosmφ cosmφ') =l±λ cosmφ cosmφ' + O(λ2), (3.11)

and consequently (3.10) is equivalent to

0 = 2<cosnφ>0^±2A<cosnφcosmφ>°<cosmφ>°-f 0{λ2). (3.12)

Dividing by λ and letting A JO, one obtains

{cosnφ cos mφ}°<cos mφ}° = 0. (3.13)

Using (3.8), this can be written as

{cos{mφ + nφ))° + {cos(mφ - nφ))° = 0. (3.14)

Both terms are positive or zero by (3.2). Therefore they are zero. •

Corollary 3.6. If {cosnφ}°>0 and <cosmφ>°>0, then {cos(mφ±nφ)}°>0.

Proof. Let xeΈd, and let mx be the translate of m by x:

(cos(nφ ± mxφ)}° = (cosnφ cosmxφ}°

±(smnφsmmxφ}°.

Let |x|->oo. Since < >° is clustering

<cos(nφ + mx(p)>0-»<cosftφ>0<cosra(p>0 (3.15)

and the lemma is true for large |x|. If (cos(nφ + mφ)>° = 0, then

<cos(mp — mxφ)}° = (cos(nφ + mφ — mφ — mxφ)}0 = 0 (3.16)

by Corollary 3.5 and (3.15) for n = m. However (3.16) and (3.15) are incompatible (for
|x| large). Hence (cos(nφ + mφ)}°>0. Q

Corollary 3.7. Let <•> be any equilibrium state. If <cosmφ}° = {cosmφ} and
0, then

(cos(nφ + mφ)}0 = (cos(nφ + mφ)} .

Proof By Lemma 3.4

μ((cos mφ — cos mφ') exp ( ± λ cos nφ cos nφ')) ̂  0. (3.17)

Using (3.11) as in the proof of Corollary (3.5) one obtains

{cosmφcosnφ}0(cosnφ} = (cosnφcosmφ} {cosnφ}0, (3.18)

and therefore

{cosnφ cosmφ}0 = {cosnφ cosmφ}. (3.19)

Using (3.8) one sees that

{cos(nφ ±mφ)}° = {cos(nφ ± mφ)} . • (3.20)
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4. Translation Invariant Equilibrium States

Let an interaction J be given by k local observables (3.1).

Definition. /0(m1 ? ...,mk) is the subgroup of Γ, which is generated by all m in the
support of J.

Definition. I(β) is the set of all me Γ such that <cosm#>° >0. From the results of the
last section one proves easily Proposition 4.1.

Proposition 4.1.
a) I(β) is a subgroup of Γ and I(β)2I0.
b)
c) li

βϊβo

Proof, a) follows from Corollary 3.6 and (3.5). b) is a direct consequence of Ginibre
inequalities. The last statement is proved as follows. Let β>β0. By (3.2)

(cosmφ}°Λ(β) ^ (cosmφ}°(β). (4.1)

Therefore

<cosmφ>°(/y ^l im <cosmφ>%8), (4.2)
βlβo

and by taking the limit A\TLd

lim (cosmφ)0(β)^(cosmφ>0(β0). (4.3)
βlβo

Since <cosmφ>0(/?)^<cosraφ>°(/?0), one has

lim (cosmφ}°(β) = (cosmφ}°(β0). (4.4)

Proposition 4.2. Let <•> be any equilibrium state such that <cosraφ>° = <cosmφ>
>0, for all meE, a subset of Γ. Then <cosmφ>° = <cosmφ> > 0 for all meI(E\
the subgroup of Γ generated by E.

Corollary 4.3. The following statements are equivalent :
a) the free energy is differentiable at β0,
b) for all translation invariant equilibrium states <cosmφ> = <cosmφ>°, melo,
c) for all periodic equilibrium states <(cosmφ> = <cosmφ>°, melo.

Sketch of the Proof, a) is equivalent with <cosm φ> = <cosmI φ>°, ί = l , ...,fc for all
translation invariant states. Therefore, by Proposition 4.1, a) and b) are equivalent.
The equivalence of b) and c) follows from Corollary 3.2 a). Q

Definition. So is the annihilator of Jo, i.e. the subgroup of G of all φ such that
Qxpimφ = 1, for all melo. S(β) is the annihilator of I(β).

Since I0Cl{β\ one has S{β)CS0. Both / 0 and I{β) are stable under the
translations of Έd, because the interaction J and the state < )° are translation
invariant. The same property is true for So and S(β). By duality

(4.5)
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Moreover the annihilator of S(β), as subgroup of So, is isomorphic to I(β)/I0.
Therefore

(4.6)

There is a natural action Tψ of φeG on G:

(4.7)

This action induces an action, denoted again by Tφ, on the probability measures on
G:

Tφμ(f) = μ(foTφ). (4.8)

Using this action, So is a subgroup of the symmetry group of the interaction. Indeed,
for all melo and all φeS0, cosmθ = cos(mθ + mφ). The symmetry group of the
interaction is usually larger.

Example. The standard ferromagnetic Potts model with p components is defined on
the state space Up. The interaction is

[0 otherwise,

where x and y is a pair of nearest neighbours on the lattice. Since

δ(θ(x\θ(y))=-Pγ cosq(θ(x)-θ(y))9 (4.10)
Pq = O

the interaction is of the type (2.4). The group 5 0 is in this case isomorphic to 7Lp, and
hence of order p. On the other hand, the symmetry group is isomorphic to the group
of permutations of p elements.

The group S(β) is exactly the subgroup of the symmetries of So, which leave the
state < >° invariant. Moreover all equilibrium states are S(β)-invariant by
Corollary 3.2a) and b). The state < >° has minimal symmetry. Let φeS0 and let
S(β)ή=S0. The action of θ on the extremal equilibrium state < >° gives a new
extremal equilibrium state < >θ. In particular

<exp ίmφ}θ = exp zm#<exp imφ}° (4.11)

and the notation is justified by

< . y = i i m <•>;;. (4.12)
A\TLd

Moreover < >θl = < / 2 if and only if ψ1-θ2)eS(β% because in (4.11)
<expimφ>°>0 for all me/(/?). Since all states are S(β)-invariant, there is a natural
action oϊS0/S(β) on the Choquet simplex of all equilibrium states. The orbit of < >°
under the action of S0/S(β) is the set of the states < >θ. For these states

Vme/0. (4.13)

Definition. Δo is the set of all equilibrium states such that <cosraφ>° = <cosmφ> for
all m in the support of J (see (2.5)).
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Proposition 4.4. Let < ) be any state in A 0. Then there is a unique probability measure
μ on S0/S(β\ such that

So/S(β)

Proof. If such a representation exists, then it is unique, since all < }θ are extremal
states. Let

< > = fλ(dρ)ρ( ) (4.16)

be the extremal decomposition of < >. Since < > e A 0, and Io is a countable set, (see
Proposition 4.2)

<cosmφ>° = ρ(cosmφ), Vme/0 (4.17)

A-almost surely. In other words, ρ is in Ao /Ualmost surely. It remains to show that
ρ = ('}θ for some θeS0/S(β). Let ρ be an extremal equilibrium state in Ao. Let

ρ = J dθρ\ (4.18)
So/S(β)

where ρθ is obtained by the action of θ on ρ and d# is the normalized Haar measure
on S0/S(β). lίmφl(β) one has ρ(expimφ) = 0. This is also true for mel(β)\lo. Indeed,

and by (4.6)

ρ(exp imφ) = J dθ exp imθρ(Qxp imφ), (4.19)
So/S(β)

J dθexpimθ = O. (4.20)
So/S(β)

Therefore

ρ(.)= j dθ( }\ (4.21)

and by the uniqueness of the decomposition of ρ into extremal states, one concludes
that ρ = < >θ, for some θ. Π

Corollary 4.3 ensures that all periodic states are in A 0 whenever the free energy is
differentiable at β. In such a case all extremal states, which are periodic (in particular
translation invariant), are in 1 — 1 correspondence with the periodic elements of
S0/S(β).

Definition. An inverse temperature β is regular if the free energy is differentiable at β.
It is not difficult to prove that β0 is regular if and only if {cosmiθ}°(β) is

continuous at β0 (with respect to β) for i= 1, ...,/c. Furthermore this is equivalent
with <cosmίθ>°(^0) = <cosmI θ>/(j80), i = 1,..., fc, where the equilibrium state < X is
constructed using a free boundary condition. These statements are simple
consequences of the convexity of βf(β) and correlation inequalities: if β1 ^β^β2

and i = 1, ..., fe, and (-}{β) is translation invariant,

<cosmiθ>/(j8) ̂  (cosm^Xβ) ^ (cosmfi}0^), (4.22)
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and

lim <cosmiθ>/(j81) = (cosmβYiβ), (4.23)

lim (cosmiθy0(β2) = (cosmiθ}0(β). (4.24)
35

[The proof of (4.23) is analogous to that of (4.24). See Proposition 4.1.]

Corollary 4.5. For all regular β, there is a 1 — 1 correspondence between the ergodic
probability measures on S0/S(β) and the extremal points of the Choquet simplex of all
translation invariant equilibrium states.

Remarks. 1) There are examples of ferromagnetic spin systems, for which some /Ps
are not regular. In [4] p. 275 such an example is constructed. More interesting is the
recent work by Kotecky and Shlosman [9] (see also Dobrushin and Shlosman
[10]), where first-order phase transition in the Potts model is established. In the
notations of these authors, one can choose for the states < > = , respectively < > φ ,
the states < >°, respectively < >/. The first-order phase transition is established by
showing that there exists a βc such that

<<5(0(x),%))>°(/g>i (4-25)

and in the same time

<l-<S(0(x),%))X(/?c)>i (4.26)

2) The results of this section and Sect. 3 can be generalized immediately to the
following situation: Let A be a function defined on Έd with values in the positive
integers and which has a finite support. Let the state space be the unit ball in ΪR2.
Using polar coordinates, the state of the system at x is given by (r(x), 0(x)) with
0 S r(x) S1 and 0(x)e T. The a priori probability measure on the state space is v(dr)dθ,
v(dr) Φ εo(dr) the Dirac measure at 0. The hamiltonian is formally

H = - £ J(A, m)rA cosmθ (4.27)

A,m

with J{A,m)^0, and

rA= γi r{x)AM. (4.28)
xesupp^l

The generalization is completely analogous to that of [4], which concerns the Ising
case. In particular one has the following result: if

<jA cosmφ) 0 = (rA cosmφ) > 0,

and
0 = (rBcosnφ}>0, for a n y e q u i l i b r i u m s t a t e <•>,

t h e n

(jArB cos(m + n)φy° =(rArB cos(m ± n)φ} > 0 .

The definitions of/0,1(β) as well as So and S(β) are the same as before. The definition
of Ao is given by (jAcosmφ)0 = (rAcosmφ) for all observables defining the
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interaction (together with their translates by all xeΈd). The main results,
Proposition 4.4 and Corollary 4.5, are again valid. Finally one can notice that
Lemma 3.4 does not require a compact state space.

3) It is possible that the same model can be described in two different ways. The
Ashkin-Teller model, discussed in Sect. 5.3, provides such an example. The state
space at x can be realized as the group Z4 or the group Έ2@7ί2. However, the crucial
condition (2.4) is satisfied in both representations only if λί =λ\ ^ 0 and λ2 ^ 0 (see
(5.10) and (5.16)). It fails in the ^-representation for λiή=λf

v Indeed, in that
representation, the hamiltonian becomes

(xy)

+ X λ2cos2(θ(x)-θ(y)). (4.29)

The subgroup So of the (internal) symmetry group is isomorphic to TL2 for λί+λ'1.
However, at low temperature, there are four extremal translation invariant states,
and obviously they cannot be described using this group only. In the Έ2-
representation of the model, condition (2.4) is valid if the coupling constants are
positive. The four pure phases, mentioned above, are labelled by the elements of the
group Z2@Έ2.

4) Corollary 4.5 is very simple in the case of the three-dimensional rotator
model at low temperature and without magnetic field: all extremal translation
invariant equilibrium states are exactly the states ( — }θ,θeT. These states are also
extremal equilibrium states (see [5]).

5. Examples

5.1. Introduction. In this section several ferromagnetic models are studied using
correlation inequalities. The main purpose of this section is to show that it is easy to
construct simple models with several phase transitions. In particular one proves the
existence of two phase transitions in the Ashkin-Teller model for a suitable choice of
the coupling constants. In all models there is a unique equilibrium state at small β.
Therefore S(β) = S0. If one increases β, one reaches a value βv where the first phase
transition occurs with symmetry breakdown of the symmetry group So. For β> βv

the state < >° is invariant only under a subgroup Sλ oϊS0. By increasing again β, one
reaches a value β2>βv where a new phase transition occurs with symmetry
breakdown of Sv For βx <β<β2, S(β) = S1 and hence all equilibrium states are
S1 -invariant. For β > β2, the state < )° is invariant under a subgroup S2oϊS1 and so
on. It is possible to construct models with an arbitrary number of such phase
transitions. If all /?, β1 <β<β2, are regular, then all extremal translation invariant
states (the pure phases of the model) are described by Proposition 4.4 and
Corollary 4.5. If this is not the case, then there is at least one value β%,β1<β*< β2,
where one has a first order phase transition with respect to β. However, in that
particular situation, there is no symmetry breakdown of S(β).

Convention. Since one considers only the state < >° with zero boundary condition,
one omits in this section the index 0. Thus < > denotes this state when the state
space is % and <( ) p denotes the same state when the state space is Up.
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5.2. Two Lemmas. Let J be an interaction given by k local observables

ft, i=l,.. .,fc, J(m ) > 0 . (5.1)

Lemma 5.1. Let J be the interaction given by (5.1). Let p and q be integers such that
p — kq, k an integer. Then

p ^ (cosmφ}q

(where the values of m are taken modulo p, respectively modulo q).

Proof. By Ginibre inequalities and for any finite subset AQΈά

(cosmφ)p(J) ^ (cosmφ)Λp(J) ^ (cosmφ}ΛtP(J9 h), (5.2)

where on the right-hand side the interaction is given by J and the local observable
— hcosqθ(0), h>0. Let h->oo. Then

lim (cosmφ}Λ>p(J,h) = (cosmφ}Λ>q(J). (5.3)
hh~• oo

By taking the limit A^Zd

(cosmφ}p{J) S (cosmφ>q{J). • (5.4)

Lemma 5.2. Let J be the interaction given by (5.1). Then

a) (cosmφ}p^<cosmφ>, for any integer p.
Let (pn) be any monotone divergent sequence of integers. Then
b) lim<cosm(p>Pn==<cosm<p>.

Pn

Proof The first part is proved as in Lemma 5.1. For any finite Λc%d,

lim (cosmφ}ΛiPn — (cosmφ}Λ. (5.5)
Pn

Since

(cosmφ}Λ>Pn ^ (cosmφ}pn, (5.6)

one has

P n . (5.7)
Pn

Therefore

<cosmφ>^lim<cosmφ>P n. (5.8)
Pn

On the other hand by a)

<cosraφ>rglim<cosmφ>Pn. D (5.9)
Pn

5.3. Ashkin-Teller Model [11, 12]. For a special choice of the coupling constants,
the Ashkin-Teller model is isomorphic to a Z4-model with hamiltonian

-H= Σ λ1cos(θ(x)-θ(y)) + λ2cos2(θ(x)-θ(y)), (5.10)
<xy>
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where <xy> is a pair of nearest neighbours on the lattice Zd, d^2. Since

cos θ(x) = + 1 <=> sin θ(x) = 0, (5.11)

one can introduce two Ising variables σ(x)= ± 1 and τ(x)= + 1 , such that

cos#(x) =4(σ(x) + τ(x)), (5.12)

smθ(x) = ±(σ(x)-τ(x)). (5.13)

Using these variables

cos20(x) = σ(x)τ(x). (5.14)

The hamiltonian (5.10) becomes

~H= Σ &(Φ)σW + τ(x)τω) + 2 2 φ)τWτ(x)τ4 (5.15)

which is a symmetric case of the Ashkin-Teller hamiltonian

) (5.16)

Without loss of generality one chooses λ2 = l. The symmetry group for the
I λ λ' \

hamiltonian (5.16) contains four elements. If λί-\-λf

1<2 i.e. — + — <λ2\, then

there are two phase transitions. The first one at βv which is associated with the
order-parameter σ(x)τ(x). The second one at β2, which is associated with the
existence of spontaneous magnetization, <(σ(x)> > 0 and <τ(x)> >0. (Here < ) is the
state obtained with the boundary condition σ(x) = τ(x) = 1.) Therefore, between β1

and β2, the system does not have spontaneous magnetization, but the variables τ(x)
and σ(x) are correlated in the sense that <σ(x)τ(x)> > 0. If λ\ > 0 and λ1 > λ'γ + 2, then
there are again two phase transitions. The first one is characterized by a
spontaneous magnetization, <σ(x))>0. However the two variables σ(x) and τ(x)
remain uncorrelated, <σ(x)τ(x)> = 0 and <τ(x)> = 0. At the second phase transition,
<τ(x)> > 0 (and of course <σ(x)τ(x)) >0). One has a similar situation for λγ > 0 and

The proofs are simple.

a) λγ +λ\ <2, λ2 = 1. Putting λι=λf

1=0 in (5.16) one obtains

<σ(x)τ(x)> (λl9 λ\) > <σ(x)>7(l), (5.17)

where < >z(μ) is the state, with boundary condition σ(x) = + 1 , of the Ising model

-H= Σ μσ(x)σ(y). (5.18)

Let β(I) be the inverse critical temperature of the Ising model (5.18) with μ= 1. Then

<σ(x)τ(x)>μ i,2'1)>0 if β>β(I). (5.19)

On the other hand

<σ(x)> (λl3λd + <Φ)> (AL λ'J ^ 2<σ(x)>/(μ), (5.20)
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where μ = -φ + -~ < 1 . Inequality (5.20) is obtained by adding — ft£σ(x)τ(x) in
2 2 x

(5.16) and letting fc-+oo. Therefore <σ(x)> = <τ(x)>=0 if β<β(I)/μ.

b) 0^λ'v A1>A'1+2, /12 = 1. Clearly

^ j (5.22)

Let <τ(x)|σ> be the conditional expectation value of τ(x), given the values of σ(x) for
all x. This quantity is dominated by its value for Φ ) Ξ 1 . Therefore

<τ(x)> (λl9 λ\)S <τ(x)>7 ( y +1) (5-23)

The inequalities (5.22) and (5.23) imply the desired results.

5.4. A Rotator Model with Three Phase Transitions. The goal of this section is to
study the rotator model defined by

-H= Σ μ1cos(θ(x)-θ(y))
<**> (5.24)

+ μ2 cos 2(θ(x) - θ(y)) + μ4 cos 4(θ(x)) - θ(y)),

where <xj/> is a pair of nearest neighbours of Zd, d^3. For a suitable choice of the
coupling constants μv μ2, and μ4, there are (at least) three phase transitions at βv β2,
and β3. The idea is to compare this model with a Z4-model and the rotator model
defined by (5.24) with μ4 = 0. The Z4-model is the symmetric case of the Ashkin-
Teller model defined by (5.10). In the last section one has seen that this model has
two phase transitions if λx <λ2. The first one occurs at β1(4;λί,λ2)^β{I)/λ2 and is
associated with the order-parameter cos20:<cos20>4 = O if β<β1, and
<cos2θ> 4>0if β>βv

The second phase transition occurs at β2(4;λvλ2)^β(I)/λ1 and is associated
with the order-parameter cosθ. A similar analysis holds for the rotator model (5.24)
with μί=λί,μ2 = λ2, μ4 = 0, if the coupling constants λx and λ2 are chosen suitably.
Using Ginibre inequalities

<cos 2θ)(λvλ2)^ <cos 2Θ) (0, λ2) = <cos θ} (λ2). (5.25)

On the right hand side of (5.25) one has the rotator model (5.24) with μί=λ2,
μ2 = μ4. = 0. Using Lemma 5.2

<cos θ) (λv λ2) £ ( c o s θ ) ^ ! ) = <σ>J(λ1). (5.26)

Let β(R) be the inverse critical temperature of the rotator model with μ1 = l,
μ2 = μ4 = 0. Let

β{l)/λ1>β(R)lλ2. (5.27)

Inequalities (5.25), (5.26) and conditions (5.27) imply the existence of two phase
transitions at βί(R]λ1,λ2)Sβ{R)/λ2 and β2(R;λvλ2)^β(I)/λv The first one is
characterized by the order-parameter cos 20 and the second one by the order-
parameter cosθ.
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One now has all the necessary information to analyze the model (5.24). Without
loss of generality one chooses μ2 = 1, μ1 = μ\, μ4 = μ!^ Ginibre inequalities imply the
lower bounds

<cos40> (μ'l91, μ'4) ^ <cos20> (1, μ4) (5.28)

and

'4). (5.29)

On the right hand side of (5.28) and (5.29) one has the rotator model defined by
(5.24), with coupling constants μί = l, μ2 = μ4, and μ4 = 0. On the other hand

4,I,μ 4 )^<cos20> 4 (μ;, 1) (5.30)

and

<cos0>(μ;,l,μ 4)^<cos0> 4(μ;,l). (5.31)

Since j81(4; Al5 l)^β(I) tends to β(I) when λ^O, it is possible to choose μ\ and μ'4
such that

4;μΊ,l) (5.32)

Therefore there exist three phase transitions with symmetry breakdown at
β^β^R Uμ'J, atβ2 with βι(4;μ'ι,ί)Sβ2Sβ2(R; Uμ'4l and at β3^β2(4;μ\,ί).
They are characterized, respectively, by the order-parameters cos 40, cos 20, and
cos0. Moreover, if μ[ decreases, then j81(4;μ/

1,1) increases and if μf

4 increases, then
β2(R 1, μ'4) decreases.

5.5. Remarks. 1. From the last example it is clear that one can construct models with
N phase transitions.

2. If in the last example the lattice is Z 2 , instead of Z 3 , then there is no symmetry
breakdown. All equilibrium states are rotation invariant at all finite β. However,
from the above analysis, there are (at least) three lines of critical points, if the
coupling constants are suitably chosen. Indeed, by replacing in (5.27) β(R) by β/, the
critical temperature of the two-dimensional rotator model (5.24) with coupling
constants μ1 = 1, μ2 = μ4 = 0, one can prove the existence of β\ >β'2 >β'3 with the
following properties. Below β'k, k= 1,2,3, <cos2fc" 1(θ(0) — 0(x))> has an exponential
decay for |x|->oo, and above β'k the same observable has an algebraic decay.

3. Using Zn-models, for n large (see [13]), on the lattice Z 2 , one can construct
models with several lines of critical points and several phase transitions with
symmetry breakdown.

4. Instead of considering ferromagnetic spin models, one can consider gauge
models on a lattice. By a straightforward generalization of Sect. 5.4, one can
construct models with several phase transitions associated with different Wilson
loops.

5. Let {βvβ2) be some interval of IR+, in which there is exactly one phase
transition with symmetry breakdown of S(β) at β^(βvβ2) Let S(β) = Sι for all
βι<β<β* a n d l e t ί i be the annihilator of S1. Therefore <cos mφ} > 0 for β1 < β < β^
if and only if me I v Let nίeΓ, such that (cosn^) = 0 for β<β# and ( c o s ^ φ ) > 0
for β>β*. If n2 = nί+m, with melv then the observable cosn2θ has the same

1 0<βc< oo, by the recent work of Frόhlich and Spencer [13]
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property as the observable cosnβ: its expectation value in the state < > is positive
for β>β%, but it is zero for β<β*. We say that cosn^ and cosn2θ are equivalent
order-parameters with respect to the transition at β^. This means that the possible
order-parameters for the transition at β^ are labelled by the elements of the quotient
group Tjlγ. Let S2 = S(β)cS1 for β>β*. Let I2 be its annihilator. In this case the
order-parameters associated with the transition at β^ are naturally labelled by the
elements of the quotient group 12IIV ^et [m] be an element of J2/J1 ? which is
different from the unit element of/2//1. Let ne\nί]. There are two possibilities for
the behaviour of the order-parameter cosnθ. Either (cosnφ} is nonzero at β^ and
therefore discontinuous at β^, or <cosnφ) is zero at β^ and there is a critical
exponent oc(n) describing how fast {cosnφ} (β) goes to zero when β tends to β^ In
the special case of the Ising ferromagnetic models it is possible to show that
equivalent order-parameters have the same behaviour at β^, [2]. In particular the
critical exponents are the same. This can be generalized for all Z2k-models.

Proposition 5.3. For any Z2u-models, the order-parameters cosnxθ and cosn2θ,for a
phase transition with symmetry breakdown of S(β) at β^ have the same behaviour if
they are equivalent.

Proof To simplify the proof one considers a Z2k-model with fc = 3. This means that
the model is defined on the state space U8. In that case one has

2 cos(φ ± 4ψ) cosΦp = cos φ -f cos(φ + 8φ) = 2 cos φ. (5.32)

Equivalently

cos (φ — 4ψ) = cos (φ + 4ψ) = cos φ cos 4ψ. (5.3 3)

This is the key relationship. One also needs

2 cos(φ — ψ) cosφ = cos φ + cos(φ — 2ψ) (5.34)

and

2 cos (φ — 2ψ) cos 2ψ = cos φ + cos (φ — 4ψ). (5.35)

Using the setting of Remark 5, one has to prove that α(w1) = α(n2) if n1=n2 + m,
melv

Since melv one has

<cosmφ>^C>0, βe{βvβ2). (5.36)

Using (5.33) and (5.32), and Ginibre inequaltities,

<cos(n1±4m)φ>^<cosn1(/)><cos4mφ> (5.37)

and

(5.38)

Therefore α(n1) = α(n1±4m). Using this result, (5.33) and (5.35), one obtains
immediately that α(n 1±2m)^α(π 1). Let α(nl92m) be the critical index associated
with the observable cosπ1θcos2mθ. Since

jθ cos2m# = cos(n1 — 2m)θ + c o s ^ + 2m)θ,
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one has α(π1,2m) = α(n 1±2rn)^α(n 1). However

1φ> <cos2mφ>. (5.39)

Therefore α(n1,2m)^α(n1) and consequently a(n1±2m) = oc(nί). Repeating this
argument with (5.34) and using the above results, one obtains a(n :) = a(n1 + m). Π

6. In the same way it is possible to analyze the behaviour of generalized
susceptibilities for the Z2k-models (see [2]).
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