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Abstract. We extend a result about non-interacting fields given by Buchholz
and Fredenhagen. Consider a massless, scalar field φ in 3 + 1 dimensional
space-time which does not interact. The corresponding Hubert space is
assumed to be the Fockspace H of the free massless field A. This implies - as we
show in the first part - that all rc-point-functions are rational functions of their
arguments. In the second part we use this fact to construct a symmetric,
traceless tensorfield φ ^ ^ relatively local to the original field φ, and
connecting the vacuum with the one particle states. In the last part we prove
φm -.μn t 0 b e relatively local to the free field A.

0. Introduction

In a series of papers Buchholz establishes a frame for a scattering theory for
massless particles in 3 + 1 dimensional space-time [1] :

Let A(x) be the free, massless, scalar field acting in the Fockspace H. Let φ(x)
be a real, scalar field which transforms under the same unitary representation of
the Poincare group as A(x). The corresponding Hubert space is assumed to be the
Fockspace H. We identify A(x) with the incoming field φin(x), respectively the
outgoing field φou\x). In [1] Buchholz shows that

[φin(x\ φ(y)~] =0 for y-xeV~ (backward cone)

and

ίφou\x),φ(y)] = 0 for y-xeV+ (forward cone).

We want to prove the following:

Theorem. If φ(x) has a trivial S-matrίx, then φ(x) is relatively local to the free field
A(x).

This theorem extends the result given by Buchholz and Fredenhagen [2]. In their
paper they show first that φ can be decomposed into a finite sum of fields φd with

0010-3616/82/0086/0247/S02.00



248 K. Baumann

dimension d. The technical assumption P1φ(x)Ω = A(x)Ω ensures that φ^x) equals
A(x). Then they conclude from the locality of φ that all φd are relatively local to
φλ=A. And for this second step it is crucial that A shows up in the above
decomposition of φ. But the example φ= :A3: shows that one should modify the
proof to get rid of this technical assumption. This turned out to be quite difficult.
Our new proof is based on a paper [3] by Buchholz.

I. The Structure of the w-Point-Functions

To prove our theorem we assume that φ has a trivial S-matrix - i.e.
φin(x) = A{x) = φou\x) and therefore we have

φ is weakly local relative to A (see [9, Chap. VII]) (1.1)

and

lA(xlφ(y)-] = 0 for (y-x)2>0. (1.2)

As shown in [2] we have a decomposition

φ(x)= Σ ΦM), (1-3)
d = 0

where each field φd transforms under dilation like

^λ'φlλx), λ>0, (1.4)

and D(λ) denotes the dilation operator acting on A(x) according to

D(λ)A{x)D{λ)-1 = λA{λx)9 λ>0. (1.5)

Furthermore we want to rely upon the following theorem given by Buchholz [3]
which, under the above assumptions, relates interaction to commutation relations
for timelike distances:

Theorem, φ does not interact if and only if

lΦ(x),φ{y)]=0 for (y-x)2>0.

Therefore we get

LΦ(x)9φ{y)1=0 for (y-x)2Φ0. (1.6)

Lemma 1. lφ(x),φ(y)]=0 for (y-χ)2φ0 implies (y-x)2Nlφ(x), φ{y)]Ω = 0 for
some NelN in the sense of vector-valued distributions.

Proof The vector-valued tempered distribution

(u — v
(1.7)

vanishes for v2ή=0. Because of temperedness there is a NelN such that

(v2)Nψ(u,v) = 0. (1.8)



Fields with Trivial S-Matrix 249

By the Edge of the Wedge theorem we get for the 4-point-function W4 of φ:

Lemma 2. W4(ξv ξ2, ξ3)ξlN can be analytically continued to all points (ξv ξ2, ξ3) in a
complex neighbourhood of τ\ x R4.

This is the basic assumption for a series of papers - initiated by Schlieder and
Seiler [4] - on Wilson-Zimmermann-Expansions. We refer to [5] for the proof of
the following property of the rc-point-function Wn of φ:

Lemma 3. For every n^2 the functions

V Π •(ξi+- + ξj)
ί = l

can be analytically continued to _ ^ e C 4 ( " " 1 ) with \\ξ\\<Rn9 where \\ξ\\ denotes the
Euclidean norm.

So for all j 6 C 4 ( n " 1 ) with | |J| | <Rn the power series

Fn(λξ)= Σa,{ξ)λ* (1.9)

is absolutely convergent for \λ\ < 1 and the coefficients a€(Q are polynomials in ξ.
Now we want to use the fact that φ is a finite sum of fields with integer dimensions
to show that Fn(ξ) is a polynomial.

Gτπ

+_1 and 0<ΛelR we have

= (Ω,φ(λZι)...φ(λzn)Ω) Π (tej-W
l^i<j^n

= (Ω,D{λy1φ{λzί)D(λ)...D{λTιφ{λzn)D{λ)Ω) \[ (λzj-λZi)
2N, (1.10)

lgi<jgn

and because of

\ L d = O Ld=O J / ί^i<j = n

Therefore Fn(λξ) is a polynomial in λ and as shown in [5] we can take N = D. Now
the intersection of τ^_x with {ξ\ \\ξ\\ <Rn} is open so all but finitely many a^ξ)
vanish identically. Therefore Fn(ξ) is a polynomial and we get the following
representation:

Lemma 4. The n-point-functions have the form

where Pn is a polynomial in zv ...,zn.
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We remark that this is exactly the structure which the n-point-functions of the
Wick polynomials of a massless free field exhibit.

II. Local Operator Products

In this section we shall construct a local field which is relatively local to the
original field φ and connects the vacuum with the one particle states. Of course
one can formulate conditions on the set of complex functions {FFJrc = O, 1,...}
which are equivalent to the Wightman axioms - i. e. there exist fields such that the
given Wn

9s are the n-point-functions of these fields (see [9]).
Consider an expression like

φ(xί)...φ(x,) Π (xj-xd2D ( 2 !)
1 ^ ί < j ^ 6

which defines an operator valued distribution. We want to show that after
applying a differential operator Dx acting on xv ..., xe and putting xί = ... = xe = x
we still have a well defined operator-valued distribution.

For the proof we start with the n <?-point-function of φ in the analyticity
domain

(Ω, φ(z[1))...φ(z[%..φ(z[1))...φ(z^)Ω) (2.2)

and multiply it with the necessary factors Y[ (z^ —z^) 2 D . Then we apply on
i ^ ί < j ^ t

each group the differential operator Dx and put within each group the arguments
equal to each other. So we end up with the expression

</>).. .φ(zf)...φ(zi%..φ(z^)Ω)

(2.3)

Because of the structure of the n ^-point-function (see Lemma 4) and by simple
limiting arguments it is easy to see that this defines a rc-point-function. The
transformation properties under the Lorentz group depend on the operator Dx. If
we take a covariant expression we get in general a tensorfield - let's call it φD.
Along the same lines we can prove φD to be relatively local to the original field φ.
With the free field A we get the commutation relation (1.2.) because

A{x),φ{yι)...φ{ye)
\2D = 0 (2.4)

as long as all (y — x)2 > 0, i = 1,..., / or repeating the analysis given by Buchholz in
his fundamental paper [1]. Now for some / e N

(2.5)

by asymptotic completeness. But

(Ω,A(z)φ(Zl)...φ(Zί)Ω) Π brzD2D ( 1 6 )
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is analytic for zeτ+ and small \\zt\\, i= 1, ...,*f, so we can make a Taylor expansion
around z1 = ...=z^ = 0, and because of (2.5) there must be a tensorfield φμι μn such
that

P ^ ^ ω Ω φ O , (2.7)

where P x denotes the projection operator onto the asymptotic one particle states.
It is no restriction to assume that

P ^ ^ ^ - ^ W Ω Ξ O for all i (2.8)

[otherwise we go over to the contracted field

xifi' -*n-i(x):=dvφ
μί -μi-ίVμt μn-ι{x) and so on!] .

Equation (2.8) forces the corresponding asymptotic field to be proportional to
dμί...dμnA(x) = :Aμi~'μn(x). But Aμu"μn(x) is obviously symmetric in the indices
and traceless so we can symmetrize φμi'-μn(x) and subtract out all traces and still
get the same asymptotic field. We summarize our construction in

Lemma 5. There exists a local, symmetric, and traceless tensorfield φμί - μn with

i) φ^ ' v-n relatively local to φ

ii) lA(xlφμι μn(y)']=0 for (y-x)2>0

iii) P1φ
μi-μn{x)Ω = Aμi- μn{x)Ω.

By Lemma 5 we have found a field with properties which are very similar to
those assumed by Buchholz and Fredenhagen in their paper [2] with the only
difference that it is a symmetric, traceless tensorfield instead of a scalar field. In the
next section we shall show that φμί μnis necessarily a Wick polynomial in the free
field A.

III. Completion of the Proof

Using the same methods as in [2] we show

φμi-μn(x)= Σ 0Ϊ1 •••""(*), (3-1)
deN
finite

where each field φμi - μn carries dimension d. Because of

P1φ
μί-μn(x)Ω = Aμi -μn{x)Ω (3.2)

we know

P ^ 1 μn(x)Ω = 0 for d + n + 1 . (3.3)

We are left with the 2-point-function

(3.4)

In Appendix A we write down the general form of such 2-point-functions given
by Oksak and Todorov [6]. If we further specialize this result to homogeneous
2-point-functions we get d>n+\ because the projection operator (1 —PJ sup-
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presses the contribution of mass zero fields. Therefore we can identify Aμί '- μn with
φμ\'{μn and all other fields φμi--μn showing up in the decomposition (3.1) have
dimensions greater than or equal to n + 2.

From locality we get for all λ>0 and for (y — x)2<0

D(λ)-1

\AJ \AJ

2N

= Σ A* Σ lΦϊ-μ"(χ),ΦvJ-v"(y)']- (3-5)
k=2n+2 d + d' = k

The following lemma, if we use it successively, shows that all φμi μn are relatively
local to Aμi -μn.

Lemma 6. Let [A(x)9 021-VπG>)]=O for (y-x)2>0 and

[A^ ^xlφy viyKHΦϊ1^ for (y-x)2<0,

then lAμi-μn{xlφv

d

1-Vn(y)~]=0 for (y-x)2<0.

Proof Because [̂ 4(x), Φd1'"Vn(y)']=0 for (y — x)2>0 it is enough to prove

? = 0 for ( j ;-x) 2 <0 (3.6)

because the set of all vectors {Ω,A(fί)Ω,...,A(f1)...A(fn)Ωi...} with supp/J
timelike to x and y forms a dense set in H.

a) We consider

:F^-""(x,y). (3.7)

Using spectrum condition we get for the Fourier transform

p2)fμ-1-μ"{p,q)}. (3.8)

Lorentz covariance restricts fμ+'"μn(p,q) to be covariant polynomials where the
coefficients are invariant distributions. Covariance under dilations forces the
invariant distributions to be homogeneous and fixes them up to factors - e.g. for n
even

pμ, qμ, gμη , (3.9)

where P±(pμ,qμ,gμv) denote covariant polynomials homogeneous of degree n and
symmetric in the indices μv ...,μn.

In Appendix B we characterize solutions of the wave equation which vanish for
timelike, respectively spacelike, arguments (and this analysis might be of some
independent interest!). Because ΠxF

μi~ μn(x9y) = 0 and Fμi- μn(x9y) = 0 for x 2 > 0 ,
we can apply the criterion given in Appendix B which restricts the exponents of pq
to be integers. And because d ̂  n + 2 all these exponents are positive, which implies
Fμi-μn(x9y) = 0 for x 2 < 0 . The span of A{f)Ω is dense in PγH so we have

ϊ = 0 for (y-x)2<0. (3.10)

b) Now we consider

/ A /Λl \
(3.11)
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But 1—P1 projects out vectors with momentum pμeL+ = {p2 = 0, p°>0} so we
only take vectors ψeE(V+)H (and not ψeE(V+)H\). Let KCV+ be a ball with
center p0 and take ψeE(K)H.

We want to use a modified "Jost-Lehmann-Dyson" representation. Now

and

(3.13)

-eiqξcosσ]/:::ξ2~d*ξ

exist because [Aμi~'μn(x)9 0 V l - V n (y)]=O if ( y - x ) 2 > 0 , and fulfill the ultrahyper-
bolic equation

(3.14)

For σ = 0 we have

Momentum conservation requires peX. The support of A(Q) is contained in
<22 = 0 and therefore we have

The assumption

= O for (>;-

(3.16)

(3.17)

implies (G[A φ] + G[φ A-j){σ9q) to be a polynomial in σ - i.e. there is a JV such that

(δσ)
2N(G[AM + G[φίA])(σ,q) = 0. (3.18)

As a consequence we have

= 0 and ( X - ^ ) 2 = 0}. (3.19)

But (dσ)
2NG[Aίφ] still fulfills the ultrahyperbolic equation so we can use the

mean value theorem by Asgeirsson [7] and conclude

(3σ)
2NG[Λtφ]{σ9q) = (3.20)3σ)G[Λtφ]{

because {dσ)
2NG[A φ](0, q) vanishes for all #eIR3 as long as \q°\ is big enough. This in

turn implies

Ψ, ^ 1 ^ ί - - j , 0 V l Vnί-j|ΩJ==O for ξ2<0. (3.21)
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This completes the proof of Lemma 6.
But if all φμί μ« are relatively local to Aμι" μn then φμ' μn has the same

property. The transitivity of relative locality gives finally that φ is relatively local
to A - i.e. φ is a Wick polynomial in the free field A.

Remark. One could try to adapt the above proof to the case where the asymptotic
fields carry spin n. But to avoid too many technical complications one should try
to formulate a proof within the algebraic framework of quantum field theory.

Appendix A

We need the explicit form of the 2-point-function for a symmetric, traceless
tensorfield φμi μn of rank n given by Oksak and Todorov (see [6] and [10],
Appendix F). From φμί μn we go over to

φ{x,z):= ^ 1 -^)(zσ μ i z). . .(zσ μ n z),zeC 2 \{0}. (A2)

The 2-point-function

{Ω,φ{x9w)φ{y,z)Ω) = :F(y-x;w,z) (A2)

is a homogeneous function in w, w, z, z of degree n. The Fourier transform of
F(ξ w, z) is given by

F(p;w,z) = (zpzy(wpw)n £ fk(p2)Pk(v), (A3)
fc = 0

with

\zp
V '. = —S i

(zpz)(wpw)

Pk(v):=2-k
 Σ Ώ 2 ( V - 1 Γ '

"Legendre polynomials," and positive distributions fk(p2) with support in [0, oo).
Now we assume in addition φ(x,z) to have dimension d - i.e.

;w,z\ λ>0. (A4)

This implies that the /fc's are homogeneous distributions of degree d — n — 2

(A5)

But the /k's are positive distributions and therefore d—n — 2 must be greater than
or equal to — 1. We get

This proves the following

Lemma. For a symmetric, traceless tensorfield φμi--μn of rank n and dimension d we
have

i) d^n+ί,
ϋ) d = n+l if and only if Πφμι'-μn(x) = 0.
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Remark. There might be a problem if fk{p2) contains a (S(p2)-contribution because
of the peculiarities of mass zero fields.

Appendix B

We want to characterize solutions of the wave equation in 3 space and 1 time
dimensions, that vanish for timelike respectively spacelike arguments.

Any weak solution fe c9^(IR4) of the wave equation • f(x) = 0 can be decom-
posed into plane waves - i.e.

f(x)= J {eiipχ-Mχ0)a(p) + eί{px+\plχ0)b(p)}d3p (Bl)
R 3

with α, be ^'(IR3). This decomposition is unique up to solutions, which have
support only in the point p = 0

1. Solutions which Vanish for Timelike Arguments. Now we require in addition to
the wave equation that f(x) = 0 for x 2 > 0 . By the mean value theorem of
Asgeirsson [7] this is equivalent to

supp(P(3)/)(xo,0)g{x° = 0} (B2)

for all polynomials P in d = (dvd2,d3).
Therefore the Fourier transform with respect to x°

qp(ω): = (2π)~ * + f (P(δ)f) (x°, 0)eiωχadx°
— oo

= j {δ(ω-\p\)P(ip)a(p) + δ(ω + \p\)P(ip)b(p)}d3p (B3)
R 3

is a polynomial in ω. It is sufficient to take only the special polynomials

\p\*Ytm(Ω\ Ύίm: spherical harmonics. (B4)

By introducing polar coordinates we get
2 + ' J a(p)Y,m(Ω)dΩ

\p\=ω

(-ω)(-ω)2+ί I b{p)YtJΩ)dΩ
\p\=-ω

ω)(-ω)2+%m(-ω). (B5)

Therefore we have proved

Lemma 1. For a solution f of the wave equation to vanish for x2>0 it is necessary
and sufficient that

are polynomials in ω.

2. Solutions which Vanish for Spacelike Arguments. Now we require f(x) = 0 for
x2<0. Because Huyghens' principle is valid in 3 + 1 dimensions the solution is
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determined by the Cauchy data for x° = 0:

supp/(0,x)g{x = 0},
(DO)

supp(do/)(0,x)£{jc = 0},

or expressed in a(p) and b(p)

lPl. (B7)

with P(p) and Q(p) polynomials.
Expanding P and Q in terms of \p\£Ύ£m we get

\ \P(m{ω2) + - Qίm(ω2)j, (B 8)

and there is a L e N such that q^m = 0 for i>L. Therefore we have

Lemma 2. For a solution f of the wave equation to vanish for x2 < 0 it is necessary
and sufficient that

i) there is a L e N such that q^m = 0 for / > L , N

ii) q,m{ω) = Θ(ω)ω2 + <a,Jω) + Θ(-ω)(-ω)2 + %m(-ω),

/ = 0,...,L, m=-S,...J

are polynomials with a zero at ω = 0 of the order greater than or equal to 2/+ 1.
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