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Abstract. Uniqueness of Gibbs states and decay properties of averaged, two
point correlation functions are proved for many-body potentials in continuum
statistical mechanical models via Dobrushin uniqueness techniques.

Introduction

Gross [6], using Dobrushin uniqueness techniques [1], has given decay rates for
two point correlation functions in classical lattice models at high temperature or
low activity. This paper extends those techniques to the continuum case and gives
sufficient conditions on physically reasonable continuum potentials for the
analogous results to hold along with uniqueness of Gibbs states. The models
studied here are based on the same measurable space used by Preston [12] and
Ruelle [14] in their studies of Gibbs states. Our results rest on the assumption that
the set of Gibbs states for the models we consider is non-empty at high
temperature. This has been shown to be true in the case of pair potentials by
Ruelle [14].

Section 2 of the paper extends the results of Gross [6] to the continuum case
with necessary added hypotheses. Section 3 gives conditions on potentials for
these hypotheses to be satisfied.

Section 1. Notations and Definitions

Let A be a bounded Borel set in R?. We take (X(A), B,) to denote the measurable
space of configurations of particles in A described in Preston [12], and X y(A)
denotes the configurations of cardinality N in A. Let Q be the set of locally finite
subsets of RY, representing configurations of particles in IR. We will let Q,CQ
denote the subsets of finite cardinality in Q and |s| denote the cardinality of se Q. S
is the o-algebra on Q generated by sets of the form {se Q:|snB|=m}, where B runs
over bounded Borel sets of R? and m runs over the set of non-negative integers.
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The measurable space (€, S) has a natural product space structure. For each
aeZ? let

A,={reR:d —i<ri<d +4i=1,2,...,d}. (1.1)

The cells {A,} partition IR®. Let a,,a,,as,... be an enumeration of Z* and to
simplify notation let
A;=4,,. (1.2)

It is easy to verify (see Preston [12], Ruelle [14]) that (€, S) is isomorphic in a
natural way to

(X(4).B,). (L3)

is

We will identify these two measurable spaces throughout.

Definition 1.1. For any configuration se Q and any set ACIR?, we let s ,=sn A, and
we write s=5, v §, where §=5\s,=sp. 4 We also denote s5,=s, .

Note that if we express s=s, v §, then the symbol “v” may be interpreted as
“union” or, with the product structure of Q, as “Cartisean product”.
We will consider many-body interactions V:Q,—(— 0, co] of the form

x|

V)= Y o) (1.4)

N=2 yCx
[yI=N

for some potentials ¢. We will assume throughout that V'is S-measurable, stable,
and translation invariant.

Definition 1.2. For any xeX(A), seQ such that snA=0 and bounded Borel set
ADA,

VA(xlsmﬂ)=N§2 Y 6400 (L5)
i

We define the sets RY, R}, R, and R, in complete analogy to Preston [12,
p. 97], along with the map V,(x|s): RS —(— oo, oc] given by

Definition 1.3. For se Q2 such that snA =40,
- 1' S 1 . 1.6
V(x|s)= 1de Vi(xlsnA) (1.6)

Definition 1.4. For n=1,2,3,..., let d"x be the projection of nd-dimensional
Lebesque measure onto X 4(A4), so that d"x assigns total mass |A]" to X \(A4), where
|4] is the Lebesque measure of A. The measure d°x assigns mass 1 to X ,(A). Define
the measure v (dx) on X(A) by

V(dx)=Y, %d"x, where z is chemical activity . 1.7)
n=0M:
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Recall from Definition 1.1 that se@ can be written as s=s,v3§. For any
xeX(A) we can form the configuration xv§. This is just the configuration
obtained from s by changing the coordinates of s in 4 to x.

Definition 1.5. Corresponding to a potential V' and each se R ;, we define a measure
i+ s) on X(4) by
exp(—BV4(xI9)
Z 4(s)
where f is inverse temperature and Z ,(s) makes p,(+|s) a probability measure.
We note that 1 <Z,(s) < 0.

Definition 1.6. For a bounded Borel set A CIR? and a bounded S-measurable real-
valued function f on Q define

Ha(dx]s)= v4(dx), (1.8)

| f(xv3uydxls) if seR,
X(A)
afls)= otherwise. (19)

We also let 7, denote 7,4,

Definition 1.7. A probability measure o on (€2, S) is a Gibbs state for the interaction
Vif and only if

a(tf)=0(f) (1.10)

for every S-measurable bounded function f on @, and every bounded Borel set
ACRY

We introduce next an S-measurable set U C 2, a vector space of functions F(U)
on U, and a linear map T:F(U)— F(U), defined in analogy with Gross [6].

Definition 1.8. Let U= ﬂ R, where 4, is the cell defined by (1.1) and (1.2).

We point out that o(U) 1 for any Gibbs state o, since 1=0(1)=o0(7,1)
=0(R,)

Definition 1.9. A function f:U—R is a cylinder function on U if there exists a
bounded set BCRR? such that f(s)= f(snB) for all se U.

Definition 1.10. The space F(U) is the completion in the infinity norm (|-|,) of
{f-U—-R|f is an S-measurable cylinder function and [f] < o0o}.

We use S to denote both the og-algebra on @ and the induced o-algebra in
Ucq.

We point out that the operators 7, as defined above act only on functions on
Q. However, with a slight modification 7, can be defined on F(U). Thus to every
feF(U) we associate the function g, on £ defined as follows,

C[fls) if seU
gf(s)_{o if seQ\U.

The function 7,9, is well defined and for fe F(U), we define
T4 f(s)=749,(5) for seU. (1.12)

(1.11)
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Only those potentials V for which 7 ,: F(U)— F(U) for every bounded Borel set
ACR? will be considered from this point on. Conditions guaranteeing this
property will be given later.

To simplify notation, let 1,=1,,i=1,2,3,.... As in Gross [6,7]

’I:If: hm InTrH-I "'Tn+pf
p— 0

exists for all fe F(U). We let T=T,. Note that |T,| =1 for all n.

In what follows we will have need of a metric ¢ on X(A,) for each aeZ".

Let s, and t, be two non-empty configurations in A,. Order the points in each
configuration so that s,=(x!,...,x") and t,=(y%, ...,y™), x',y'e A,. Now define a

metric ¢, on X(4,) by

0,(0,0)=0, (1.13)
0:(5,0)=0(8,5)=n, (1.14)
min )’ dg(x’, )7, if m=n,

0.(s,0)=0,(t,5)=4 """ 75! (L15)
) — 15 —_ n . . .
1 min 2, dg(x,y"?)+m—n if m=n.
peS, i=1

Remark 1.1. The triangle inequality holds for dimensions 1, 2, 3, and 4 with our
present definition of ¢,. In the case of higher dimensions d and/or cells A, with
sides of length A= 1, we can modify the definition of ¢, to obtain a metric as
follows. Replace “n” in (1.14) by “Cn” and “m—n” in (1.15) by “C(m—n)”, where C
is any constant with C 2/1[/3/2.

Definition 1.11. Let ¢ =g, +9,, where g, is the discrete metric on X(A,).
We now use the metric ¢ to define norms on F(U). For an S-measurable, real
valued function f on U and aeZ* define

5a(f):sup{|~f—w:s,te U, s,=t, for all beZ* except when bza}. (1.16)

(s, 1)

Let £(U) denote the set of real S-measurable functions f with d,(f)< oo for
each aeZ*. This set #(U) is a linear space with semi-norms J (f), the intersection
of whose kernels, is the set of constant functions on U. The quotient space, £(U)
modulo the constant functions, is a linear space with induced semi-norms which
we also call 3,(f), acZ".

Let u, be a real signed measure on X(A,) such that

[ o, 0)|ul(dx) < 0.
X(Aa)

If fe #(U), then
[ GVl @)= [ 1f v 8= fOluad @)+ SO #allvar

X(4a) X(4a)
S0, | o Olual(dx) +1 @) sl var
X(4a)
<00,
where ||p,l,,, is the total variation of p,. Thus [ f(x Vv §u,(dx) is well defined.

X(4a)



Dobrushin Uniqueness Techniques 231

Let #Z,(U) be the subspace of £(U) consisting of functions which depend only
on configurations in A,. If u,[X(A,)]=0, then y, is a linear functional on Z,(U)
modulo the constant functions. We let ||, [ be the dual space norm of u,, that is,

luall= sup |u(f)l. (1.17)
Sa(f)=1
fe%a(U)
Observe that ||pu,[|< oo because

J f(X)ua(dx)‘

X(Aa)

ua(dx),

) )f ()= S( @)ua(dX)’ ‘f(ﬂ)
< [ /)= f@)kldx)+0

X(4a)

S0,f) | elx, B)luldx)< oo,

X(Aa)

X(Aa)

We see from this computation that

lall®= | elx, Blpl(dx) (1.18)

X(4a)
for a real signed measure u, on X(A,) with total mass zero.

Definition 1.12. For a potential V, define

p— e 01

where w,(<]s)=p4,(+|s) is given by (2.3.2).

s,te U and s=t except at a}

Let d(-, -) be a semi-metric on Z%. We end this section with the following
notation.

Definition 1.13.
oy =0, ,¢"“" for asb, and B, ,=0 for all a,beZ’.

—Sup z ﬁa b

bez? ,

1fla= 2 e*“?6,(f), for fe £(U),

bezd

L(U)={feF(U):| f||,< oo for every acZ"}.

Remark 1.2. With the translation invariance of the potential V] it is easy to check
that g, , =g, ,. Hence we also have 8, ,=p, , and a=sup Z ﬁ,, b

aeld 7

Section 2. Theorems on Decay

In this section we outline the continuum extension of Gross’ Theorems 1 and 2 in

[6].
With the definitions just given, it is easily checked that

0,1 f) = 6,(f) + 04, 104(f) 21
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holds for fe F(U). From this Gross’ Lemma 3.1 in [6] and his Corollary 3.2 can be
expressed, for the continuum case as

Corollary 2.1. If a<1, then for all fe L(U) and all aeZ, || Tf ||, <ol f |l

The proof of Corollary 3.3 in [6] does not hold under the present circum-
stances. An alternative proof adapted from unpublished work of Gross is given
here.

Lemma 2.1. For every ge F(U) and every s, te U,

lg(s)— g = 3. Su(g)alse ti)-
k=1
Proof. For every ¢ =0 there exists a cylinder function g, such that |gy—g|,, <e and
such that gy(s) depends only on the coordinates of s in the cubes 4, ..., Ay, for
N

every se U. Define A= () A, and s'=s,V tye 4. Then
k=1
gn(s)=gy(s) so that |g(s)— g(s")| =lg(s) — gn(s)l +lgn(s) — g(s ),
and hence |g(s) — g(s')| = 2e. Thus
lg(s)— g0l = lg(s) — g(s") +19(s") — g(2)|
N
S2e+ Y dg)alsinty),
k=1

where the last inequality follows from the triangle inequality and the definition of
0,(9). But now since s, =s, for k=1,..., N we can write

lg(s)—g(0)l =2¢+ k; 0,(g9)e(sy, 1)

<2+ Y S(glols 1)

k=1

Since this inequality holds for all £>0, we get

lg(s)—g(0)l = k; 0,(g)e(sy: 1y) -

This completes the proof.

Theorem 2.1. For a given potential V, suppose that o <1. Then there is at most one
probability measure ¢ on (Q,S) such that :

alo(s, O) 1< M for some positive real number M

and all integers k=1, (2.2)
o(t,.f)=0a(f) for all bounded S-measurable functions f
on Q and all integers k=1. (2.3)

Furthermore, if such a probability measure o exists, then

lim () @) = o(/). 4
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Proof. The semi-metric d(-, -) plays no role in the proof of this theorem, since if
o<1 for any semi-metric d(-, -) not identically zero, then <1 for the semi-metric
identically equal to zero. Without loss of generality, then, we will take d(-,-)=0in
this proof. In this case | f|, has no dependence on aeZ’ and we will write

[ fll=>. 8,(f). From Corollary 2.1 we have,
bezd
lim |T"f] =0, for feI(U). 2.5)

Now let ¢ be a probability measure on @ with the property (2.3). Then

o(t.f)=o0(f) for fe L(U)C F(U). Since Tf is well defined in this case, it follows that

o(Tf)=o(f) and o(T"f)=0(f) for n=1,2,3, .... We can therefore write
o(f)=a(T"f)=o[T"f = (T"f) @)1+ (T"f) (0).

By Lemma 2.1
o[ T"f=(T")@)] =0 kZ 0T f)e(s, 9))|-

By (2.2) we can write

ol T"f=(T"/)(DI=M|T"f] .
It follows from (2.5) and (2.6) that lim (T"f)(#) exists and equals o(f) for any
feL(U). Now L(U) contains all bounded cylinder functions on U. Since
a(2\U)=0, a standard argument from measure theory shows that ¢ is uniquely

determined on (£, S). This completes the proof.
We now state the following modified lemma and theorems in analogy to [6].

Lemma2.2. If | | [ olx, y)uk(dyls)ruk(dyis)gc for some real number C and
X(Ar) [X (430
every se U and every integer k=1, then

109~ T TG SC 3. 6T, 115,110 2.6)

Sor all f,ge L(U).

Theorem 2.2. Let ¢ be a probability measure on Q such that o(t, f)=0o(f) for every
bounded S-measurable function f on Q and every integer k=1. Assume that the
following conditions hold :

{

I ol y)m(dyls) Prdxls) < C

X(Ar) [X(Ax)
for some real number C, all k=1, and all se U, 2.7
olo(sy, 01 =M for some real number M and all k=1, (2.8)

a<l. (2.9)

Then o is unique and

lo(fg)— a(Na(N = Ce™ P f liglly(1— )21 —o®)~*
for all a,beZ’ and f,ge L(U).
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Definition 2.1. Let g be a real valued function on U. We define g,(s) =g(s'”), where
sW=s,., and a,beZ".

Theorem 2.3. Assume that the semi-metric d(-,-) is translation invariant on Z°. If
oo+ 1)<1, with the same conditions as in Theorem 2.2, then for any functions
f.ge L(U) and any ceZ’,

2 10(fg)—o(f)o(g e’ < Cl flllgllo(t =) (1 —a—a?)",  (2.10)

aez4
where the subscript 0 on |g|, refers to the origin in Z°

The proofs of Lemma 2.2, Theorem 2.2 and Theorem 2.3 are similar to the
proofs of the corresponding results in [6] with straightforward modifications
which follow from the definitions given in the previous section.

Section 3. Bounds

In this section we describe a class of potentials whose Gibbs states satisfy the
hypotheses of the theorems of the preceding section in the case of high temperature
or low activity.

Much of what follows is based upon inequality (1.18), which for a given
potential ¥ can be expressed as

— BV,(x5 — BV, (xlt
I b= 01°5 [ ol POPRERD SRCPRREDN, 4, (a1

X(Ap)

where we have abbreviated and will continue to abreviate Vj(x|3) for V4, (x|3), v, for
V4, and Z(s) for Z 4.

We begin by listing two conditions to which we will refer several times later.

Condition 3.1. There exist r, =0, a positive decreasing function y(r) on (r,, ), and
constants K which depend on N, such that:

a) sup Y e @Pyldy(A, A,)] <o, where A={aeZ’:dy(A, A)>ro},

acA
b) dp(xt, .., XM Kyw(r) for r=  max [de(x', x)]>7,,
<i <
C) I(d)N(xl: iR} xN)_ ¢N(y1, bS] yN)l <KN1P(V)Q1(X, y) ’ fOV
r=min {m,ax [dg(x", x/)], max [dg()", yf)]} >ry, where
L] LJ
N) .

x=(x' .., xY), y=0%..,y

Before stating Condition 3.2 we make the following definition.
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Definition 3.1.

oo _ eXp(— BLAV,(x]8)+ (1 = AV (xI)])
s, = Z,(%5,0) : !

p(dx)

and

Z,(%s,0)= [ exp(=BLAV;(x8) + (1= DV (xID)])v,(dx).

X(4p)

When s,te U and beZ¢ are fixed, we will write
du,=du3y.

Condition 3.2. For k>0 given, there exists a function M(z, f) decreasing in each
argument z and f such that

| Ixlfdpyt, <zM(z,B) for all 0<A<I,

X(Av)
a,beZ’ and s,te U which differ only on A,+ A,.

Remark 3.1. 1t is easy to show that if there exists a B=0 such that V(x|s)= — B|x|
for every se U, xeX(A,), and beZ*, then Condition 3.2 is satisfied, for k=2 with
M(z, B)=ze?PB + ¢PB. Thus, any positive potential satisfies Condition 3.2 (with
k=2).

Theorem 3.1. Suppose that a potential V satisfies part a) and b) of Condiction 3.1 and
the following three conditions:

O, is hard core for some Ny=2, 3.2)
Py(x?, ..., xN)=0 whenever maxdy(x',x))>R,
ij
for some given R,>0, for N=3, (3.3)
inf{¢n(y):y€Qp, ly|=N,N22}> — 0. (3.4)

Then V satisfies Condition 3.2, with k=2.

Proof. We show that the hypothesis of Remark 3.1 is satisfied. Let C, denote the
cube of side 2n whose center is be Z*. By (3.3) there exists a positive integer n such
that

V(xI9)=V,(x8NC,)+ 3, 3 $y(x's), (3.5)
ArCCy, xlex
sle Ay

where C denotes the complement in R of C,, and the sum ) is taken in
AxCCyy
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lexicographic order with respect to ke Z%. We can write

x|+ 150 Chl
V(x5nC)=V(x)+ Y DI E) (3.6)
N=2 yCxvs$
yCCn
y|=N
ynsnx¥0

for xeX(A,). Recall from Sect. 1 that we are assuming that V is stable. Thus
V(x)2 — B, |x] (3.7

for some B, 20 and all xe Q. By the definition of U and since ¢y, is hard core,
I$nC,| is bounded for all se U. It follows that there exists an integer K >0 such
that if the double sum, DS, on the right side of (3.6) is finite, then |x v (snC,)| < K.
Thus by (3.4) there exists B, >0 such that DS> — B, for all se U and xeX(4,).
Combining this with (3.6) and (3.7) gives

V,(xISnC,)= —B,|x|— B, . (3.8)

Now by (3.2) and the definition of U, there exists M >0 such that |snA4,] <M
for all k=1 and se U. Thus going back to (3.5), we can write

Z Z ¢2(xis Sj) = —Ix|M Z KoplA, A)],

AxCCY5 xlex A Cry
sle Ay

by parts a) and b) of Condition 3.1. Combining this with (3.8) and (3.5) gives
Vy(xI8) = — B,|x| - B,

for some B,>0. Hence there exists a B>0 such that Vj(x|§)= — B|x| for all seU
and xeX(A4,). The conclusion now follows from Remark 3.1. This completes the
proof.

The next two lemmas deal with the hypotheses (2.7) and (2.8) for Theorems 2.2
and 2.3.

Lemma 3.1. Let V satisfy Condition 3.2. with k=1 and let o be a Gibbs state for V.
Then

olo(s, 0)]1 =2zM(z, f)

for all se U and k= 1. Hence if z and § are bounded above by some constant K >0,
then there exists a positive number M such that for all k=1,

olol(s, O)I=M.
Proof. By Condition 3.2 and since o(x, §) =< 2|x|,

‘ exp(— BV, (x19)
QeO©S | 2=

<2zM(z, ).

V,,(dx)

Thus,
olt0(x, 0) ()] =2zM(z, B). (3.9)
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Since ¢ is a Gibbs state, we have o(t,f)=0(f) for all bounded S-measurable
functions f. A straightforward application of the monotone convergence theorem

shows that
alo(s;, 0)] = o[ 70(x, 0) (5)].

Now combining this with (3.9) gives the desired conclusion. This completes the
proof.

Lemma 3.2. Let K >0 be given and suppose that V satisfies Condition 3.2 with k=1,
and o is a Gibbs state for V. If z, f <K, then there exists a constant C such that for all
k=1 and seU,

f

X(Axk)

[ elx y)#k(dylS)]z ldxls) = C. (3.10)

X(4r)
Proof. By the triangle inequality for the metric o(-, -),
olx, )= elx, 0)+e(y, 0) = 2lx| + 2|yl

[ ol yuldyls) £2Ix]+ | 21y SR AV
X X(Ai) Z,(s)

<2|x|+2zM(z, B)

Hence
Ve (dY)

by Condition 3.2. Thus

[ olx, y),uk(dxls)l2 is bounded by a quadratic polynomial
X(4r)
in |x| whose coefficients are decreasing functions of z and f. Since z, § <K, a second

application Condition 3.2 now yields (3.10) for some constant C. This completes
the proof.

In Sect.1 we restricted our attention to those potentials for which
7,:F(U)>F(U), for every bounded Borel set ACIR%. We now give conditions on
the potential V so that this is true.

Theorem 3.2. If'V has finite range, then t ,: F(U)— F(U) for every bounded Borel set
ACIRY

Proof. Let feF(U) and let {f,} be a sequence of cylinder functions in F(U)
converging uniformly to f. Let C,, be the hypercube of side 2m centered at the
origin in RY. We will construct a sequence {g,} of cylinder functions in F(U)
converging to t,f, thus showing that 7, fe F(U). Define

exp(—BV4(x3nC,))

ao)= ] fov9 TP LRI
and
Ge= [ fooveSREPVUBAC)

X(4) Z (snC,)
Clearly g, is an S-measurable cylinder function in F(U). By the triangle inequality,
'TAf_ gnlao é ItAf— g:n}oo + ]g;n— gnloo

lexp(= BV, (x[§)  exp(— V(30 C,)|
siflossp 1 515 ZnCy) |

VAAx) 1~ fil oo
(3.11)
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But since V has finite range, there exists a positive integer n, such that for n=n,,
V(x8) =V, (xISnC,) forall xeX(A)
and se U. Thus for n=n, (3.11) becomes

ITAf_gnIoo élf_f;llao 5

and since f, —f, we have that g,—1,f. This completes the proof.
The proof of the following lemma is based on the proof of the lemma given in
Simon [16].

Lemma 3.3. Let ACR? be any bounded Borel set and let fe F(U). If s,te U and

{xeX(A):V,(xI$) < 00} = {xeX(A): V,(x]f) < 0},

then
o [eXP(=BV4(xI3)  exp(— BV, (xI0))|
Iz Zo |
<If1 Bsup {[V,(xI8)— V,(x|t) : xe X (A)n U}. (3.12)

Theorem 3.3. Let V satisfy the following conditions :
a) ¢y(x',...,x¥)=0 whenever maxdy(x',x))>R,, for some given R and all
ij

N2Z3.
b) V satisfies parts a) and b) of Condition 3.1,
) ¢y, is hard-core for some N,=2.
Then 1 ,:F(U)— F(U) for all bounded Borel sets ACIR".

Proof. The proof is identical to the proof of Theorem 3.2 up to inequality (3.11).
We proceed from there.
By the definition of R} we can choose n so large that

{xeX(A):V(x3nC,) < 0} ={xeX(A):V,(x|s)<o0}.
We can thus apply Lemma 3.3 to get

1Taf = Gul oo = BISf 1o sUp{IV,(xI8NC,) = V,(x[3)| :xeX(A)NU, s€ U} + If_fnl?j )

Now for n sufficiently large, we can write

VA8 = V,xBACl= Y Y X dixs),

A C C§ xiex slesn Ay

where A,, as usual, refers to the cells with side of length one partioning IR%, and C¢,
denotes the complement in R? of C,. By Condition 3.1, for n sufficiently large,

VA=V, BnCs Y Y Y KywldgA, 4)].

AC C5 xlex slesnAx
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Now by the definition of U, and since ¢y, is hard-core, there is an upper bound on
the cardinality of xCA and snA4,CA, because A and A, are bounded sets. Thus
there is some constant K >0 such that

V(xI§) = V(xSNC ) SK Y, wldgA, 4)].

AC Cry

But by Condition 3.1 and the boundedness of A, Y wy[dy4,4,)]<oo and
AxCCyy
approaches zero as n goes to infinity, independent of x and s in U. Hence by (3.13)

and since |f—f,|,, converges to zero as n approaches infinity, we have
[T f—gulo—0 as n—0,

and hence 1 g€ F(U). This completes the proof.
The remaining theorems in this section give bounds on .
We state without proof the following easy lemma.

Lemma 3.4. Let V satisfy Condition 3.2 with k=1 or 2. If A, and A, are distinct, and
s and t are any two configurations in U which differ only on A,, then

lexp(— BV,(x18) exp(—ﬁvb(xn»{ W) SM ). (14)

[ olx.0)

X(4) | Zy(s) Z,(1)
The proof of the next lemma is similar to the proof of Lemma 3.3.

Lemma 3.5. Let s and t be any two configurations in U. If {xe X(A,):V,(x|$)< oo}
= {xe X(A,): V,(x|f)< o0}, then

lexp(— BV(xI3))  exp(—BV;(xI0)

- d
AL e Zo |
<28 j [ o(x, 0)|Vy(xI8) — Vy(xlt)ldp,d A . (3.15)
0 X(Ap)

In the case that V is a pair potential, there exists an even function
¢ :IR'—(— o0, + 0] such that V(x)= Y ¢(x'—x/) for xe Q. We use this notation
i<j
in the following lemma.
Lemma 3.6. If Vis a pair potential which satisfies Conditions 3.1 and 3.2 with k=2,
and if dg(A,, A,)=r>r, and s and t are any two configurations in U which differ only
on A,, then

0 S4BzM(z, B)y(r). (3.16)

Proof. Let s, and t, have coordinates in R? given by s,=(s',s%...,s") and
t,=(t't% ...,t"™). Assume that m=n and that the coordinates of s, and ¢, are
ordered so that

Y dp(s’, Y+ m—n=g,(s,t,). (3.17)

i=1
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Let the coordinates of xeX(4,) be given by x=(x',x? ...,x*). By the de-
finitions of V,(x[$) and V(x|t) and since s=t except on A, we have

k n
[V(x15) — V(x| < Y, lp(x' —s7)— p(x' — t)|

i=1j=1
k m

+3 Y g =)
i=1j=n+1

<ky(r) i dy(s’, )+ ky(r) (m—n), (3.18)
=1

where in the third line, we have used Condition 3.1. By (3.17) we can write

Py

IV(x18) — Vi (xIt)l = XIw(r)e (s, o) - (3.19)
Now combining (3.19) with (3.15) we get

-

lexp(— BVy(x15))  exp(— BV, (x0))|

d
RIS s Zm |
1
<2000, o0t)] I ol Dlxdudi (3.20)
X(Ap)

Since o(x, 0)=|x|+1 if x#0, o(x,d)x|=|x|*+|x|<2|x|>. Thus by Condition 3.2,
with k=2

lexp(— BV(x13)  exp(—BVy(xID)
X(gib) o0 ’ Zys) Zy(1) |

and combining this with (3.1) gives us

04,y S4PzM(z, B)y(r).

Vy(dx) 4PzM(z, flo (s, t)p(r)

This completes the proof.

Theorem 3.4. Let K>0 and n>0 be given. If V is a pair potential and satisfies
Conditions 3.1 and 3.2 with k=2, and if z, f <K, then there exists C, >0 such that if
z<C,, then a<n for B or z sufficiently small.

Proof. From the definition of o it follows that

o é Sup Z ed(a,b)ga,b + sup z ed(a’b)ga,b > (321)

acA acAc

where A ={aeZ":dg(A,, A,)>r,} and A° is the complement in Z* of A. By (3.16) the
first sum in (3.21) is bounded by

4BzM(z, B) sup Y e @Pyld,(A, A,)]. (3.22)

acA

By Condition 3.1 this can be made arbitrarily small by choosing z or f sufficiently
small.
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By (3.1) and (3.14) and since ¢(s,,t,) =1 for s,=#1¢,, the second sum in (3.21) is
less than # for z less than some constant C,. Thus by choosing z<C, and z or f§
sufficiently small, o <#. This completes the proof.

For the remaining results in this section, ¥ need not be a pair potential.

Theorem 3.5. Let V be finite ranged and satisfy Condition 3.2 with k=1, and let n>0
be given. There exists z, >0 such that for z<z,, x<#. The number z, depends on the

range of V.

Proof. By (3.1) and (3.14) ¢, , <4zM(z, ) for all a,beZ". But for any given acZ*,

0,., =0 for all but finitely many be Z*, because ¥ has finite range. Thus « is a finite

sum of terms of the form e*“?g, . and each of these terms is bounded by

4ze"PM(z, f). Hence by choosing z less than some z, we can make o<#. This
completes the proof.

Lemma 3.7. Let V satisfy Conditions 3.1 and 3.2 with k=1, and let s and t be any two
configurations in U which differ only on A, If di(A,, A,)>71, and ¢y, is hard-core for
some N, =2, then

Qa,b§4NIBZM(Z> ﬁ)lp(r), (323)

where N, is an integer which depends only on ¢y .

Proof. Let s, and t, have coordinates in R given by s,=(s',...,s") and
t,=(t*, ..., t™). Assume that m=n and that the coordinates of s, and t, are ordered
so that

n

Y de(sh t)+m—n=0,(s,1t,). (3.24)

i=1

In what follows we will require xe X ,(A4,)nU. Let the coordinates of x be given

by x=(x!, .. ,x") By hypothesis s and ¢ differ only in 4,. This allows us to write

Vy(x15)— V(xlt) in an explicit form. To simplify notation, we let min denote
min {|x|, N—1} in the following equation and throughout the rest of this proof.

|x]+7n min

AE R ACOEID YD N I WX R

N=2 p=11, J,

= ON(Xis e Xy by s eees L)

|x| +m min

Y Y Y S S Xty ey, (329)

N=2 p=11Ip Jm

where ) denotes a sum over all subsets {i;,....1,}, with cardinality p, of the
Ip
integers 1,...,]x|, Z denotes a sum over all subsets {j, ., ..., Jjn}, with cardinality
JIn
N —p, of the integers 1, ...,n, and Z denotes a sum over all subsets {j, ;- jy}
Tim
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with cardinality N —p of the integers 1,...,m, such that j,>n for at least one k
between p+1 and N. By Condition 3.1

|x|+n min

VD —VxDIS Y Y XY K dils;,, 15, )+ - +des;15,)]

N=2 p=11, J,

|x]+m min

DD DI €7 O (3.26)

N=2 p=1 I, Jj

where r=dg(4, 4,). Let us examine the expression

Y Y Ky [dls;,, 15, )+ o +dg(s;,015,)] (3.27)

I, Jn
. x| n—1 . .
in (3.26). For each k=1,...,n, the term dg(s, t,) occurs o\ 1 times in

—p—
(3.27). Thus we can replace (3.27) by
()("")( " )idv £ (3.28)
Nw N_p_l k=1 Ebk,k' ’

We can also bound the expression

Z Z Kyy(r),

Iy Jin

in (3.26) by (lil) (N )K ~w(r). Combining this with (3.26) and (3.28) gives

Ix]+n min —
|V, (x]8)— V(x|t)|<1P(”)[ Y. delsi tk)} Z Ky Z (Ix|>(Nn p1 1)

|x|+m min
@) m—n) Y Ky Y ('Z') (N"i p). (3.29)

N=2 p=1
The coefficient m—n is zero when m=n and at least one otherwise, so that
inequality in (3.29) is maintained. Now let

B A Rl
and

|x| +m min le m
()= K ( )( )
¢ Ngz N pgl p/\N—p
Recall that x, s, te U and that A, 4, are bounded subsets of R?. By the definitions
of U and R and since ¢y, is hard-core for some N, =2, it follows that each of |x|,
Is,l, and |t,| is bounded by some positive integer M. From this it follows that for
some positive integer N,

O (Ix]), Q* (XN =N, . (3.30)
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Combining (3.30) with (3.24) and (3.29) gives

V(x18) = V(x| D S N1 9(r)ey (s, 1,) » (3.31)

for all xeX(A,)NU.
Now since d(A4,, 4,)>r, and s and ¢ are identical except on A4,, we can apply
Lemma 3.5. Thus combining (3.31) with (3.15) gives

lexp(— BV,(x18)  exp(—BV;(x2)
X(L) o0 I Zys) Z,(t)

1

§2ﬁw(r)N1g1(sa,ta)j | olx, 0)du,dA.

0 X(Ap)

l v,(dx)

Since o(x, @) <2|x| we can apply Condition 3.2 to get

[exp(= BV, (xI3) _ exp(=BVyxIn)| ‘
020 Z | AI=AN MG P, (s ().

Combining this with (3.1) gives
Qa,b §4N1ﬁZM(Z5 ﬁ)l/')(r) .
This completes the proof.

Corollary 3.1. With the same conditions as in Lemma 3.7, except that V does not
satisfy part c) of Condition 3.1 we have

00, p SAN'BzM(z, B)y(r), (3.32)

where N is a positive integer which depends only on ¢y,

Proof. The proof begins exactly as in the proof of Lemma 3.7 up to (3.26). Now
replace (3.26) with

. |x|+n min |x|+m min
M -xls Y X Y X2Kw)+ Y Y X2 Kypl).
N=2 p=11, Jn N=2 p=1 I, Jp,

Noting the remarks preceding (3.30) that |x|, |s,|, and |¢,| are bounded by some
integer K, we can conclude that |V,(x|5)— Vb(xlf)l < N'y(r) for all xeX(A4,)NU and
some positive integer N. The argument now proceeds as in the final paragraph of
the proof of Lemma 3.7. This completes the proof.

Remark 3.2. We note in comparing Lemma 3.7 with Corollary 3.1 that N! is
generally larger than N,.

We conclude this section with a theorem for many-body potentials whose
proof is exactly analogous to the proof of Theorem 3.4.

Theorem 3.6. Suppose that V satisfies Condition 3.2 with k=1 and parts a) and b) of
Condition 3.1,and that ¢y, is hard-core for some N, =2. Let K >0 and n>0 be given.
If z, B <K then there exists C, >0 such that if z< C,, then o.<# for f or z sufficiently
small.
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Section 4. Summary

In Sect. 3 we found conditions on a potential ¥ so that: a) 7 ,: F(U)— F(U), b) any
Gibbs state for V (if one exists) satisfies (2.8), and c) V satisfies (2.7) and (2.9), for
high temperature or low activity. Let H denote the set of all stable, S-measurable,
translation-invariant potentials which satisfy a), b), and c) above. The results of
Sect. 2 give:

Theorem 4.1. Let d(-,-) be a translation invariant semi-metric on Z°CIR%, and let
K, >0 be given. If Ve H and a Gibbs state o exists for V when z, <K |, then there
exists K,>0 such that if z<K, and z or B is sufficiently small, the following
conditions hold :

o is unique, 4.1
lo(fg)— o()a(g) < Ce™ P | £l llgll,(1 —o)"2(1 —a®) ™" 4.2)
for some constant C, all a,beZ*, and all f,ge L(U),

Y lo(fg)—a(N)a(g)le" O < Cll Sl liglo(t —o)™ "1 —a—a?)™? (4.3)

aeZd

for the same constant C as in (4.2), all ceZ%, and f,ge L(U).

Remark 4.1. We have not shown the existence of the Gibbs state o. Ruelle [14] (see
also Preston [12]) has proven existence for a wide class of pair potentials, though
we know of no such result for many-body potentials.

Remark 4.2. The restriction that f, ge L(U) can be somewhat relaxes. For example,
let N%s)=|snA,| for any aeZ® and se U. The function N%s) gives the number of
particles in the configuration s which lie in the cube 4, Since N is unbounded,
N°¢L(U). However, we can apply (4.2) and (4.3) in this case in the following
manner. Let
. Ns) if [|snA,/=n

9= {n otherwise.
It is not hard to check that f?e L(U) and that | f¢|,<1 for n=1. Then by the
monotone convergence theorem we have from (4.2),

|6(N°N?) — 6(N9)a(N?)| < Ce @01 —a) " Y1 —a?) L.

With 0 referring to the origin in Z“, the monotone convergence theorem together
with Fatou’s lemma and (4.3) give

Y [6(N°N9)— 6(N9)o(NO)|e"9 < C(1 — o)~ 1(1 —ot—a?) .

aeZ4

In a similar fashion we can apply (4.2) and (4.3) to functions of the type
N*(s)=|snA|, where A is a bounded Borel set in R?. For a clear discussion of the
physical significance of the averaged correlations o(N“N“*)— a(N*)o(N*) and how
they are related to the more standard “non-averaged” correlation functions, we
refer the reader to Minlos [11].
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Remark 4.3. Comparing results of Sect. 3 yields the following sufficient condition
for Ve H. A stable, translation invariant, S-measurable potential Vis an element of
H if each of the following conditions holds:

a) V satisfies Condition 3.2 with k=2 and parts a) and b) of Condition 3.1 given
in Sect. 3.

b) Either V has finite range or V satisfies all of the following :

1) ¢p(x?, ..., x")=0 whenever max dy(x',x)>R, for some given R,>0 and all
ij

Nz=3.
2) ¢y, is hard-core for some Ny=2.

We make a final observation about the above remark. The condition that ¢,
is hard-core for some N,=2 can be considered in the following way. The main
technical problem in establishing conditions for Ve H has been in dealing with the
low probability event that some huge number of particles cluster in some small
region of space. The methods of proof in this paper do not seem to allow for
exploitation of the small probability of this event. However, in dealing with a

potential V of the form M

Vi)=Y ) da),

N=2 lny

where M is finite, we can add to V the N,-body potential defined by

oo if maxdy(x’,x)<R,

Prvo(X)= 0 otherwise, (44)

where R, is very small and N, is large. This has the effect of assigning zero
probability to the event that N, or more particles accumulate in a spherical region
of space of diameter R,. Thus, for example, in dealing with a non-hard-core pair
potential ¥, we could add ¢y to V as defined in (4.4) with N,=10%* and R, =1
angstrom. In this fashion the physically unreasonable event that 10?* or more
particles accumulate in such a small region of space is assigned zero probability,
even though any smaller number of particles has some non-zero probability of
clustering in any region of space. We could, in this manner, apply the results of this
paper to a pair potential V¢H, but satisfying Condition 3.2 and parts a) and b) of
Condition 3.1. The potential ¥ modified as above is then an element of H. (We
point out, however, that some non-hard-core pair potentials are elements of H
without such modifications.)

A drawback to this approach is that the larger the number N,,, for a fixed value
of R,, the smaller the values of z and f must be (with the present techniques
employed in this paper) to guarantee uniqueness of the Gibbs state, and the decay
of correlations. This problem should be somewhat mitigated if, in all of the
preceding analysis, Z* is replaced by AZ? for some small >0, and the function y(r)
of Condition 3.1 is required to fall of very rapidly (depending on N, and R,) as r
approaches infinity.
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