Commun. Math. Phys. 86, 143-147 (1982)

Communications in Mathematical Physics © Springer-Verlag 1982

Brownian Motion in a Convex Ring and Quasi-Concavity

Christer Borell

Chalmers University of Technology, S-41296 Göteborg, Sweden

Abstract. Let X be the Brownian motion in \mathbb{R}^n and denote by τ_M the first hitting time of $M \subseteq \mathbb{R}^n$. Given convex sets $K \subseteq L \subseteq \mathbb{R}^n$ we prove that all the level sets

$$\{(x,t)\in\mathbb{R}^n\times[0,+\infty[;P_x[\tau_K\leq t\wedge\tau_{L^c}]\geq\lambda\},\lambda\in\mathbb{R},\$$

are convex.

1. Introduction

The background of the present paper is a very beautiful theorem of Gabriel [3, 4] and Lewis [5] stating that the equilibrium potential of a convex body in \mathbb{R}^n relative to a surrounding convex body is quasi-concave. Below we will show the same property for the solution of the corresponding heat conduction problem with zero initial data. Here recall that a real-valued function f defined on a convex set is said to be quasi-concave if all the level sets $\{f \ge \lambda\}, \lambda \in \mathbb{R}$, are convex.

Throughout, X denotes the Brownian motion in \mathbb{R}^n and, for each $M \subseteq \mathbb{R}^n$, τ_M stands for the first hitting time of M, that is, $\tau_M = \inf\{t > 0; X(t) \in M\}$.

Theorem 1.1. Suppose $K, L \subseteq \mathbb{R}^n$ are convex sets such that $K \subseteq L$. Then the function

$$w(x,t) = P_x[\tau_K \leq t \wedge \tau_{L^c}], \quad (x,t) \in \mathbb{R}^n \times [0, +\infty[,$$

is quasi-concave.

Here, for short, L^c means $\mathbb{R}^n \setminus L$.

To prove Theorem 1.1 there is no loss of generality to assume that (i) K is a convex body in \mathbb{R}^n , (ii) L is the interior of a convex body in \mathbb{R}^n , and (iii) $d(K, L^c) > 0$. In what follows, we always assume (i)–(iii) are fulfilled. Then, in particular,

$$\begin{cases} \Delta w = 2w'_t & \text{in } (L \setminus K) \times]0, + \infty[\\ w = 0 & \text{on } \{(L \setminus K) \times \{0\}\} \cup \{\partial L \times [0, + \infty[\}\}\\ w = 1 & \text{on } \partial K \times [0, + \infty[\end{cases} \end{cases}$$

and, hence, $w(x, +\infty)$ is the equilibrium potential of K relative to L (see e.g. Friedman [2]).

The proof of Theorem 1.1 is divided into three steps. In the first step we use the isoperimetric inequality of Brownian motion to obtain a certain differential inequality, which is basic for the subsequent arguments. Theorem 1.1 then follows from Step 1 exploiting the same main line of reasoning as in the time-stationary case (Step 3). There is just one new difficulty, namely to handle the discontinuity points of w (Step 2).

2. Step 1: A Differential Inequality

Suppose $(x, t) \in (L \setminus K) \times]0, +\infty[$ and $y \in K$ are fixed.

We claim that

$$(y-x) \cdot \nabla_x w(x,t) - 2t w'_t(x,t) \ge d(y,K^c)(2\pi t)^{-1/2} \exp\left[-(\Phi^{-1}(w(x,t)))^2/2\right], \quad (2.1)$$

where $d(x, y) = |x - y| = ((x - y) \cdot (x - y))^{1/2}$ is the usual metric on \mathbb{R}^n and

$$\Phi(\lambda) = \int_{-\infty}^{\lambda} \exp(-s^2/2) ds / (2\pi)^{1/2}, \quad -\infty \leq \lambda \leq +\infty.$$

Before the proof of (2.1) let us remark that the weaker differential inequality $(y-x) \cdot V_x w(x,t) - tw'_t(x,t) \ge 0$ is a corollary to Theorem 1.1.

In the following, let Ω be the standard Fréchet space of all continuous functions of $[0, +\infty[$ into \mathbb{R}^n and assume X - X(0) is represented as the identity mapping on Ω . Stated otherwise, we choose the Wiener picture of Brownian motion. The isoperimetric inequality of Brownian motion may then be described as follows.

Suppose U denotes the class of all absolutely continuous $\omega \in \Omega$ such that $\omega(0) = 0$ and $+\infty$

$$\int_{0}^{+\infty} |\omega'(t)|^2 dt \leq 1.$$

Then $\Phi^{-1}(P_x[X \in A + \varepsilon U]) \ge \Phi^{-1}(P_x[X \in A]) + \varepsilon, \varepsilon > 0$, for each Borel set $A \subseteq \Omega$ (Borell [1]).

To prove (2.1) we may set y = 0 and, of course, it suffices to treat the special case when 0 belongs to the interior of K. If $\overline{B}(0;r)$ denotes the closed ball in \mathbb{R}^n of centre 0 and radius r > 0, then $\omega([0,s]) \subseteq \overline{B}(0;s^{1/2})$ for each $(\omega,s) \in U \times]0, +\infty[$, and, hence, for any fixed $\varepsilon > 0$,

$$\Phi^{-1}(P_x[\tau_{K+\overline{B}(0;\varepsilon)} \leq t \wedge \tau_{(L+\overline{B}(0;\varepsilon))^c}]) \geq \Phi^{-1}(w(x,t)) + \varepsilon \cdot t^{-1/2}.$$

We now define $\rho = 1/d(0; K^c)$ and have $M + \overline{B}(0; \varepsilon) \subseteq (1 + \varepsilon \rho)M$, M = K, L, because K and L are convex. Thus

$$\Phi^{-1}(P_{\mathbf{x}}[\tau_{(1+\varepsilon\varrho)K} \leq t \wedge \tau_{((1+\varepsilon\varrho)L)^c}]) \geq \Phi^{-1}(w(\mathbf{x},t)) + \varepsilon \cdot t^{-1/2},$$

and by scaling the time,

$$\Phi^{-1}(w(x/(1+\varepsilon\varrho),t/(1+\varepsilon\varrho)^2) \ge \Phi^{-1}(w(x,t)) + \varepsilon \cdot t^{-1/2}$$

which immediately proves (2.1).

Brownian Motion

3. Step 2: Analysis of the Points of Discontinuity of w

Assume K satisfies the following additional conditions (iv) K is strictly convex and (v) $K = K_0 + \overline{B}(0; r_0)$, where K_0 is a convex body in \mathbb{R}^n and $r_0 > 0$. Let $0 < T < +\infty$ be fixed and set $D = \{(x, t) \in \mathbb{R}^n : 0 \le t \le T\}$, $u = w_{1D}$, and

$$\tilde{u}(\xi) = \sup \{ u(\eta) \wedge u(\zeta) ; \xi \in [\eta, \zeta], \eta, \zeta \in D \}, \quad \xi \in D.$$

respectively. Finally, suppose $\varepsilon \in]0, 1[$ and let $\sup[\tilde{u} - u^{\varepsilon}] = Q > 0$.

We claim there exist $\xi_*, \eta_*, \zeta_* \in (L \setminus K) \times [0, T]$ such that $\tilde{u}(\xi_*) - u^{\iota}(\xi_*) = Q$, $\xi_* \in [\eta_*, \xi_*[$, and $\tilde{u}(\xi_*) = u(\eta_*) = u(\zeta_*)$.

To see this, first note that the function $\tilde{u}-u^c$ is non-positive on $\{(K \cup L^c) \times [0, T]\} \cup \{(L \setminus K) \times \{0\}\}$ and choose for each $i \in \mathbb{N}$ a $\xi_i \in (L \setminus K) \times]0, T]$ with $q_i = \tilde{u}(\xi_i) - u^c(\xi_i) > 0$ and such that $q_i \to Q$ as $i \to +\infty$. Without any loss of generality we may assume the sequence $(\xi_i)_{i \in \mathbb{N}}$ converges to a point $\xi_* \in (\bar{L} \setminus K) \times [0, T]$. Next choose $\eta_i, \zeta_i \in D$ satisfying $\zeta_i \in [\eta_i, \zeta_i]$ and so that $0 < u(\eta_i) \land u(\zeta_i) = \tilde{u}(\xi_i) - \delta_i$, where $0 \le \delta_i \to 0$ as $i \to +\infty$. If $\eta_i \in K \times [0, T]$, then by (2.1) the function $u(\zeta_i + \lambda(\eta_i - \zeta_i)), 0 \le \lambda \le 1$, increases and a similar assertion is true if $\zeta_i \in K \times [0, T]$. In view of these facts it may be assumed that $\eta_i, \zeta_i \in (L \setminus K) \times]0, T]$. In the following $\hat{\eta}_i = (x(\hat{\eta}_i), t(\hat{\eta}_i))$ denotes the point in $K \times]0, T]$ which is closest to η_i and we let $H(x(\hat{\eta}_i))$ be the supporting hyperplane of K at $x(\hat{\eta}_i)$. Analogous conventions will be used below with $\hat{\eta}_i$ replaced by $\hat{\zeta}_i$ and $\hat{\xi}_i$, respectively. Then, to begin with,

$$u(\eta_i) \leq P_{x(\eta_i)} [\tau_{H(x(\hat{\eta}_i))} \leq t(\eta_i)],$$

that is $u(\eta_i) \leq \Psi(d^2(x(\eta_i), K)/t(\eta_i))$, where

$$\Psi(\lambda) = \int_{0}^{1/\lambda} (2\pi s^3)^{-1/2} \exp(-1/(2s)) ds, \quad \lambda > 0,$$

and, in a similar way, $u(\zeta_i) \leq \Psi(d^2(x(\zeta_i), K)/t(\zeta_i))$. We now use that Ψ decreases and that the function $d^2(x, K)/t$, $(x, t) \in \mathbb{R}^n \times]0, T]$ is convex to obtain the inequality $u(\eta_i) \wedge u(\zeta_i) \leq \Psi(\lambda_i)$, where $\lambda_i = d^2(x(\zeta_i), K)/t(\zeta_i)$. In particular,

$$q_i - \delta_i + u(\xi_i) \le \Psi(\lambda_i) \tag{3.1}$$

and, accordingly, the sequence $(\lambda_i)_{i \in \mathbb{N}}$ must be bounded. Now set $d(K, L^c) = R_0$ and choose $\overline{B}(y_i; r_0) \subseteq K$ such that $x(\xi_i) \in \overline{B}(y_i; r_0)$. Then

$$u(\xi_i) \ge P_{x(\xi_i)} [\tau_{\overline{B}(y_i; r_0)} \le t(\xi_i) \wedge \tau_{B^c(y_i; r_0 + R_0)}]$$

and introducing $\mu_i = r_0/t^{1/2}(\xi_i)$, this means that $u(\xi_i)$ does not fall below the probability

$$P_{(\lambda_{t}^{1/2}, 0, ..., 0)} \left[\tau_{\mu_{t} \overline{B}((-1, 0, ..., 0); 1)} \leq 1 \wedge \tau_{(\mu_{t} B((-1, 0, ..., 0); 1 + R_{0}/r_{0}))^{c}} \right].$$

Here, if $t(\xi_*)=0$, the same probability becomes arbitrarily close to $\Psi(\lambda_i)$ for large *i*, which contradicts (3.1). Thus $t(\xi_*)>0$.

From now on we assume without any loss of generality that the sequences $(\eta_i)_{i\in\mathbb{N}}$ and $(\zeta_i)_{i\in\mathbb{N}}$ both converge to the limits $\eta_*\in(\overline{L}\setminus\mathring{K})\times[0,T]$ and $\zeta_*\in(\overline{L}\setminus\mathring{K})\times[0,T]$, respectively. If η_* or $\zeta_*=\xi_*$, the continuity of u at ξ_* implies the

contradiction $u(\xi_*) - u^{\xi}(\xi_*) \ge Q$. Hence $\xi_* \in]\eta_*, \zeta_*[$. If $x(\eta_*) = x(\zeta_*) \in K$, then $t(\eta_*)$ or $t(\zeta_*) > t(\xi_*)$, and by using the continuity of u off $\partial K \times \{0\}$ we again obtain a contradiction. From these results and the strict convexity of K it follows that η_* or $\zeta_* \notin K \times [0, T]$. Assuming $\eta_* \notin K \times [0, T]$, we have $u(\eta_*) - u^{\varepsilon}(\xi_*) \ge Q$ and, in particular, $\eta_* \in (L \setminus K) \times]0, T]$. If $\zeta_* \in K \times [0, T]$, then by (2.1) the function $u(\eta_* + \lambda(\zeta_* - \eta_*)), 0 \le \lambda \le 1$, increases and we get $u(\xi_*) - u^{\varepsilon}(\xi_*) \ge Q$ and $\zeta_* \in (L \setminus K) \times]0, T]$. From these facts, $\tilde{u}(\xi_*) - u^{\varepsilon}(\xi_*) = Q$, and by eventually moving η_* or ζ_* closer to ξ_* we have $u(\eta_*) = u(\zeta_*) = \tilde{u}(\xi_*)$, which completes the proof of the claim at the beginning of this section.

4. Step 3: The Gabriel-Lewis Argument

To prove Theorem 1.1 there is no loss of generality to assume that the conditions (i)–(v) are fulfilled. Let u be as in the previous section. Of course, it is enough to show that the function u is quasi-concave.

Suppose contrary to this that u is not quasi-concave and choose an $\varepsilon \in]0, 1[$ with $\sup[\tilde{u}-u^{\varepsilon}]>0$. Let η_*, ζ_* , and $\xi_*=\theta\eta_*+(1-\theta)\zeta_*$ be as in Step 2. This will lead us to a contradiction as follows.

First recall that $\nabla_x u \neq 0$ in $(L \setminus K) \times [0, T]$ by (2.1) and suppose $h \in \mathbb{R}^n = (\mathbb{R}^n \times \{0\})$ satisfies the inequality $h \cdot \nabla_x u(\eta_*) > 0$. Then for all small s > 0, $u(\eta_* + sh) > u(\eta_*)$ and, hence, $\tilde{u}(\xi_* + s\theta h) \ge \tilde{u}(\xi_*)$ yielding $u(\xi_* + s\theta h) \ge u(\xi_*)$ and $h \cdot \nabla_x u(\xi_*) \ge 0$. From this follows that the vectors $\nabla_x u(\xi_*)$ and $\nabla_x u(\eta_*)$ are parallel and in the same way we conclude that the vectors $\nabla_x u(\xi_*)$ and $\nabla_x u(\zeta_*)$ are parallel.

Set $a = |\nabla_x u^{\varepsilon}(\xi_*)|$, $b = |\nabla_x u(\eta_*)|$, $c = |\nabla_x u(\zeta_*)|$, and $v = (\nabla_x u^{\varepsilon}(\xi_*))/a$, respectively. Suppose $h \in \mathbb{R}^n$ and $\kappa = h \cdot v \neq 0$. For each $s \in \mathbb{R}$ close to the origin there exists a unique r = r(s) with |r| minimal and such that $u(\eta_* + sh/b) = u(\zeta_* + rh/c)$. Writing $\xi_s = \xi_* + (\theta_s/b + (1 - \theta)r(s)/c)h$, we now have $u(\eta_* + sh/b) - u^{\varepsilon}(\xi_s) \leq u(\eta_*) - u^{\varepsilon}(\xi_*)$. In particular,

$$\begin{cases} D_{s} (u(\eta_{*} + sh/b) - u^{\varepsilon}(\xi_{s}))_{|s|=0} = 0\\ D_{s}^{2} (u(\eta_{*} + sh/b) - u^{\varepsilon}(\xi_{s}))_{|s|=0} \leq 0. \end{cases}$$
(4.1)

Moreover, introducing

$$u(\eta_* + sh/b) = u(\eta_*) + \kappa s + Bs^2 + o(s^2)$$
 as $s \to 0$

and

$$u(\zeta_* + sh/c) = u(\zeta_*) + \kappa s + Cs^2 + o(s^2) \quad \text{as} \quad s \to 0,$$

it follows that

$$r(s) = s + \kappa^{-1}(B - C)s^2 + o(s^2)$$
 as $s \to 0$.

By now setting $\lambda = \theta/b + (1 - \theta)/c$ and

$$u^{\varepsilon}(\xi_* + sh) = u^{\varepsilon}(\xi_*) + \kappa as + As^2 + o(s^2) \quad \text{as} \quad s \to 0 \,,$$

the above yields

$$u^{\varepsilon}(\xi_s) = u^{\varepsilon}(\xi_*) + \lambda \kappa as + [\lambda^2 A + (1-\theta)(a/c)(B-C)]s^2 + o(s^2)$$

Brownian Motion

as $s \rightarrow 0$. Thus from (4.1), $a = \lambda^{-1}$ and

$$B - \left[\lambda^2 A + (1 - \theta)(a/c)(B - C)\right] \leq 0$$

To simplify the last inequality we define $\mu = \theta/(b\lambda) < 1$ and so we have $\mu B + (1-\mu)C - \lambda^2 A \leq 0$, that is

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} \left[(\mu/b^2) u_{x_i x_j}'(\eta_*) + ((1-\mu)/c^2) u_{x_i x_j}'(\zeta_*) - \lambda^2 (u^\varepsilon)_{x_i x_j}'(\zeta_*) \right] h_i h_j \le 0.$$

Of course, the same estimate is true for all $h \in \mathbb{R}^n$ and, accordingly,

$$(\mu/b^2) \Delta u(\eta_*) + ((1-\mu)/c^2) \Delta u(\zeta_*) - \lambda^2 \Delta u^{\varepsilon}(\xi_*) \leq 0.$$

Since $\Delta u^{\varepsilon}(\xi_*) = 2(u^{\varepsilon})'_t(\xi_*) + \varepsilon(\varepsilon - 1)u^{\varepsilon - 2}(\xi_*)|\nabla_x u(\xi_*)|^2$ and $|\nabla_x u(\xi_*)| > 0$, necessarily

$$\mu\beta/b^{2} + (1-\mu)\gamma/c^{2} - \lambda^{2}\alpha < 0$$
(4.2)

with $\alpha = (u^{\varepsilon})'_{t}(\xi_{*})$, and where $\beta > u'_{t}(\eta_{*})$ and $\gamma > u'_{t}(\zeta_{*})$ are sufficiently small. But then

$$1 - \alpha(\theta/\beta + (1 - \theta)/\gamma) \ge 0, \qquad (4.3)$$

as the derivative

$$D_s[u(\eta_* + (0, s/\beta)) \land u(\zeta_* + (0, s/\gamma)) - u^{\varepsilon}(\zeta_* + (0, s(\theta/\beta + (1-\theta)/\gamma)))]_{|s=0} - u^{\varepsilon}(\zeta_* + (0, s/\beta)) \land u(\zeta_* + (0, s/\gamma)) - u^{\varepsilon}(\zeta_* + (0, s/\beta)) \land u(\zeta_* + (0, s/\gamma)) - u^{\varepsilon}(\zeta_* + (0, s/\beta)) \land u(\zeta_* + (0, s/\gamma)) - u^{\varepsilon}(\zeta_* + (0, s/\beta)) \land u(\zeta_* + (0, s/\gamma)) - u^{\varepsilon}(\zeta_* + (0, s/\beta)) \land u(\zeta_* + (0, s/\gamma)) - u^{\varepsilon}(\zeta_* + (0, s/\beta)) \land u(\zeta_* + (0, s/\gamma)) \land u(\zeta_* + (0,$$

is non-negative. It is readily seen that (4.2) and (4.3) are non-consistent. In fact, by (4.3) the left-hand side of (4.2) does not fall below

$$\begin{split} &\mu\beta/b^2 + (1-\mu)\gamma/c^2 - \lambda^2/(\theta/\beta + (1-\theta)/\gamma) \\ &= \lambda^{-1}(\theta/\beta + (1-\theta)/\gamma)^{-1} [(\theta\beta/b^3 + (1-\theta)\gamma/c^3)(\theta/\beta + (1-\theta)/\gamma) - \lambda^3] \end{split}$$

where, by the Hölder inequality,

$$(\theta\beta/b^3 + (1-\theta)\gamma/c^3)(\theta/\beta + (1-\theta)/\gamma) \ge (\theta/b^{3/2} + (1-\theta)/c^{3/2})^2 \ge \lambda^3$$

From these estimates we have that the left-hand side member of (4.2) is non-negative, which is a contradiction.

This completes the proof of Theorem 1.1.

References

- 1. Borell, C.: The Brunn-Minkowski inequality in Gauss space. Invent. math. 30, 207-216 (1975)
- Friedman, A.: Stochastic differential equations and applications, Vol. 1. New York, San Francisco, London: Academic Press 1975
- 3. Gabriel, R.M.: An extended principle of the maximum for harmonic functions in 3-dimensions. J. London Math. Soc. 30, 388-401 (1955)
- Gabriel, R.M.: A result concerning convex level surfaces of 3-dimensional harmonic functions. J. London Math. Soc. 32, 286–294 (1957)
- 5. Lewis, J.L.: Capacitary functions in convex rings. Arch. Rational Mech. Anal. 66, 201-224 (1977)

Communicated by B. Simon

Received February 16, 1982; in revised form April 16, 1982