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Abstract. We consider two models that are small perturbations of Gaussian or
mean field models: the first one is a double well λ/4φ4 — σ/2φ2 perturbation of
a massless Gaussian lattice field in the weak coupling limit (λ-+0, σ pro-
portional to λ). The other consists of a spin 1/2 Ising model with long-range
Kac type interactions the inverse range of the interaction, γ, is the small
parameter. The second model is related to the first one via a sine-Gordon
transformation. The lattice Zd has dimension d^3.

In both cases we derive an asymptotic estimate to first order (in λ or y2) on
the location of the critical point. Moreover, we prove bounds on the remainder
of an expansion in λ or γ around the Gaussian or mean field critical points.

The appendix, due to E. Speer, contains an extension of Weinberg's
theorem on the divergence of Feynman graphs which is used in the proofs.

Introduction

It is well known that rigorous and accurate estimates on the location of the critical
point of statistical mechanical systems are in general very difficult to obtain. This
is related to the fact that high and low temperature expansions are not known to
converge up to the critical temperature. However, for models that are close to
Gaussian or mean-field theories, we can obtain more detailed information.

Specifically, we shall consider three cases. The nearest-neighbour Ising model
on TLd in the limit of d-+ oo a lattice field theory in the weak coupling limit, and an
Ising model with weak long range interaction of Kac type. For the nearest
neighbour Ising model it is straightforward to show, combining the infrared
bounds [1] and Fisher's mean field bounds on Tc [2] that

Tc(d)/2d=l-
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(with n.n. coupling J= 1) (This observation was also made by B. Simon [3].) In the
two other cases we obtain a similar first order correction on the critical
temperature using results from [2, 4-6] but we can also control an expansion
about the Gaussian or mean field limit for the correlation functions.

The lattice field theory is defined as follows: let for each xeZd, c/^elRand let
the Hamiltonian be

H=i/2 Σ (Φx-Φ/+^/4ΣΦt-σ/2ΣΦl (i)
<xy> x x

We set β= T~1 = 1 since it can be absorbed in λ, σ by a change of scale on φ.
The point λ = σ = 0 is the Gaussian massless (critical) theory. There exists a curve
σc(λ) of critical points starting from that point. We compute the tangent of that
curve at the origin:

(2)

ddk.

where
d

f 2
α = l

This holds for any d ^ 3 .
An analogous formula holds for any even polynomial with positive coefficients

instead of φ4.
In order to express our second result, fix σ/λ < 3C 0 0 — ε. Then, for any n, we can

write the free energy and the correlation functions of the system as a sum of
Gaussian integrals depending on λ and multiplied by powers of λ plus a remainder
of order λn.

We describe now the second model, namely the Ising model with Kac-type
interactions.

In order to study the liquid gas transition, Kac [7] introduced a model of
classical statistical mechanics where the two body potential is of the form:

Here q(r) is a short range repulsive interaction and w(r) is an attractive long-range
interaction, e.g. w(r)= — exp( —r), d is the dimension of the space, and for all γ,

f ydw{yr)ddr = \w(r)ddr

is independent of y. As y->0 the interaction ydw(yr) becomes at the same time
weaker and more long-ranged, Baker [8] observed that this limit gives rise to a
transition of the mean field type. Moreover it was shown by Kac, Uhlenbeck and
Hemmer [9] for d= 1 and then in general by Lebowitz and Penrose [10] that the
free energy of these models converges as y—>0 to the van der Waals free energy
together with the Maxwell or double-tangent construction.

Given this fact, it is of interest to try to obtain some information on the models
with y small but nonzero by perturbing around mean field theory. The inverse
range of the interaction, y, is used as a small parameter. Systematic expansions of
this type were first introduced by Brout [11] and studied by many authors [12-
15] (see e.g. [16] for a review).
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We study a lattice version of these models where q(r) is replaced by a hard-core
condition: one particle at each site of the lattice. These lattice gases with attractive
potentials can be transformed into Ising models with ferromagnetic interactions
where the Hamiltonian is

-H=Σ JχJi7)σxσy + hγΣσx (3)
(X,y) X

(to have phase transitions we will set hy = 0). Several models of this type were
considered by Kac and Helfand [17].

We study a model very similar to model c of [17], namely we choose

Jxy(y) = y2(-A+y2y1(x,y), (4)

where A denote the finite difference Laplacian on TLά. Notice that Jxy{y) is positive
(ferromagnetic), translation invariant, decays exponentially at a range y in all
directions, and that

yeΈd

Therefore the mean field critical temperature is equal to 1. For similar models,
Tc(y) has been computed perturbatively in two and three dimensions to first order
[18,19]. We prove here that

Tc(y) = l-C00y
2 + o(y2). (5)

This is analogous to (2) but the proof is much easier (and similar to the d—• oo case).
Our main result about this model concerns the γ expansion: fix (β — l)/y2 = C00 — ε
(in particular we can take β = l=βc (mean field)). Then, as in the φ4 case, we can
express, for each n, the free energy and the correlation functions as a sum of
Gaussian integrals depending on y and show that the remainder is of order yn. This
is quite similar to the other y expansions studied in the literature (see [16]), the
only new result being rigorous bounds on the remainder. Such bounds were
obtained previously by Siegert, for the free energy, to first order in y [15] (where
our y corresponds to yltd).

II. The Results

A. The Models

1. The Ising Model. At each point of a lattice Έdd^3 there is a spin variable
σx = ± 1 and for each y > 0 we consider the Hamiltonian given, in a finite volume
A by

-HΛ= Σ Jxy(y)Wy> (6)
(x,y)cΛ

where each pair (x, y) is counted once and where either

a) Jxy=ί if \x-y\ = U

0 otherwise,
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or

with

(-A)(x9y) = 2d if x = y9

= -1 if \x-y\ = l.

We have put free boundary conditions on A. We shall use the notation
( — A +y2)~ 1(x,y) = Cy

xy which is explicitly given by

^ Λ . (7)

" π 2 Σ (1-cos/cJ + y2

α = l

We write Cxy for the case γ = 0. The Gibbs measure μΛβ on {— 1, + 1}Λ at inverse
temperature β=T~x is given by

^ = Σ

As Λ\Έά, the correlation functions j \\ σxdμΛ β (AcΛ) converge, by Griffiths
xeA

inequalities [20], and define a Gibbs state < >(/?). As /? varies both models
undergo a phase transition which can be characterized as follows:

a) For β small (σoσx}^exp( — m\x\) for some m>0. We say that there is
exponential clustering (actually, by FKG inequalities all truncated correlation
functions decay exponentially).

b) For β large, (σoσx}y>0 as |x|->oo. We say that there is long-range (LRO).
By Griffiths inequalities [21], this implies a spontaneous magnetization.

2. The φ4 Models. At each point xeZd there is a real variable φelRand we define
the finite volume Gibbs measure on lR|y1' by

{l/2){φ,ADφ)-{λ/4) £ # + (σ/2) Σ 4>χ+h Σ 0*1 Π # - (8)
Λ e^l xeyl xeyl J xeΛ

where AD is the lattice Laplacian with Dirichlet boundary conditions on Λ,
φ = (φx)xeΛ and we take λ>0,σ real. ZΛ is the normalization factor. We define our
infinite volume state < ) by:

The limits exist by monotonicity [20] and superstabihty estimates [23]. For this
model, as in the Ising model, there is a phase transition as σ is varied, for fixed λ:
for σ negative there is exponential clustering and for σ large there is long-range
order (this can be shown using a Peierls argument as in [24]).
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The relation between model lb and model 2 is provided by:

3. The Sine-Gordon Transformation. This is based on the following identity
introduced by Kac [7] :

exp l?f Σ CxyσΛ = /expy]/β £ σxφ\, (9)
\ Z x,yeΛ I \ xeΛ /

where φx is a set of Gaussian random variables with covariance (φxφy) = Cxy. This
formula holds whenever the matrix Cxy is positive definite. We take here Cxy = Cγ

xy.
Summing over σx in (9) we obtain

V (10)

,y) = <tenh(}/^yφJtanh(}/βyφy))Λ for x + y, (11)

where < > is the Gaussian measure of covariance Cy

xy and < }Λ in the right hand
side of (11) is given by

<->Λ =

In this way our long range Ising model has been transformed into a lattice field

theory with a Gaussian measure of mass y and a perturbation

γβyφx. We define

Λ

The limit exists by monotonicity [20] and superstability estimates [23]. Note that,
if we expand

log cosh \/βyφ^y2βφ2-^y4β2Φ4

and identify

λ = γ4β2/3, σ = (β-l)y2 (13)

we get the Hamiltonian (8).

B. Estimates on the Critical Temperature

We give our estimates on the critical temperature of the three models described
above. In model (a) we vary the lattice dimension d. In the two other models d is
fixed (d ̂  3) and we vary either γ or λ. We shall generally set d = 3 for these models.

Theorem 1. 1) For model la) let T/2d=l-b/2d
a) ifb<l there is exponential clustering for all d,
b) if b>l,for d large enough, there is long range order.
2) For model lb), let β = l+by2

a) ifb<C00for y small enough, there is exponential clustering,
b) ifb>C00 there is long range order for all y.
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Theorem 2. For model 2, let σ = bλ
a) ifb<3C00for λ small enough there is exponential clustering,
b) ίfb>3C00 there is long range order for all λ.

Remarks. 1) We may summarize the two theorems as follows:

Tc(d)/2d*l-l/2d,

σc(λ)~3λC00.

2) One can extend this theorem to the case where we replace

^ Z ί = 2 Z

with α. ^ 0. Then σc(λ) is given to first order in λ by:

(see Remark at the end of Sect. IV).

C. Perturbation Theory

Let us start with the λφ* model. A crucial role is played by the Wick ordering
formula:

)2 (14)

(the constant is irrelevant in what follows).
If σ<3λC00, then there exists a m > 0 such that

λφA σφ2 λ:φ4:m m2φ2

~4 2~ = 4 + 2

Here m is the solution of

m = 3 Λ C Q 0 —σ, (16)

and if σ = (3C 0 0 — ε)Λ, then m2 is of order ελ as Λ,->0.

Theorem 3. Let σ = (3C00-ε)λ and let A be a finite subset ofΈd; then for any ε>0
and any ί e N

(UΦ"Λ=ΣGk(λ)+Rμ), (I?)
\xeA I fc = O

where lim R$)X~l = §, < > is the state defined in Sect. II.A, nxeN and Gk(λ) is the

sum of all Feynman graphs of order k in λ for the lattice λ: </>4 :m/4 theory with nx

external legs at each xeZd these graphs are computed in a Gaussian field of mass m
where m is given by (16).
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Remarks. 1) One can also expand the free energy, by differentiating it with respect
to λ and expanding the resulting expectation values.

2) If we take <</>o) t n e n t n e first t e r m m (17) *s Q>oA) (with an error of order λ).
Since C™(oy~Coo — 0(m(λ)) and m(A) is order | / I , (17) does not give rise to an
asymptotic expansion in powers of λ, because of the λ dependence of m. For higher
orders even logarithmic terms may appear. Nevertheless, this expansion expresses
all the information up to order λι in terms of Gaussian integrals.

2. Let us turn now to the Ising model and the y expansion. Due to the Sine-
Gordon transformation [formula (11) and generalizations of it to general cor-
relation functions], we need only consider an expansion for the log cosh theory.
First we write:

-l/2y2φ2 + log cosh ]/βyφ=^^y2φ2 + £ bφψψ^ Remainder, (18)
ί = 2

where bt are the coefficients of the Taylor expansion around zero. Then we Wick
order:

-l/2γ2φ2 + log cosh ]/βyφ=-n^- + £ (- \j+1a2ifiy
2i: φ2i:m + Remainder

(19)

(without changing the remainder). Since the first term (i = 2) is of order β2y4/12 we
see that this Wick ordering is possible (with m>0) for y small as soon as β— 1
< C 0 0 y 2 and that if jS — 1 = (C o o - φ 2 , m2 is of order εy4 as y->0. Note that adding
a term of order 2n to the polynomial changes m2 in (19) but only by an amount of
order y2n. Now we can state

Theorem 4. Let β=l + (C00 — ε)y2 and let A be a finite subset ofTLd; then for any
ε > 0 and any ZeN.

\ I k=0

~ 2 /where lim JR2/(y)7~2/ = 0; < > is the state defined at the end of Sect. 11. A, and

G2h(y) ί 5 t n e s u m °f βtt Feynman graphs of order 2k in y, where the interaction is
i

Σ (~ ^)ι+ί^2iβιy2ι''Φ2l:m a s in (19) and t n e m a s s lιS given also by (19). There are nx
ί = 2

external legs at each xeΈd.

Remarks. 1) The Wick-ordering of the interaction is closely related to the "α trick"
of [14,15] and other renormalization procedures [11-13].

2) A similar theorem holds if we fix β^ 1.

D. General Properties of the Models

1. Infrared bounds, a) G{p) is defined via

π

<φoφx} = (2π)-3 J d3pexp(ip-x)G(p),
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then G(p) = Cδ(p) + F(p) and

\ Σ ] \ (20)
α = l

b) As shown in [27, 28],

(φoφxy - C ^ C o n s t l x Γ 1 . (21)

2. Integration by parts (IP). For any m > 0 and any function such that (F2),
(dF/dφx)

2} < oo for all χ9 we have

<Φ0F>= ΣdCoy<d/dφyF)

yeZd yeZd

where

in the φ4 case and

) = - ^ - ^ + ln cosh ]/βyφ

in the other case.
3. States < > for the 0 4 and log cosh theories satisfy the FKG, GHS [29] and

Gaussian inequalities [25,26].

Remark. In all the proofs we shall use without comment a number of estimates on
sums of Gaussian covariances. For example,

Σ cm

Ox=m-\ Σ c™xc
m

0ycxy=o(m-η
xeZd x,yeZ3

and

-1=0{m-'1) as m->0.

Σ (Qu) 2 *s a l s o °f order m λ as m—•() or C00 — C™0^cm as m->0.

All these estimates can be checked by using Fourier transforms.

III. Proof of Theorem 1

1) The upper bound on Tc (part a) is simply Fisher's upper bound [2] Tc(d)
^2d—l. For the lower bound (b) the infrared bounds [1] show that if T<CQQ
there is long range order. So we have to estimate 2dC00(d). This was done in [32]
but one can also compute it as follows:

" ddk

, α = l d



Perturbation about Mean Field Critical Point 345

we expand the denominator in the integrand, using

1/1 - x = 1 + x + x 2 + x 3 + 0(x4)

compute the term x2 the x and x3 terms vanish) and check that the fourth order
term is 0(d~2) as d->oo.

2) The upper bound also follows from Fisher's [2] or Griffith's [33] mean field
bounds on Tc. Indeed there is exponential clustering as long as

£Σ Ό*<i>

but

Σ Jθx= Σ ^0x~^00
d

Part b) is an immediate consequence of the infrared bounds. Indeed following the
lines of example 5.3 of [34] it is easy to check that Jxy(y) is reflection positive. One
can then use a generalization of Proposition 3.3 of [35] or [36] and the translation
invariance of the state < > (β) to prove the validity of the infrared bounds for this
state: If G(p) is the Fourier transform of (σoσx} (β) then the infrared bounds read

and

where J(p) is the Fourier transform of JOx. Obviously, CφO if

lπβ(J(O)-J(p))

or

IV. Proof of Theorem 2

In Lemma 1 below, we prove estimates on (φl) and <exp0o>. Although these
quantities are bounded for fixed λ, σ by superstability (or chessboard) estimates,
we shall need shaper bounds, uniform in λ, σ as long as σ/λ is bounded.

Lemma 1.

a) For all λ, σ
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b) For σ<3λC00 <:0o m> = O, where m is defined by (16).

Proof The upper and lower bounds in a) are based on one IP:

Σ eS°x<φ0(-λ
xeΏ?

We start with the upper bound in a).
By Griffith's inequalities

(ΦoΦ3

x>^<ΦoΦxXΦ2o> and

So,

+ Σ CZ<Φ0ΦxX-

(23)

Σ CZ<ΦoΦ*>- (24)

Finally

CZ + (σ + m2

o)ΣC7x<ΦoΦx>
/ i 2\ ^ x

= ί+λΣc^x<ΦoΦx>
X

<C00 + σ/λ (letting mo->0).

For the lower bound in a) we consider the case σ^.3λC00 because the other
case follows from b) which is derived below. Using in (23) (φoφx}^O, and
Lebowitz' inequality:

we have

xeΈ3

Now assume that — 3/ί<(/>o> + ίτ>0, then, the sum above is strictly positive, for
(φoφx}>0, and therefore <0o> > C o o (letting m0-•()). But, by the IR bounds, this
implies

lim (φoφxy +0,

and therefore

lim Σ C^x^ΦoΦxy — + °o •

This contradicts the boundedness of <</>o>, so — 3λ{φl} + σ^0. Π
Part b) is a result of [4].
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Remarks. 1. By a result due to Newman [30], Proposition 1 implies <exp</>0>
2

2. These bounds on <expφ> can be combined with the decay of the truncated
two-point function in (21) and FKG inequalities as in [28] to prove the following
decay of all truncated correlation functions:

(26)

where 0,1 = Π # ' a n d p=(
ίeA \ieA ieB

Lemma 2. For σ(λ) = (3C00-ε)λ, with ε>0,

0S<Φ0}^0(λ1/2\logλ\3) as

Proof. Let m be defined by (17). Then IP gives

since

Σ Cm

Ox =
ceZ3

and

= -A Σ C 0 x « : ^ : m : ^ 3 : m > - < : φ ^ m > < : ^ : r a »

+ <'Φ2o'.m><Φo>

using (26).
Inserting (27) in (26) one finds

)=^ Σ C O s « : ^ : m : ^ m > - < : ^ : „ > < : # : „ » . (28)

By Lemma l.b, < \φ\ :m> ̂ 0 and by hypothesis m2/λ is bounded from below. By
the bound (25), we know that

is of order (log|x|)3/|x[, which implies that the right hand side of (28) is smaller than

A/m|logm|3 ~ ]/λ\logλ\3 (m is of order j/1). Π

This lemma is only used for the proof of the stronger

Lemma 3. For σ(λ) = (3C00 — ε)λ with ε>0 and λ small enough <0O> = O.

Proof. By IP with respect to m(λ):
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and

<:φ3o:>=-λΣCSx<' Φl-Φl >

^2<φoφx> <φo> + <φo> (Φϊ>- CS0<φ0>

by the GHS inequality [29]. So the first term is bounded by

\m

Moreover,

<φo:φ
3

x::φ
3-.}

is bounded, by the Gaussian inequality (28), by a sum of terms, each of which is a
product containing at least <φo> and one (φoφx} or {φoφy} or {φxφy}. Writing

we get a sum of terms which are either of order (φo}λ2/m3 or Λ2/m4<</>0>
3 '•> s o f° r

m2 of order λ

or

Now, if <</>o> were nonzero then, (1 — cί | / I ) ^ c 2 < 0 o > 2 . But since <(/>0>->Oas λ-^0
(Lemma 2), this is impossible. •

Now we prove Theorem 2. Part a) is based on Theorem 3 (see Sect. V). How-
ever, in the proof of Theorem 3, we use the infrared bounds with C = 0 in (21).
This is precisely Lemma 3 since the state < > of the φ4 theory is clustering [21].

Proof of Theorem 2. By Simon's inequalities [6] we know that there is exponential
clustering of {φoφx} as soon as

Σ <Φ0Φx}<ί/2 (29)
xedΛ

for some box A with the sum running over the boundary of A. We shall choose the
radius of A to depend on λ in such a way that the sum (29) goes to zero as λ goes
to zero. Specifically, we shall show that

hmλ-^^Kφoφxiλ)}=0, (30)

where |x(A)|^0(/l~1/2"ε/2) for some ε>0 (\dA\ is of the order of the square of the
radius of A), and this clearly implies the result. Now (30) follows from the
expansion of Theorem 3

<ΦoΦxW>= Σ
k=0
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because in each Gk(λ) there is a factor exp( — m|x|)~exp( — λ~ε). Moreover the
proof of Theorem 3 implies that the bound on R2{λ) is independent of x(λ), i.e.

A->0 2

Theorem 2b is an immediate consequence of the infrared bounds and of
Lemma la. •

Remark. For polynomials of higher degree (with positive coefficients) it is easy to
show

to first order in λ, at least if σc(λ) means the point where (φ} vanishes. We proceed
as follows: the proof of Lemma la extends to show that <</>o) < °° a s l°ng a s σ/λ is
bounded. On the one hand, if

then, we use the Gaussian inequality

<ΦoΦ2J~ ι>£ { i

[

which in turn implies <φo> > Coo a s m t n e proof of Lemma 1, and this implies long
range order. On the other hand, in the proof of Lemma 2, we get instead of (28)

m2

where

is the Wick-ordering of £ a$2i (up to a constant), and
i=2

i=2

By integrating by parts all the powers of φ, we show that

(heN)

and this is sufficient to conclude Lemma 2. If we integrate by parts < :φlh :>, all the
Gaussian terms are small 0(λ). The worst term in the remainder is

λ2h Σ CoXι-CoX2h< V'(φxl):m...:V(φxJ:my,2h

XI ...X2h

but this is positive. All the other terms contain some contraction, i.e. some

additional line Cx , and are therefore at worst of order m~ yλ. The proof of

Lemma 3 then follows as in the λφ4' case.
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V. Perturbation Theory

We only give the proof of Theorem 4 the proof of Theorem 3 is included in it,
using the truncation (13). We first need a bound on <</>o> for the log cosh 0 theory.

A) Bounds on <</>o>

Proposition. Let β- l=by2, then Vα>0, sup <φ2> < oo.
Ve[0,α]

The proof of this proposition will use the FKG inequalities and the following:

Lemma 4. Let g(x) be defined by g{x) = x3/6 | x | ^ l , g(x) = x/6 | x | > l , then

h(x) = tanh x — x + g(x)

is a decreasing function of x.

The proof is straightforward: we just have to show h'(x)^0. We use the fact

that 1/6< 1 —cosh" 2 1 and that cosh~2x^l — x2/2 for | x | ^ l . Let us introduce

χ>(φ), the characteristic function of the set | ]/βyφ\ > 1, χ< = 1 — χ>.

Proof of Proposition. The proof is divided in two steps. First we prove that \φo\ has
a very small probability of being large (of order y~ *): we show that <χ>(0)o)> is of
order γ2 as y->0 (in a)). But then, because of Lemma 4, we know that the quartic
approximation to logcoshx is good when \φ\ ̂  l/]/βy and we can (almost) use the
proof done for φA (Lemma 1): see (b) below.

a) The IP formula with respect to a covariance of mass m2 = ay4' gives:

o> = C£o - f Σ Cm

Ox{φoφxy + l/J8y Σ CoΛΦo tanh ]/βyφx}
X X

2ΣCSx(ΦoΦx>- (31)

The FKG inequalities together with the Lemma give (x = yβyφ)

<</>0(tanh ]/βyφx - ]/βγφx + g(]/βyφx))}

This and (31) give:

Σ<ΦoΦx>, (32)
X

where d = b + a, b = β—l/y2. A generalized form of Griffith's inequality (Nelson's
inequalities [22]) imply:
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This combined with (32) yields

351

(33)

Now assume that sup {φl} = co. Since <</>Q> is bounded for any yφO, it means
ye]O,α]

that there exists a sequence }>„—»0 for which <</>Q) ()0 diverges to + GO. But, by (33),
as soon as (φ2

))>C™0

 w e m u s t have

or

(34)

If <(/>o)(y) w a s bounded uniformly in y, (34) would follow from Chebyshev's
inequality. So (34) holds in either case.

b) We now rewrite (32) using χ< = l - χ > and (φoΦl>^<ΦoΦχ> (Φo>'<

Coo+

(35)

Using Schwartz's inequality together with the Gaussian inequality,

^ ^ ^ ( χ , ) 1 / 2 Const <φg>2

(35) gives:

6d
(36)

because £ C O x = (α y4) x. From this it follows that if <Φo) i s larger than CQ 0 H—j

(in particular, if it diverges as y->0), then

/ Σ C J χ < ^ » > ^ const < 0 2 > < i > > 1 / 2 (37)

(multiply both sides of (36) by l + Σcox~f-<ΦoΦx>)' By (33)
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Using (37) we have for any sequence (yn) such that (Φl) (yn) diverges:

<<^> ̂  q ? 0 + Const<</>§> ( χ ^ 1 ' 2

£C00 + Const <0g>y [fey (34)].
For y small

but this is bounded as y-»0 so <^>Q) cannot diverge. Π

Remark. By [30] <\φo\
ny<n\{(φiy2)n.

B. Proof of Theorem 4. To be specific, let us choose

Truncation of the interaction. We start by applying Formula (19) with n = l + 2. The
perturbation theory will be generated by the IP formula with respect to the
covariance C™x. Obviously, the contribution of the "remainder" in (19) will always
be negligible compared to y21 because

ΣCy,x(φ(x2) ••• Φ^-nr"Remainder"

So it is the equivalent to prove the theorem for the case of a polynomial interaction
given by

1+2

as perturbation of our massive Gaussian measure with m2~εy4.
For this case we apply successively the IP formula until all the terms produced

either:
a) are fully contracted, i.e., are purely Gaussian terms,
b) contain l+l:φ2i: vertices for ze{3,4,5,...,/ +2}. Each of these vertices may

still have contracted legs in the non-Gaussian expectation values. That is, these
terms result from at least Z+l derivation of Qxpγ2ι:φ2ϊ: (2z^6). Each derivation
produces a divergent factor YJCxy = m~2, and a convergent factor y2t. Therefore

X

these terms are at most of order y2l + 2 each additional line which may appear in
the diagram due to Gaussian contractions improves the convergence.

c) results from at least 21 +2k derivatives of expy4 :φ4:, where k is the number
of external vertices. The proof that these terms are small compared to y21 contains
several steps:

Step 1) We estimate these terms by undoing the Wick-ordering in the non-
Gaussian expectation values, taking absolute values and applying Gaussian
inequalities to produce extra (φ(x)φ(y))-lines in the diagram. Since we are in the
one phase region, (here we use Theorem 1, 2a, and Lemma 3) the infrared bounds
(20) imply that each of these new lines corresponds in momentum space to a
propagator bounded by c/p2.
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More precisely, let us consider one particular term resulting from the IP
procedure. It will be of the form (see Fig. 1):

p

yc

Fig. 1

P(x1,...,xk,yv...,yt)<:φ3:(y1):φ3:(y2)...:φ5:(yt_1)φ(yt)y,

where P is an ordinary Feynman graph except that the legs represented by a
dashed line are not yet contracted; they still are part of the non-Gaussian
expectation value.

By application of the Gaussian inequalities, this graph is replaced by a sum of
other graphs (see Fig. 2):

p

y' C
y 2 Z

Vt-i ^

y, j

Fig. 2
(after application of 1).

Here is a line with propagator 1/p2.
Step 2) We now want to estimate all the diagrams produced after application of

1).
Let us call F(xv ...5xk) the contribution of one such diagram G. We denote its

:φ4: vertices by w1?..., w2Z + 2 k. Here L(wf) is the number of internal lines which end
at wf and L£(wf) is the number of external lines which end at wf. The important
consequence of 1) is the following inequality:

ί

i) In order to prove (38) consider first the case where all : φ 4 : vertices have
three legs in the non-Gaussian expectation value: for instance take
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By application of 1) we bound the non-Gaussian expectation value by a finite sum
of products of two point functions. These give rise to lines. There is at least one line
out of each :φ3: vertex, i.e. at least one line is added for every pair of :φ3: vertices.

Therefore in this case we see that the application of the Gaussian inequalities
has generated / + k new massless lines.

ii) If some :φ4: vertices have less than three legs in the non-Gaussian
expectation value, that means that at least two of their legs have been contracted
with two other legs. That is at least two massive lines end at these vertices.

Combining i) and ii) we get (38) because the left hand side of (38) would be zero
in a tree graph and we have added at least / + k lines.

Now

where F is the Fourier transform of F. We have to show that |F | is small compared
to y21. We first replace in each propagator

3 3

^ (1 — cospj by ]Γ p2,
α = l α = l

because - ^ p 2 < l — cosp< - p 2 , |p |<π. To compute the infrared behavior of the

graph, we scale all momenta: pa = mp'a. The idea is to do a power counting in m and
then control the possible ultraviolet divergence of the scaled graph. To each vertex
v of the graph is associated a power of 7, yd(v\ when d(v) stands for the degree of the
vertex (for instance d = 6 for a :φ6: vertex).

We start by doing a power counting in m = ]/εy2, using a y4 convergence factor
at each vertex and disregarding the ultraviolet divergences. We shall show using
the theorem of the Appendix, that the remaining powers of y of each vertex v,
d(v) — 4, enable us to control ultraviolet divergences.

Step 3) The infrared power counting.
i) For each vertex, there is a divergence factor m~3(y) coming from the

(5-function and a y(4) convergence factor which results from the splitting of d(v) (see
Step 2)). So, there is a m " 1 divergence.

ii) Each line brings a factor of convergence m coming from the scaling of
{d3k)/(k2 + rn2) (see 2)). Let V be the number of internal vertices of the graph, L be
the number of internal lines, LE be the number of external lines if the graph G was
a tree graph (after identifying all external vertices), V= LE + L, and the resulting
power of m after scaling would be zero. However, by (38), LE

JrL—Vl^l + k.
Therefore

-π/m-π/m(2π) 3 ' ' " ' (2τi)3 1 ' " ' ' ^

•Cpi + irV.^ipjfc-i + i r 1 , (39)

where H is the function obtained after the scaling has been performed on F and
after the external legs have been amputated. All propagators in H are of mass 1
with the exception of those obtained by application of 1) which are massless.
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Step 4) The ultraviolet power counting.
Let N be the number of loops and d(v) the degree of the vertex v. The following

relations are well known [43]

L-N=V-1,
(40)

The superficial divergence of a graph G in powers of the cutoff m~ι, ω(G)
= 3N-2L. Using (40),

In our case at each vertex v, there is an additional factor of convergence
yd(v)-4.^md(v)/2-2 ̂ s e e S t e p 2).). Let Ω{G) be the superficial divergence of G, after
the factor m

d(v)/2~2 is added at each vertex.

= -V+3-LE/2.

Since our interaction is Wick-ordered, there are no graphs with V=l. The only
divergent graphs have F = 2 , LE = 2 for instance (see Fig. 3):

Fig. 3

which are only logarithmically divergent (Ω(G) = 0). Therefore by the theorem of
the Appendix, all the scaled graphs are at most logarithmically divergent since for
all possible subgraphs H of G Ω(H) = 0. That is:

This finishes the proof because

- π/m — π/m

This combined with (39) implies \F\^mι+1~\ 0 < ε < l which is indeed small
compared to γ21. Q
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VI. Remarks and Extensions

1. Another way to understand our result on λφA is to relate it to the continuous
(φ4)3 field theory. Let us write the Hamiltonian of a (0 4 ) 3 model with all the
counterterms except for those which are constant in φ. The ultraviolet cutoff we
choose is a lattice spacing cutoff δ.

H = (ί/2)δ Σ (Φx - Φy)
2 + (V4)<53 Σ Φt ~ (3/2)C£/V3 Σ Φl

<x,y> x x

+3(λi/2)δ3 ^ p
y x ^ x

Here λQ is the (bare) field theory coupling constant,

C ^ = c53/(2π)3 f d3k\δ Σ
-π/δ L α = l

the 3rd and 4th term in the Hamiltonian correspond respectively to the Wick
ordering and mass counterterms.

From field theory method we know that

1) if α = 0 and — small the theory has a mass gap [38, 39],

2) if— is small there is long range order [1]. We now want to translate this

result into statistical mechanics language. We first rescale φ: yδφ^φ' so that we
eliminate the factor δ in front of the Laplacian:

i f = i / 2 Σ (Φx-Φy)2+^
(x,y>

Now again by scaling

C ^ = (2πΓ 3 5 d3k\δ
-π L

= δ-iCoo-0(rn),

and ^(Co;< 5)3 = Cln(m(5) + 0(l), where C is a computable constant.
y

If we identify

λ = λoδ,

σ = 3λC00-3Cλ2lnλ + λ2 m2/2g-α2//l0-0(m//l0) + 3Cln^-+0(1)

we recover our lattice model.
1) and 2) mean that

σc(λ) = 3λC00 - 3 d 2 \nλ + 0(λ2).
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Indeed, by suitably choosing the terms 0(λ2) one gets either the one or two phase
region in the limit where λ (i.e. δ) goes to zero. Therefore, the field theory methods,
if they were applied to the lattice uniformly in the lattice spacing (5, would give the
first two corrections to the mean field critical point in three dimensions. However,
our argument gives the first correction in any dimension and, if it could be refined,
would give a new proof of the existence of a mass gap for weakly coupled λ: φ4 :3.
This was recently done for λ:φ4:2 by somewhat similar arguments [40].

2) If we use the field theory picture in two dimensions we start with

In two dimensions, C™'o
δ = (2π)~1 ln<5 + 0(l). Again we define λ0δ

2

σ = 3/4πλ \nλ + λ{ - 3/4π) lnλ0 + (m2 - α2)//l0],

and as in 1) the field theory result would give

This formula is actually proven by combining the results of [40] and [44].
If we translate this result for the Ising model by approximating it by a φ4

theory with the identification (13), we get

β(y)~l+γ2/π\ogy.

However, Fisher's mean field bounds give that if β< 1 + y2Cγ

00 we are in the one-
phase region. That is, jδf i sher('y)~l+y2/2πlogy. So, if we believe in the Wick-
ordering picture above, Fisher's bound gives a first order correction which is too
small by a factor of 2 in two dimensions.

3. Using Theorem 3, we can derive a rigorous version of the Ginsburg-Landau
theory of critical phenomena which seems more or less natural (see e.g. [41] for a
review of that theory). We interpret it as a model which considers the value
λ = σ = 0 in the λφ4 — σφ2 as the critical point of that theory.

Let us approach that point along any line σ = cλ with c < 3 C 0 0 . This
corresponds to the temperature approaching the critical one from above and it is
usually assumed that σ is proportional to (T— Tc) (and, of course, λ has also to be
proportional to (T— Tc), otherwise we would not approach any critical point as
Theorem 2 shows). Then one can prove that the inverse correlation length ξ = m~ι

diverges like (T- Tc)~1 / 2 and that the susceptibility diverges like ( T - T c ) - 1 . What
may be more interesting is that the specific heat, defined as

Σ <Φ2oΦ2>-<Φl><Φ2

x>,
xeZ3

diverges in that limit (like T— Tc)~1/2). This is different from the usual mean-field
theory. (This is the only difference between Ginsburg-Landau and mean field
theories.)
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To prove this, let us first restrict the sum ^ to |x| ^ ξ1 + ε for some ε > 0 then
xeΈ*

the remainder is clearly bounded as λ->0. Now for each x in the sum we can do a
perturbation expansion with a remainder of order A2, so that λ2(ξ1 + ε)3 is
negligible. It is easy to check that, among all the Gaussian terms the dominant one

will be the zeroth order one. But this is just £ ( C Q X ) 2 which diverges like
X

ξ~(T—Tc)~112. The estimate on the divergence of ξ comes from the fact that
using Simon's inequality one derives a lower bound on the mass m^lnα/r where

α/2~ £ (φoφx) and r is the radius of A Since our radius can be taken as λ~ 1/2~ε

xedΛ

(with ε as small as one wishes when Λ->Ό) and a can be taken also as small as one
wishes,

iogmm 2_
l i m

λ->o log/i

On the other hand, the expansion for {φoφx} when \x\~λ~1/2 + ε shows that
(ΦoΦx) is n o t smaller than cλ1/2~ε; since

holds by reflection positivity (see [42]) this implies

o log/t

Appendix by E. Speer

Let G be a connected Feynman graph in n dimensions, with L lines, V vertices, N
loops, and superficial divergence ω = nN — 2L; for a subgraph H of G we write
L(H\ V(H\ etc. Each line / of G has cutoff propagator

where A ^ 1,

l , if

o, if

and either mx = \ (massive lines) or mι = 0 (massless lines). We will assume that n > 2
and that the massive lines connect all vertices of G; these conditions could be
replaced by any others guaranteeing the infrared convergence of the cutoff
Feynman integral. Our main result is the

Theorem. Let FΛ(p) be the (cutoff) Feynman integral for G, let μ = supω(H\ where

H runs over all (not necessarily connected) subgraphs of G. Then for some constant
K and non-negative integer v,

| f » |SKΛ"[ l + logM]. (1)

(By convention the empty subgraph H has ω(H) = 0; hence μ^OJ
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L

Proof. FΛ has the general form \dnk1 ... dnkNY\Aι(qf), where qι is a linear
1

combination oϊ kv ...,kN and the external momenta pt. We write

interchange the /c and α integrals, and write FΛ= Σ FA,G> where for any
permutation σeSL, σeS]L

FΛJp)= ί Π ^ J Π ^ Π^fe2)eχp(-^2+^2)). (2)

We derive the bound (1) for each FΛ σ separately and for notational convenience
take σ to be the identify. Let // = max{/|mf = l}.

Let Go denote the empty subgraph and for 1 g / g L, let Gx be the subgraph
formed by lines 1,...,/ and their vertices; write AΓz = iV(Gz)5 ω/Ξω(G/), etc., and let
lv...JN satisfy ί.>0, -/V̂  = ̂ - i + l- Then (see e.g. [43]) the qι in (2) may be
defined so that ^ . = fej, l ^ j ^ N Using

? z

2 ))^l for

* f[

α; Πmin[/l",α-"/2]
j 1

L

= C f e~

where #(α) = max[α,/Γ 2 ] . (Here and in what follows C represents an arbitrary
constant.) For l^k^L we define

E»= j Λ(α)Π0(α/Γ"/2(*'-w'- l)<fc/, (3)

where / k = 1 if k<ΐ, fk = e~aι> otherwise, so that

mEL

Λ(a). (4)

Lemma. For 0^/c^L, let π(k) = inϊίl^k\ω1= max ω,l. Then

Ek

Λ(a) g C5«^(α)1/2[ω"< fc>-ωfc][l + Iog^(yl2(α))] , (5)

moreover, for k^ϊ and a> 1,

^ ω ^ n i + logV2)], (6)

/or some non-negative integers vk, vk.

Before proving the lemma we note that from (6) and (4),

and since μ = maxωπ ( L ), (1) is established.
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Proof of Lemma. Setting E°Λ(ά)=\, we have

Ek

Λ(a) s]Ek- V ) 0 ( α Γ ">2<JV*-**- ̂ dot,
o

and we proceed inductively. From (5), since ωk = ωk_1 + n(Nk — Nk_1) — 2,

E^α^CΛ"**- 1 '}^) 1^^^ (7)
o

The estimate

(Cg>(a)ll+log*lΛ2g(a)Π9 if p > 0

il+log*+1lΛ2g(a)Ώ9 if p = 0 (8)

[CΛ-2p, if p < 0 ,

where q is a non-negative integer, will be proved below. Note that ωπ(/c_ 1 } — ωk ̂ 0
corresponds to π(k) = π(k— 1), while ωπ ( f c_ 1 } — ω k < 0 corresponds to π(k) = k. Thus
(7) and (8) yield (5).

To prove (6), we first suppose k = ΐ. Then

a

E\(a) = E\(l)+\e-aE^\φ-ntΆNk~Nk-ύda.
1

Using (5) twice in the right-hand side yields (6):

since ω π ( f c ) ^ω π ( f t _ υ . If k>ΐ, use (5) and (6) inductively:

f £ * " » ( a ) a - ^ 2 ( N k - W k - '»rfa

Since the massive lines lie in Gk_ 1 and connect all vertices of G, JVk — AΓfe_ 1 = 1, and
since n > 2, the last integral is bounded. This proves (6).

It remains only to derive the estimate (8) for

J \_Λ
o

For a^Λ'2, g(a) = Λ~2, so that
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which yields (8). For a>Λ~2, g{a) — a\ we write

j
A-2-

and consider the cases in (8) separately,
(i) p > 0 . Here

(ii) p = 0. Here

(iii) p<0. Here

\P\ Λ-2

where we have used (8) inductively to bound the last integral.

Remark. We can obtain a bound on the exponent v appearing in the theorem by
tracing the powers of the logarithm through the induction above. We find that we
can in fact take vk = vk for all k and

0, if ωk>ωπik-1)9

Vfc-i + 1, if cok = ωπ(k_ί)9

vk_1 ? if ω k < ω π ( k _ 1 ) .

Hence we may choose v so that v + 1 is the length of the longest chain of subgraphs

HvψHv__ x p ... p H1 p i ί 0

satisfying ω ^ ) = μ, j = 0,..., v. In particular, if all subgraphs H of G containing at
least one line satisfy ω(H) < 0, then μ = v = 0 and the usual power counting theorem
is recovered.
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