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Abstract. We present sufficient conditions that imply duality for the algebras of
local observables in all Abelian sectors of all locally normal, irreducible
representations of a field algebra if twisted duality obtains in one of these
representations. It is verified that the Yukawa2 model satisfies these conditions,
yielding the first proof of duality for the observable algebra in all coherent charge
sectors in this model. This paper also constitutes the first verification of the
assumptions of the axiomatic study of the structure of superselection sectors by
Doplicher, Haag and Roberts in an interacting model with nontrivial sectors.
The existence of normal product states for the free Fermi field algebra and, thus,
the verification of the "funnel property" for the associated net of local algebras
are demonstrated.

1. Introduction

In the algebraic approach to relativistic quantum field theory (for an introduction
and motivation, see [24]), an intriguing property called duality became a natural
object of study. For algebraic quantum field theory the basic structure is a net of *-
algebras {21(0)} (generally taken to be von Neumann algebras, which we henceforth
assume), wherein to each bounded space-time region Θ is associated an algebra
2ί(0). This net of algebras is required to satisfy certain properties that are physi-
cally motivated when one assumes that the self-adjoint elements of 21(0) represent
measurements performed in 0 (observables in 0). A crucial property is that of
locality, which is an expression in this framework of the requirement that
measurements in spacelike separated regions can not influence each other. Locality
is represented mathematically by demanding that observables A1 and Λ2 localized
in such spacelike separated regions 0X and 0 2 must commute, i.e. 21(0^ <= 21 (#2)'*
where primes on algebras signify the commutant of the algebra and primes on space-
time regions signify the spacelike complement of the region. Duality strengthens this
requirement by demanding that any observable that commutes with all observables
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localized in Θ' must itself be associated with Θ, i.e. $l((9) = $!($')'. If duality is
satisfied, the local algebras are maximal in the sense that if {^{Θ)} and {S&2{Θ)} are
two nets of local algebras such that duality obtains for the system {%2{0)} a n d for
every φ, %i{Θ)^^2{Θ\ then {^^Θ)} = {3I2(0)} This follows at once from the
inclusions

SΆ2(Θ) c 2^(φ) c s&1 (Θ'Y <Ξ 212(0')'.

Duality has been employed in the axiomatic study by Doplicher, Haag and
Roberts (DHR) [12,13] of the structure of superselection sectors for compact gauge
groups of the first kind. It was shown in [35] that it suffices for the application in [12,
13] that the weaker condition of essential duality, requiring that the algebras
93(0) = 2t(0')' satisfy duality, obtains. (This then necessitates an extension of
the representations of the original net of algebras—see [35].) In [6,7] sufficient
conditions (that are probably satisfied in all reasonable quantum field models) were
given that assure that duality holds for the canonical algebras (the algebras
generated by bounded functions of the fields with support in the appropriate region)
associated with spacelike wedges, but only essential duality could be shown for
algebras associated with double cones. Although it is thus under generally valid
conditions possible to find a net of algebras with which one can do the DHR theory,
the question of what is the appropriate net of observable algebras is begged. If,
however, the "canonical" net, which is one of the smallest candidates (at least if one is
dealing with quantum field models), satisfies duality, it equals the Bisognano-
Wichmann net and there is no local extension.

As it has been found useful in physics to introduce unobservable fields (charge-
carrying fields, fermions) whose locality is not expressed through commutation
relations, one has defined a transformation g (0) -> ff(Θ), a "twist" related to a Klein
transformation, of the local field algebra (von Neumann algebra generated by the
observable and unobservable fields with support in Θ) so that one has the relation
g($) <= %*(&')'—called twisted locality. The requirement of equality, called twisted
duality, is closely related to duality for the observable algebras (see [12, 13] and
Chapter II.

Araki's original proof of duality for the free Bose field [1] was subsequently
simplified and refined in a series of papers [29,15,25] and extended to free fields of
mass m > 0 and any integer spin by DelΓAntonio [11]. Using DelΓAntonio's results
on the structure of Fermi systems, twisted duality for free Fermi fields was proven in
[12] (see also [16]). Duality for algebras associated with certain space-time regions
was proven for free, massless, integer spin fields in [25]. Although all these proofs
were carried out for four space-time dimensions, all proofs for the massive theories
can be reproduced in two space-time dimensions.

In [ 14] Driessler demonstrated duality for the first time in an interacting quantum
field model—P(φ)2—by isolating sufficient conditions that assure that the know-
ledge of duality in one locally normal representation of CCR-algebra can be
carried over to all other locally normal representations of the CCR-algebra and then
verifying that the Fock space representation of the relativistic Bose field fulfills these
conditions, thus yielding duality for P{φ)2 models due to their local Fock property
(which implies they are locally normal representations of the CCR-algebra).
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However, as he shows, his conditions exclude the existence of nontrivial locally
generated superselection sectors. In this paper we propose to generalize Driessler's
work to examine field algebras and twisted duality and to apply the result to models
with fermions and nontrivial superselection sectors. In particular we shall apply our
theorem to the scalar (or pseudoscalar) Yukawa2( + P(φ2) quantum field model,
which is also known to have the local Fock property, enabling us to use the well-
studied Fock representation for the reference representation.

More specifically, we find sufficient conditions on a net of local field algebras
ιS(0)} (i e admitting nonobservable fields) generating a C*-algebra #", so that
if twisted duality (and one technical condition) is satisfied in one locally normal
representation of this algebra, duality will be satisfied by the observable algebras on
all Abelian sectors (see [12]) of all locally normal representations of the said algebra.
Twisted duality itself will be recovered in the latter representations whenever the
observable algebra is obtained from the field algebra as the fixed points under gauge
transformations of an Abelian gauge group, i.e. the observables are gauge invariant
under this Abelian group. (We also present a slightly different version of the
technical condition that assures twisted duality for a nonabelian gauge group.) In
particular, we shall require that {3(0)} satisfies the funnel property. This property, a
variant of a conjecture of Borchers for all relativistic quantum field theories, asserts
that for an ascending sequence {Θn} \Ud of space-time regions there exists a sequence
of type I factors {9WJ such that

for every n. We remark that in a free relativistic quantum field theory, the g(0) are
typically type III factors [2,11]. The abstract theorem is stated and proven in Chap.
II, and we refer the reader there for further details.

We wish then to apply this theorem to concrete relativistic quantum field
models. In this application, the local field algebras will be the canonical algebras
associated to local quantum fields, and we shall take as our reference representation
the well-studied Fock (free) representation of the relativistic Bose and Fermi fields
(which verifies twisted duality and the technical assumption imposed on the re-
ference representation—see Chap. IV). The funnel property was demonstrated for
the local algebras associated with the free Bose field by Buchholz [8] (when one
takes into account the validity of duality), and we do the same here for the free Fermi
field algebras, capitalizing on ideas employed by him. Buchholz showed that under
the standard assumptions of local relativistic quantum theory, the existence of
normal product states yields a form of the funnel property. That is to say, if for a
suitable pair of spacelike separated regions 0 l 5 0 2 , and a pair of normal states φ1 of
91(0!) and φ2 of 9I(02), t n e r e e x i s t s a normal state φ on 91 such that φ(ΣAnBn) =
Σφι{An)φ2{Bn) for all Λ^SϋiΘJ and Bne

ς&{G2\ then there exist type I algebras
SJR1?

 SDΪ2, such that 91(0 J ci(mi c9M2 c 91(02)' (which is actually the form of
Borchers' conjecture). Duality then yields the funnel property. In the presence of
fermions, this result is again valid if 91(0^ is replaced by g ( 0 J and 91(0 2) by 3^(0 2).
Twisted duality then entails the funnel property. The existence of normal product
states is verified for the free Fermi algebra in Chap. III.

In Chap. IV the remaining assumptions of the abstract theorem proven in
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Chap. II are demonstrated for the Y2 + P(φ)2 model, using results proven in the
Hamiltonian formalism (see [19, 21, 39, 40, 17]) and the Euclidean formalism (see
[42, 43, 10, 26, 49]). Unfortunately, we will need properties proven in one or the
other formalism, but not in both, so we shall be obliged to prove the equivalence of
the resulting models. We verify the necessary properties in the weak coupling limit,
but the same ideas can be applied to the strong coupling limit of Balaban and
Gawedzki [4], as we shall point out in a bit more detail in Chap. IV.

II. The Funnel Property and Twisted Duality

In this chapter we shall generalize a theorem of Driessler [14] to determine sufficient
conditions on a given irreducible, locally normal representation of a field algebra #",
here admitting unobservable (Fermi) fields, that permit one to conclude from the
knowledge that twisted duality obtains in this representation that duality holds for
the observable algebra in all Abelian coherent sectors of all irreducible, locally
normal representations of #", i.e. duality holds for all irreducible, locally normal
representations of the observable algebra j / (given by the fixed points of ^ under a
gauge group <&) that admit one-dimensional unitary representations of ^ . If the
group <3 is Abelian, twisted duality itself will be regained in all the mentioned
representations of # \ Slightly stronger conditions will be given that yield twisted
duality for any compact gauge group (see Theorem 2.8). These results are an
advance with respect to [14] because this theorem may be applied to relativistic
quantum theories with non-trivial superselection sectors and fermions. The general
setting of this study is the work of Doplicher, Haag and Roberts [12, 13], and we
refer the reader there for further details and motivations, if necessary.

To begin, we introduce the mathematical objects that shall concern us. We
assume a correspondence Θ -> %(Θ) between arbitrary bounded open sets Θ a Ud (a
special subclass of such regions—the bounded double cones (bdc's)—shall
often be singled out) and W*-algebras $($), embedded in a C*-algebra SF that is

the norm closure of the inductive limit | Jg($) , such that isotony obtains

(φ1 c Θ2 =>g($i) c g(02)). ^{Θf) will denote the C*-subalgebra of & generated by

U δ(^o)(^' signifies the interior of the causal complement of Θ). One assumes
(9Oa Θ'

further a faithful representation g -> ag of a compact group & by automorphisms of
J^ that act strictly locally:

V0. (2.1)

We presume the map g —• ocg(F) to be ultraweakly continuous for Fe%(Θ\ that is to
say, then, locally ultraweakly continuous (i.e. continuous in the weak topology
induced by the locally normal linear forms). The observables are defined to be the
gauge invariant elements of #":

M(Θ) = {FG%(Θ)\aιg(F) = F9 Ίge<§), (2.2)

with j / and sέ{G!) given analogously. The closure properties of the algebras are
clearly maintained.
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The unobservable fields do not in general express their local nature through
commutation relations, but through anticommutation relations. We thus presume
the following local structure. The field algebra #" is assumed to have Bose-Fermi
commutation relations, i.e. we suppose the existence of a gQerS with gl = e so that,
setting F+ = %F + ocJF)) and F_ = \(F - otJF)),

F F'—F' F = 0

F+

+FL-FtF+

+=0, F e g ( ^ ) , F'eWil 0^0^ (2.3)
F_F'_ + F'_F^ = 0

In the following we shall be interested in irreducible, locally normal repre-
sentations π of J^ as a concrete C*-algebra π(^) on a Hubert space 3tf π. And because
duality fails in the presence of spontaneous symmetry breaking [34], it is no loss of
generality for our purposes (given the continuity assumption on ag above) to assume
the existence of a faithful strongly continuous unitary representation g-+
Uπ(g)e%i{Jίfπ) (the bounded operators on jjfπ) implementing the group of
automorphisms ag (although for the purposes of formulating and proving twisted
duality, it suffices that at least the automorphism ocgo be unitarily implemented):

Φg(F))=Uπ{gMF)Uπ(g)*> F e ^ , ge%. (2.4)

A representation with such a unitary implementation of the gauge group shall be
called a gauge representation. As a form of shorthand, we rewrite the information in
(2.3) as follows. With g0 the particular element of ^ that was singled out in (2.3), we
define (gn(0) =

\ (2.5)

with

a unitary operator. With this definition, (2.3) implies that

&(0i)c=8*(02)', 0 l C 0 2 , (2.6)

which is called "twisted locality". We note that ffπ(Θ) is spatially isomorphic to gπ(0)
(we write g*(0) - tJS(Θ))). ^(Θ1) and ^\ are defined analogously to &JΘ') and
&π and are clearly spatially isomorphic to their counterparts.

The funnel property that is crucial in the proof to follow is defined explicitly as
follows. (We signify with Θ1 < Θ2

 t n e relation Θίc:Θ29 where Θ denotes the closure
of Θ and Θx and Θ2 are required to have bases at a common time.)

Definition. <F is said to have the funnel property if for all pairs of bounded double

cones (bdc's)d?!, Θ2 with (9X ̂  Θ2 there exists a type I factor Wl such that %(ΘX) c

One notes at once that because factors contain no proper ultraweakly
closed two-sided ideals and because normal representations are ultraweakly
continuous, it follows that the restriction of every locally normal homomorphism to
a local algebra g((^1)( cz 501 cz %(Θ2) for some type I factor 501) is an isomorphism, so
that within the class of representations we consider, the local von Neumann algebras



116 S. J. Summers

and 9JΪ are representation independent, i.e., 7^(5(0)) ^ π 2

for any two locally normal representations π l J π 2 of #". Furthermore,
since for any ascending sequence of bdc's {Θm} TIRd (with $ m < $ m + ί), u{g($ m )} is
uniformly dense in #", there exists an associated ascending sequence of type I factors
{mm} such that u {9Jlm} is dense in # \ But, since πΛSRJ - π2(ΪRm) for any m and
any locally normal representations π 1 ? π 2 of #", Prop. 1.23.4 in [38] informs us that
π^) and π2(#") are isomorphic as C*-algebras. These assertions are all valid for 3FX

as well, since ί(9Ήm) is a type I factor. Thus, the algebras #" and 8FX (and thus J ^ ' ) *
^\(9')) are independent of representation (for the representations that we consider),
and we drop the subscripts π in future. However, in (2.6) and in the condition for
twisted duality, g(0) = ^*{&')'„, the commutant is representation-dependent, and we
shall be careful to indicate the representation wherever necessary (we write
henceforth ^(Θ)'π instead of gπ(0)' to emphasize that the representation dependence
comes from the taking of commutants).

We point out, for later use, that the algebras #" and <F* can be realized naturally
as isomorphic subalgebras of the covariance algebra J^ ®α^0> which is the crossed
product [50] of $F with the subgroup ^ 0 a^ consisting of the elements {e,g0}.
^ ( χ ) α ^ o is a uniquely determined C*-algebra, and its representations G#%,p)
are in 1-1 correspondence with the covariant representations (34fπ9π,Uπ) of
the triple (#", ^ 0 , α). Furthermore, one knows that p(J^ ®β^p = (π(^) ,
Uπ{^0)Y^π{^p - 3t?π) for every such pair.

If FeU{jtf.I), define mπ(F) = $9Uπ(g)FUπ{g)~1dμ(g)9 where μ denotes the norma-
lized Haar measure on ^ and the integral is understood in the weak operator
topology. Then one knows [12] that mπ defines a normal positive linear mapping of
93(Jgg onto UJ<g)' satisfying mπ(&) = <$? n Uπ(^)f for every *-algebra <£ on tfn

such that mπ{£e) c= if; therefore, using the normality of mπ, mπ(if)" = mπ(ifr/) =
JSf"nl/π(0)'. Thus one has

(2.7a)

(2.7b)

, (2.7c)

(2.7d)

^ " = m π ( ^ ) = m π ( ^ ί ; ) . (2.7e)

One of the two main theorems of this chapter is the following.

Theorem 2.1. Let $F have the funnel property and assume, in addition:

(1) There exists an irreducible, locally normal, gauge representation (ilngr) π 0 of
(JF, <§, α, ϊF1) in which twisted duality holds for all bdc's, i.e.

^ X 0 = W ) ; 0 , VC?bdc;

(2) For any bdc's &, &1 such that & <ξ Θ1 there exists a bdc &2 with Θx -4 &2 such
that
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where ffiΘf — ̂ (Θ)' CΛΪF1 is a representation-independent C*-algebra.
Then

for every ilngr π of (IF, &, α, IF1).

Remarks. (1) The condition (2) in the special case of the absence of fermions is
stronger than condition (3) in Driessler's Theorem 1 [14], but we may do without the
counterpart of his condition (2) and simplify a portion of the proof. We expect, in any
case, that wherever this theorem can in practice be applied, condition (2) above is
sufficiently general.

(2) Note that the requirement in [14] that d be simple is not necessary.
(3) We do not know at present how to prove a similar result when both Θ and Θ'

are unbounded, for example, if G and Θ' are the right and left wedges of [6, 7].
Before we prove this theorem, we recall a result from [33] that clarifies the

significance of the conclusion of Theorem 2.1.

Theorem 2.2. Let Θ be a bdc. Then the following are equivalent:

a) m π (W);)==5l(0) π .
b) mJ3(0)'π) = s/(Θ')l
c) Duality holds for Θ in the vacuum (charge 0) sector in Jf π.
d) Duality holds for Θ in every Abelian sector in J4?π.

Remarks. (1) One calls a sector (a subspace of Jf π reducing sd irreducibly) Abelian if
it corresponds to a one-dimensional representation of ^ (see [12]).

(2) We have defined the algebras tF(Θ') using the directed set of bounded open
sets in [R2, avoiding a problem in the proof of this theorem noticed in [36].

Thus, although we are not able to conclude twisted duality in the ilngr π, we do
obtain the desired duality of the observable algebras wherever it is possible. Indeed,
recalling Theorem 5.6 from [12], duality will not obtain in non-Abelian sectors. For
an Abelian gauge group ^ one has, as remarked by Roberts [33]:

Theorem 2.3. If<g is Abelian and mπ{^{Θ')'π) = 3I(0)π, then n{^{Θ'))" = ^\Θ)'π.

Proof Implicit in the proof of Proposition 6.2 of [13].

Thus, twisted duality is regained for Abelian gauge groups. See, however, Theorem
2.8.

Before we undertake the proof of Theorem 2.1, we need to introduce some
additional definitions. Let & be the bdc for which we wish to prove duality and
choose a sequence {Θn} of bdc's such that f]Θn = Θ and Θn + 1 < Θn. The funnel

property gives us a sequence {9Jln} of type I factors so that g(#n) => Wln => %{(9n+ x).
The sequence {9KW} is decreasing and p)9Jln = 5(0), f]ΏVn = &(&), which can be

n n

readily verified using the twisted duality in π 0 . We choose another sequence of bdc's
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{Θk}ΪUά so that Θk<Θk+ι and &k>Θn for all k,n. Thus, there exists a sequence
{%} of type I factors with g(0k) c 9lk c f$(0k+ J (similarly for {%}). Thus, #" =

l£ and f ^ u W J , where the superscript—n signifies closure in the norm
topology.

Lemma 2.4. Let π be an ilngr of (#\ ^, α, &x\ Then for any Wln we have (WX =
(aRΛ); ami (WX = (9Kχ where Wn = Wnn^ and mι

n

c = (50^

Proof. The proof is the same as that of Lemma 1 in [14], but we feel some more
details should be indicated for the reader's convenience. (We thank Prof. Driessler
for a conversation about this proof.) We have Wc

n = !F n Wn ^ $lk n Wn, for every k.
But R̂fc a type I factor implies $lk ^ ^B(Jfk) for some Hubert space j f fc. Defining
9lknWn = mf\ one observes (since 9WΛ c mk for every w, fc) that ( 2 ^ u Wn

ik))fί = 9lk,
since Wln is a factor. Thus, ((Wχvmχ^(mnumc

n

{k))k = 9lk9 for every k. Thus,
((9Ji^uαRn)ί = 95(jfπ), which implies (9Mί)ί = (9KΠ);, since type I factors are
coupled. The proof of the second assertion above is similar, noting that J^ weakly
dense in S(^fπ) implies J ^ is weakly dense in

Lemma 2.5. In every ilngr π of (#", 0, α, #"') we Λαt e [π

wg'i^r)]" = mw*.

Proof Same as Lemma 2 in [14].

Lemma 2.6. g($)c =

Proo/. Same as Lemma 3 in [14].

Lemma 2.7. For e^ry ilngr π of(^, @, a, UF% we have

Proo/ Because {%\&)cCΛ%Θk)} forms an ascending sequence, the lefthand side

above equals

k —• GO

^ , (2.8)

since mπ{gWng(^)}cg'(d?)<n5(^), V „{$]=•** and
But j / n p ^ r f n g ' f e so that (2.8) equals
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which follows directly from Lemma 2.6 when one recalls that <ίlt

k-1 c ^

Proof of Theorem 2.1. We first assert that for every fc, there is a bdc Θmk so that

n 5Rk = g'(0);o n ^< n <Rk

(2.9)

The second equation follows from the definition. To prove the first equation we note
that

for some Θmk, by condition (2) in the hypothesis. Thus, in the assertion, 3 is proven,
and because ^{Θ')'ήQ

 = S W i 0 (twisted duality in π0), the inclusion c is trivial.
As we have already seen, every locally normal *-homorphism applied to 9lk is a

^-isomorphism. Thus, π°πo 1 is a normal ^-isomorphism for each yik and every ilngr
π. We may therefore replace π 0 in (2.9) with an arbitrary ilngr π of (J^, 0, α, J^) One
has, then,

. (2.10)

Both sides are ascending sequences in fe, and noting that
Lemma 2.7 implies that the norm limit as k -> oo of the righthand side of (2.10) is
™ π {δW}. A s ^u c S(^9?k)? it follows easily that the norm limit of the lefthand side
of (2.10) is

Thus, it follows that

The normality of mπ permits us to take the weak limit inside of mπ, and Lemma 2.5
yields

so that

using (2.7) and the fact that ff{6)'n = %(&)%. This completes the proof of Theorem 2.1.
Although it is duality for the observable algebras that is of most interest, we

present a somewhat more restrictive set of conditions that yields twisted duality
without the additional requirement that ^ be Abelian.

Theorem 2.8. Under the same assumptions as Theorem 2.1, but with condition (2)
replaced by
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(2') For any bdc's Θ, Θx such that Θ <ξ Θi there exists a bdc Θ2 with Θλ < Θ2 such that

where g?(0)e = $ W n # " , then π(J^(0'))" = 3 W for every ilngr π of (&, <3, α, # ^ .

Remark. Although (2;) is slightly stronger than (2), we show in Chap. IV that with

the assumption (1), conditions (2) and (2') both hold for any net {$(0)} such that

additivity obtains (i.e. (g(0i)V5(0 2))" = S ( ^ i u ^ 2 ) ) in the representation π 0 .

Proof of Theorem 2.8. As this proof uses the same ideas as that of Theorem 2.1, we
shall only indicate details concerning differences. First we note that, parallel to
Lemma 2.4, we have

(mX = (MX and (Wnχ = WX, (2.11)

for any n and any ilngr π{^ΰle

n = WnnϊF1). The first equality in (2.11) follows because

W.e

n^>Wnn 9l[ for all k. Thus, since the commutant theorem is valid within the type I

factor %, a simple calculation shows that ((2Rnn9ii) V (Wl'nnyVk))^k = %.

Therefore, (ΪRM V (Wn)X contains 9Vk for all k. Thus, again, (2RΠ V (WJX = 33(J^π),

and 9MΠ type I implies (ΪR,,)' = (SK )̂7'. The proof of the second assertion in (2.11) is

similar.

The parallel result to Lemma 2.5 is then, for any ilngr π of (#", ^, α, 3F%

proven as in Lemma 2 of [14], and the Lemma 2.6 becomes

and g W = u(y(^) e n9l k ) . (2.12)

(We briefly sketch the proof of the second equality in (2.12), assuming acquaintance
with [14]. Ae^\Θ)e is decomposed into odd and even parts A± (see (2.3)), as is the
approximating Aee%(Θk)<=9tk: Aε = A++A; (\\A±-A*\\^ε), and the pro-

jection P:Spfπ o)-»$R k: P(F) = P+ (F) + P_{F), Fe»(J f π o ) . One shows ||P+(v4±)
— ̂ / | | ^ ε following [14]. Using assumption (1) in the hypothesis, the(anti) com-
mutation relations in (2.3), and the faithfulness of π 0 , one shows for any Ae^\Θ)e,
Be%{0\ that [ A + 5 J B ± ] = 0 , D4_,B + ] = 0, [ ^ _ , 5 _ ] + = 0 . A straightforward
calculation using these facts yields P±(A ±)e^\Θ)e, so that P±{A ±)e^\Θ)en9lk and
\\P+ (A + ) + P_(A_) — A\\ ̂  4ε.) Now we shall not need to average over the gauge
group. Indeed, we first prove the counterpart to (2.9): for every k, there exists a bdc
Θ%< so that

n δ ί ^ ) ] ' ^ n 9lfc = ^ ( 0 ) ; o n 5Rfc = g ^ r n 9lfc,

using condition (2') and arguing as before. Again we may replace π 0 by any ilngr π
and use (2.12) to conclude directly that

completing the proof of Theorem 2.8.

Remark. Because the goe^ in (2.3) is always in the stability group of the vacuum
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when one adds the usual relativistic assumptions [34], there is always a unitary
U(g0) implementing the action of ocgo (•) in the representations occurring in
relativistic quantum field theory. Thus, with the addition of these standard
assumptions, one can omit the requirement in Theorem 2.8 that the representations
be gauge representations.

III. Normal Product States for Free Fermion Field Algebras

In this chapter we shall establish properties for the free Fermi field algebra that shall
have application in our proof of duality in Yukawa2 in the next chapter, but that
have some intrinsic interest as well. As previously mentioned, the primary result will
be that any pair of normal states φι of 5($i) a n d φ2 °f ^(^2)9 ^1 a n c * $2 spacelike
separated regions in two-dimensional (or three- or four-dimensional) space-time
and S($ { ) the free fermion algebra (on Fock space J ^ ) associated with the region Θi9

will have an extension to a normal state φ' of the algebra generated by 5(0 J and
5ί(β?2) which is a product state for 5 ( 0 ^ and %\02\ i.e. for all A^iΘJ, Bne%t{Θ2),
Φ'(ΣAnBn) = ΣΦι{An)φ2(Bn). We remark that if the restriction that φ' be a normal
state is removed above, the result holds in any standard Wightman-type field theory
[37], and is an expression of the statistical independence of algebras associated with
spacelike separated regions [24,37]. From the existence of normal product states one
can conclude a number of interesting results (see [8]), among them being the funnel
property defined in Chap. II. As our proof of the existence of normal product states
for the free Fermi field shall parallel, to a large extent, that of Buchholz [8] for the
free Bose field, we shall, for the benefit of the reader, keep our notation as close as
possible to his.

We must begin to recall a few concepts and introduce notation. If K is a
separable (complex) Hubert space, s$(K) — the CAR algebra over K — is the C*-
algebra generated by elements a(f), where/-* a(f) is a linear map of K into
satisfying the canonical anticommutation relations; specifically, for f.geK,

where < , •> is the inner product on K and / is the unit operator in
The gauge-invariant generalized (or quasi-) free states of s/(K) are states φA

whose rc-point functions have the structure

ΦX/J*... aUΊraigJ . a(gj = ̂ det ( < / , ^ >),

for all/, geK, where A is a linear operator on K such that 0 :§ A ^ /. These states
have been studied in some depth (see [44, 32] and references there) and shall be used
as tools here. Because the GNS representation (34?A, πA, UA) associated with such a
state is covariant (with respect to the group ^ 0 = {<?, g0} (the multiplicative group on
two elements {1, — 1}), where ago (a(f)) = a( — /)), there exists a representation pA of
the covariance algebra j / ( X ) ® α ^ 0 on &A. Since .^(K)®a^0 is simple (follows
from Theorems 8.11.12, 8.10.12 and 8.1.9 in [50], since jtf(K) is simple, ^ 0 is Abelian
and discrete, and the fixed point subalgebra of s${K) under {^0?

α} i s simple—see also
[47] for relevant remarks), this representation is in fact a ^-isomorphism. The state
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φA extends canonically to a state ψA on stf{K) ®fl0. If K = K1@K2 and S(K) is the
C*-algebra generated by s^(Kx) and srf\K2) in the covariance algebra, where the
superscript t represents a twist (2.5) determined by the unitary operator UA(g0)
implementing α9o, it is easy to see that the restriction of ψA to $(K) defines a state φA

whose «-point functions are of the form

ΦΆMflΎ
*...a(f'1rafg'1)...a{g'm))\ (3.1)

where/;. =/<1> + ( - iγ-'+1 iff (similarly for g'{) and f} =/<.1) +ff\ffeKi.
In two space-time dimensions the free Fermi field is given by [17]

= (4π)~"2f e " i p

where ω(p) = (p2 -f mj)112, v(p) = (ω(p) + p) 1 / 2, p denotes the spatial component of
the energy-momentum spectrum vector, mf > 0 is the fermion mass. Ψ(x, t) is a
distribution taking values in ©(JF/), where $Ff is the standard relativistic Fermi
Fock space. The annihilation and creation operators b'(pf*\ b(pf*\ satisfy the usual
anticommutation relations, so that, as distributions,

y, 0* + ̂ ( % , 0* Ψ{i)(x, t) = δ{x - y)δij

(all other anticommutators vanish). Further, one requires (Fock representation)

where Ωo is the (unique) vacuum (translation-invariant) vector. Defining B(F) =
* W ( 1 ) ) + K2)(fi2)l F = (fa\ f{2))eL2(U)®L2(U), Ψ^if^) = $Ψ{i)(x,t = 0) x

f{i)(x)dx, one notes

Denoting by φo( ) the expectation given by <Ω0, Ω 0 >, one easily sees that

where C+ is the operator whose Fourier transform is given by [1 ± (p/ω(p))]1/2. As
a quasi-free state, φ0 is completely determined by this two-point function. The local
CAR algebra stf(K(Θ)) (whose weak closure defines the time-zero free Fermi field
algebra g(^)) associated with region β c U (t = 0) is defined as the C*-algebra
generated by the field operators B(F) with test functions FeK(Θ), where K(Θ) =
^(Q)®Sf{Θ); &(G) denotes the subset of &>{M) (the set of all rapidly decreasing
C00 functions) with support in Θ. One knows [17] that the local ring g((P), generated
by the field Ψ(x, t) smeared with test functions with support in Θ a [R2, is the weak
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closure of stf{K{Θ)) if 0 is the double cone with base 0 at time t = 0. Denoting with N
the number operator on JFf, we define the twist in (2.5) by choosing Z = (1 - i)/2
+ (1 + ί)eiπN/2. One verifies easily that (2.6) obtains with this definition.

Supplying jFf with the standard unitary representation of the Lorentz group
and verifying the Wightman axioms [46], one knows that the vacuum £20 is cyclic
and separating for each g(0) (or jrf(K(Θ))) such that the spacelike complement Θ' is
nonempty [46]. And g(0) satisfies, for every φ x such that Θ < Θ ί, ΛB = 0 for A e g(0)
and BeftiΘί)' implies A = 0 or B = 0 (proven easily using [45]). Thus, from [8], one
has:

Theorem 3.1. [8]. Let Θί and Θ2 be two spacelike separated regions such that

Gx + Jί <= Oγ and Θ2 4- </̂  <= $2> / o r s o m ^ neighbourhood Jί of the origin in Ud

and φί9 Θ2, spacelike separated subsets ofUd.

(1) If there exists a normal product state for 5(^i) and ^ ( ^ 2 ) 5 t n e n every pair of
normal states φx of^iΘ^) and φ2 of%\Θ2) can be extended to a normal product state φ'

(2) There exist factors of type 7, Wi and Ψί2, such that %{Θ1)czmi

, if (and only if) there exist normal product states for $($1) and ^ (

By (2) and twisted duality for the free Fermi field, given any bounded double cones
$1 < ®3 0 n two or four space-time dimensions) such that there exists a normal
product state for g ^ ) and #^($3), there exists a type I factor 9JI such that

which gives the funnel property for the free Fermi field algebra.
In order to show that there exist normal product states for g ^ ) and 3F\Θ'^

Θγ^Θ^ we proceed as in [8]. From Theorem 3.1, (1), it will suffice to verify that
there exists a normal product state for g(^ x ) and ^\Θ'^) which coincides with the
Fock vacuum state φ0 on each algebra separately. To fix notation, ΘίczU will be
presumed to be bounded ($1 will be contained in its causal shadow) and Θ2 c
U ($3 will be contained in its causal shadow) will have compact complement. The
distance between Θx and Θ2 is assumed strictly greater than zero. All interesting
choices of Θί and Θ2 can be reduced to this case by making a Lorentz
transformation.

We define a positive functional φ'p on gίfi^) V g^β^) (the algebra of all finite sums

and B^ψi)) by

An)φo(Bn). (3.2a)

It is clear that φ'p induces a representation of the algebra &{K«H)) = st{K(&γ)) V
stfl{K{(92))n {Θ=ΘxuΘ2\ and we denote the corresponding state again φ'r A
straightforward calculation shows that the states φr

p and φ'o on ${K{Θ)) (the latter
given by the expectation <Ω0, Ω0 >) are of the form (3.1). Extending them to states
on s/(K(Θ))<g>a&0 and restricting to stf{K{Θ)) (='rf(K(Gx))\Jtf(K{O2)T—
see proof of Prop. 4.1) defines gauge-invariant quasifree states φp and φ0

on sίiK(Θ)). In fact, as every Bne%\Q2) is of the form ZCnZ*, Cne%{Θ2\

ΣΦo(An)ΦoW = ΣΦo(Λn)φo(Cn) = φp(ZAnCn\ (3.2b)
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Since, by definition, φ'o is a normal (density matrix) state on $(K(Θ)) (it is a vector
state in Fock space), if we show that the representations of S(K{Θ)) induced by φ'p
and φ'o are unitarily equivalent, the normality of φ'p follows at once. (The same
remark is valid for φ0 and φp on jrf(K(Θ))) In an earlier version of this paper we
asserted that the normality of φp on totf(K(Θ)) implies the normality of φ'p on $(K(Θ)\
and although this is true, the proof is more lengthy than we at first thought. Thus,
here, we prove the normality oϊφp and φ'p on their respective algebras independently.
Before we do that, we must introduce some further notation.

Let K0{Θ) be the completion of K(Θ) in the L2(U)®2 norm (call it || | | 0 ). If £ is the
orthogonal projection in L2(U)®L2(U) onto K0(Θ), the two-point function of

with S0=^E^l J %> E a positive operator bounded by 1 and ^ is the bounded

/ C _ 0 \
operator ί 1. Every FeK(Θ) can be decomposed uniquely into a sum

= FX + F2,FieK{Θι) Ϊ = 1,2. Thus, from (3.2),

φp(B(F)*B(G)) = φoWF^BiGJ) + φo(B(F2)*B(G2))

is the two-point function (φp is clearly a quasifree state). Defining (F,G}p =
< ^ I 5 ^ I > L 2 ( [ R ) ® 2 + (F2,G2}L2(m®2, we denote by Kp(Θ) the completion of K(Θ) in
|| ||p. Due to the decomposition F = FX +F2 already mentioned there exist two
mutually orthogonal projections Θ1,Θ2, on Kp(Θ) such that ΘtF = Fh i = 1,2, for
every FeK(Θ). Thus, Kp(Θ) = KO(ΘX)® K0{Θ2) and φp \rf(Kp(Θ)) is determined by

φp(B(F)*B(G))=(F,SpG>p,
where

is a positive operator with bound 1 and Et is the orthogonal projection
in L2(U)®L2{U) onto Xo(©,.), i = 1,2.

Noting that K0[Θ) = Kp{Θ) = L2(Θ)®L2{Θ\ we may drop the operators Θt.
Therefore, we must compare two gauge-invariant representations of the CAR over
the same Hubert space. Through (3.1) the operators above determine φ'o \S(K0(Θ))
and φp \$(Kp((9)). (Note that due to the norm continuity of the generators of <f,
£{K((9)) - £(K0{Θ)) = <?(Kp(Θ)l just as J*(K(&) =

Theorem 3.2. If the following conditions hold:
1) So and Sp do not have eigenvalues 0 and 1 on L2(Θ)®2,
2) So — Sp is a trace class operator on L2(Θ)®2,

then we have
a) the representations π'o and π'p ofS(K(Θ)) induced by φ'o and φp, respectively, are

unitarily equivalent.
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b) the representations n0 and πp ofstf(K(Θ)) induced by φ0 and φp, respectively, are
unitarily equivalent.

Remark. With So and Sp defined as the unique positive operators that deter-
mine the vacuum state φ0 \ jtf{K{Θ)) and the product state φp = φ0 \^/(K{Θ1)) x
φ0 \s#{K{Θ2)) in the manner indicated in (3.1), this theorem is valid if one chooses
Θ = Θ1uΘ2 a Ud"\d = 2,3,4, i.e. the proof is independent of the number of space-
time dimensions.

Proof. That (1) and (2) imply (b) follows from [51,32]. We shall use arguments of
[51] to prove (a) and (b) essentially simultaneously. Let K = L2{(9)®2 and K{ =
L2{Clif\ i = 1,2. Let a(f) and b*(f) (both linear i n / ) be two independent
Fock representations of the CAR algebra over K with a common Fock vector Ωo.
That is, we require

= 0,

a(f)Ωo=b(g)Ωo=0,

for every/ geK. ffl will denote the associated Fock space. If H and L are operators
in 33(X) satisfying # * # + L*L = /, then setting A(f) = a(Hf) + b*(Lf),feK, defines
again a representation of the algebra stf(K). Further, if 0 is not an eigenvalue for L* or
H* Ωo is cyclic for {A(f\ A*(f)\feK} (Theorem 1 [51]). Moreover,

(Ω0,A*(fn)...A^fx)A(g1)...A(gm)Ω0}=δnmdet(<fi,L*Lgjy).

Thus, choosing L = Sι

Q

12 and H = (I - S0)
1/2 (or with So replaced by Sp in both

operators), the corresponding representation {A(f), Jf7, Ωo} is unitarily equivalent
to the GNS representation of jtf(K) induced by the state φo{φp).

Let Nκ denote the number operator on #? and define U(go) = eiπN*,
Zκ = (\- i)/2 + (1 + i)emίf«/2. Set s/(f) = A(f(l)) + A\f{2)), feK, f =
yd) _|_ f&)9fWeκi9 where the twist t is defined using this Z. It is easy to see that
the C*-algebra generated by {^{f)\feK} is isomorphic to i(K), and because
U(go)Ωo = ΩO(NKΩO = 0), a straightforward calculation shows that

where/j and ^ are given as in (3.1). A simple argument shows that any even vector
(i.e. invariant under U(g0)) that is cyclic for {A(f), A*(f)\feK} is cyclic for {J/(/) ,
jaf*(/)|/GK}(use/l ί(/ ( 2 )) - / l ( - i/ ( 2 )) U{g0) - L7(6fo)^(z/(2))). Therefore, choosing
L and H as above, the corresponding representation {s$Q{f), #t, ΩQ} {{jtfp{f),
Jf, Ωo}) is unitarily equivalent to the GNS representation of S(K) induced by

ΦΌiΦ'p).

Now consider H and L in 95(K) such that

H*H + L*L = I = HH* + Lΐ*,

H*L = L*H9HL* = LH*. (3.3)
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Then one knows (Lemma 1 [51]) that if L is Hilbert-Schmidt, the vector

is in jf, where {# J is an orthonormal basis in K,εi= ± 1, and the Λ,.'s are eigenvalues
of |L|. The equality above follows from the fact that ZJi:0*(0i)b*(0i)Z£ = a*(g$>*{gύ.
This is a very special vector, because defining

A(f) = a(Hf) + b*(Lf) and B*(f) = - a(Lf) + b*(Rf),

A(f) and B*(f) are two anticommuting fields that are irreducible in Jf (see Lemma 1
[51]), and A{f)Ω = B(g)Ω = 0, for all f,geK. Because Ω is even, one has
st(f)Ω =@{g)Ω = 0, for &llf9geK9 where

Since {^(/), J5(/)|/eK} generates an irreducible *-algebra, Ω is cyclic for this
algebra and, therefore, for the *-algebra generated by {jχ?(f)β(f)\feK}. Therefore,
setting

WΩ0=Ω,

= ft
/ = l i = ϊ

W defines a linear isometric (|| Ω || =1) operator with dense domain and range; thus,
it defines a unitary operator (call it W again) such that

), V/eK,

V/eX. (3.4)

We return to our representations {^0(p)(f), Jf, Ωo}
 a n d r e c a 1 1

If we define H = {1-S0)
ll2{I-Sp)

112+Sy2SιJ2 and L = S £ ' 2 ( / - S ) 1 / 2 -
(i -S 0 ) 1 / 2 S^ / 2 ,/ί and L satisfy (3.3) and because Sp - So is trace class, Lis Hilbert-
Schmidt (by hypothesis and Lemma 4.1 in [32], S j / 2 - S j / 2 and ( / - S o ) 1 / 2 -
d-Sp)

112 are Hilbert-Schmidt; but I = (Sj/ 2 - S£/2) ( / - S p ) 1 / 2 + ( ( / - S p ) 1 / 2 -
(/-S 0 ) 1 / 2 )Sp / 2 and thus is itself Hilbert-Schmidt). Therefore, there exists a
unitary W such that

) + a'(Hf2)) +

b*t{f(2)))W*= - α ( I / ( 1 ) ) - α'(L/ ( 2 >) + b*(Hf{1))
+ b*'(Hf2)).

But this implies

- S.)ι'2f) + M*(Sll2f) = s/0(f),
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so that

Since we have already established that the representations {srfo(f\ 2tf, Ωo], ( j/ p (/),
J^,Ω0} are unitarily equivalent to the representations of ${K) induced by φ'o, φ'p,
respectively, the assertion (a) in the theorem is proven. The argument for (b) is clearly
the same.

We shall now verify that the conditions (1) and (2) of the theorem do indeed
obtain. In a previous version of this paper we proved condition (1) in two (and four)
space-time dimensions by using the antilocality of certain operators [41] in a
manner analogous to that in [8] (see Lemmas 3.1 and 3.4 in [8]). As, however, the
antilocality of the relevant operators is only known in an odd number of space
dimensions [41] and since the argument depended in any case on the details of the
representation (that differ, as well, in 1,2 or 3 space dimensions), we present a simpler
proof depending only on the form of the quasifree states and the fact that the vacuum
is cyclic and separating for the free Fermi algebra ^(Θ\ for 0 a Ud~1 such that the
interior of the complement of (9 in M**'1 is not empty [46]. This argument is, thus,
independent of dimension d. The form of 5 0 and Sp for d = 4 (d = 3 is similar) is given
later.

Lemma 3.3. Oand 1 are not eigenvalues of So and Sp in L2(Θ)@2 (for d = 3,4,SoandSp

are operators on L2((9)®d).

Proof Assume there is an FeK0(Θ) such that S0F = 0. Then φo(B{F)*B{F)) = 0, so
that

(Ω0,B(F)*B(F)Ω0) = \\B(F)ΩJ2 = 0,

which implies that B(F)Ω0 = 0. But, as the vacuum is separating for 5 ( 0 , B(F) = 0.
This is, however, not possible unless F = 0, since [£(F)*, B(F)]+ = | | F | | 2 / . Thus, 0
cannot be an eigenvalue for So.

Let, now, FeKp(Θ) be such that SpF = 0. This is equivalent to SpFt =
0, i= 1,2 (F = Fί 4- F2 is the orthogonal decomposition of F, F E K 0 ( ^ ) ) , since
SpKo(&i) £ &o(fii) This reduces to the previous case with Θ chosen equal to @..
Thus, again, F — 0 and 0 is not an eigenvalue of Sp.

If there is an FeK0(Θ) such that S0F = F, then

φo(B(F)B(F)*) = - φo(B(F)*B(F)) + <F,F> K o ( , } = 0.

Thus, as above, one obtains | | Jβ(F)*ί20 | |
2 = 0 , yielding B(F)* = 0 , as before. Thus,

F = 0 and 1 is not an eigenvalue of So. The proof that 1 is not an eigenvalue for Sp is
now clear.

We next verify condition (2) of Theorem 3.2.

Proposition 3.4. So — Sp is a trace class operator on L2(Θ)Θ2.

Proof. Writing
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a simple calculation yields

o o JL| 1 — 2 1 — +
0 p~~ 2\ j7> r r F' F' r2 F' I ' z\ F1 r r F' F1 r2 F'

Thus, S0 — Sp will be trace class (tc) on L2{(9)®2 if the operators E^C^Ej and
E[C_C + E'pi φj, are trace class in L2{M).

We pause for definitions. Let Θ1(x)e£p(U) such that 0 1 ( x ) = 1, x e ^ l 5 0 2 (x)e
ίPM(K) (the space of slowly increasing C00 functions) such that Θ2(x) = 1, X G ^ 2 , and
require further that dist(supp Θl9 suppΘ 2 )>0. Let Ai7 i= 1,2, be the operator
of multiplication by Θt(x). One has, clearly, E\A{ = E[ = AJL'^ i = 1,2. Note that
C_C+ =mf/ω and C\ = 1 ±iVω~1.

The function

is C00 for x ^ O , and it and all of its derivatives decrease faster than any inverse power
of |x| as |x| -• oo (this can be seen with a bit of contour integration). Thus, the kernel
{A1ω~1A2) (x,j;) = Θι{x)ω'1(x — y)Θ2{y) in configuration space is in ^{U2) (Θι is
bounded!), so that the operator Aίω~1A2istc (see, e.g. [9,p. 266]). Therefore, for

is tc. Noting that AiC
2\.Aj= ± ίAίVω~1Aj, for iφj (1 is a local operator), the

properties of the derivatives of ω~ι given above yield the conclusion that E[C\ E1- is
also tc for iφj.

This completes the proof of the existence of normal product states and the funnel
property for the free Fermi algebra in two space-time dimensions. We next want to
outline the proof for the four space-time dimensional, free, spin 1/2 field. (The proof
for three space-time dimensions is similar, but we give no details here.) As in [11] we
define the bounded operators S, T, from L2(U3)®2 to L2(U3) by

TF = (LzHl\1/2 f(i) , * i + in2 f(2)

where n, = i(-J^kd
2/dxl)~112 d/dx,. We define, further, the operators A,B, from

L2(R3)®4 to L2(R3)®2 by (ω = ( - χ f c d2/dx2

k + m2

f)
112)
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and

The time zero field is given by [11]

Ψ0(F) = a(AF) + b*{BF),

where FEL2(U3)®4' and α, b provide two Fock representations over L2(U3)®2

on # / so that [«(/), % ) ] + = 0 for any / , # e L 2 ( R 3 ) @ 2 . The field Ψ0(F)
satisfies [*F0(F)*, Ψ0{G)~] + = <F, G>L 2 ( K 3 )®4. The vacuum state φo( ) is determined
by its two-point function

so that, defining K(Θ) = y(<2)0 4, Θ <= M3, and K0(0) as the completion oίK(Θ) in the
L2(U3)®4 norm (|| || 0 ), i.e. KQ((9) = L2(Θ)®4, the counterpart of the operator So in
the two dimensional case is EB*BE (call it again So), where E is the orthogonal
projection in L2(U3)®4 onto ivo(0). With the obvious parallel definitions, the state
φp \sί(Kp(Θ)) is determined by

φp(Ψ0(F)*Ψ0(G))=(F,SpG)p,

with Sp = E, B*BEX Θλ + E2B*BE2Θ2. The states φ'o \S{K0{Θ)) and φ'p \S(Kp{(9))
are determined analogously. Due to K0(Θ) = KP(Θ) (which is trivial), Theorem 3.2
will give us the existence of normal product states as before when we prove

Proposition 3.5. 1) So and Sp do not have eigenvalues 0 and 1 in K0(Θ).
2) So — Sp is a trace class operator on K0(Θ).

Proof. (1) follows, of course, from Lemma 3.3.
To prove (2) we note that since E1+ E2 = E,

S0-Sp = E1B*BE1 + E2B*BEί.

A simple calculation tells us that So — Sp is tc if the operators

i φ j , are tc on L2(ίR3), where E[ is the projection in L2(U3) onto L2(Qt). We note that

ω + mf \ ( , ra Λ 1 Jω2 — m2

f d ,„ x <
—^—^- = - ( 1 + - ^ - and : ^ — Ln3 = ί (2ω)~1.

2ω 2 \ ω J 2ω ox3

Moreover, defining the operators Δh i = 1,2, in an analogous fashion to zJ1? Δ2 in
the proof of Proposition 3.4, we have E[Δi = £• =ΔiE'i. Since the properties of
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ω ~1 (x) listed in the proof of Proposition 3.4 hold in three dimensions as well as one,
the argument developed there may be employed to conclude

and iΔidω~1/dx3Aj are trace class whenever ij=j9 completing the proof of
Proposition 3.5.

We would like to end this chapter with a final comment. If !¥ is generated by a
net of algebras (g(0)}, such that for every bdc Θ, g(0) = 31(0) ® 33(0), then if the
nets {W(Θ)} and (93(0)} satisfy individually the funnel property, ^ satisfies the
funnel property. This can be immediately seen once one remarks that the direct
product of two type / factors is again a type / factor [38, Propositions 2.6.2 and
2.6.7]. Thus, the net {g(0)} given by the tensor product of the free Fermi field
algebra and free Bose algebra satisfies the funnel property. We shall use this fact in
the next chapter.

IV. Application to the Yukawa 2 +P(φ)2 Quantum Field Model

In this final chapter we demonstrate that the theory discussed in Chap. II can be
applied to the quantum field model with the nonlinear scalar (or pseudoscalar)
Yukawa interaction: ΨΓΨφ:, Γ = l(or ίy5), plus a boson selfinteraction: P{φ): in
two space-time dimensions (P(φ) is an arbitrary polynomial that is bounded from
below). Since most of the conditions in Theorem 2.1 concern the reference (in our
case also the defining) representation π 0 , which we take to be the relativistic Bose-
Fermi Fock representation, we shall first constate the necessary properties for the
free Bose and Fermi fields in two space-time dimensions. (We remark that all the
results stated for the free fields are valid in four space-time dimensions, as well). As
most of the results concerning the free fields are well-known, we shall be rather
sketchy.

We denote by #" = ^ h (x) 3Fs the Fock space for a Bose particle of mass mb > 0
and fermions of mass mf > 0, where #"b, #" / 5 is the standard direct sum over the
totally symmetrized, respectively anti-symmetrized, one-particle space L2(ίR2). It is
well known (see, e.g. [17]) that the local von Neumann algebra g(0) in J^, generated
by the operators Ψ(f) and exp {i(φ(f) + Π(g))} with supp/,#<=$ and Π(g) =
φ(dg/dt), coincides with the time zero algebra g(0) generated by the same
operators at t = 0 and with suitably restricted test functions, if Θ is a bounded space-
time region containing the time zero base G of the double cone containing (9.
Further, it is clear that g(0) = 3lb(0) ® %f(Θ\ where 3Ib(0) is generated by the
exp { # ( / ) + Π[g))} and %f(Θ) by the Ψ(f). As it is known that SΆb(Θ) is a factor of
type III [2, 11] and %f(G) is a factor [11], 2Ib(0) ®5,(0) is a type III factor [38,
Theorem 2.6.4 and Prop. 2.6.7] and thus simple as a C*-algebra, since Fock space is
separable (countably decomposable type III factors contain no proper norm-closed
two-sided ideals—follows from [38, Lemma 4.1.5]). 3F is therefore also simple [38,
Prop. 1.23.8] (we point this out, although it is not necessary for the application of
our theorem, for the benefit of readers of an earlier version of this paper). It is, in
addition, weakly dense in
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If N denotes the fermion number operator on jF, eiθN, #e[0,2π], defines a
strongly continuous unitary representation of the circle group (7(1), which we take
as our gauge group <3. (Of course, eiθN = eίθQ, where Q is the total charge operator.)
This generates an automorphism group ocg, gs^, on $F by

The twist for the free Fermi field is given as in the preceding chapter by
Z%(Θ)Z~\ where Z = (1 - Q/2 + (1 + ί)eiπN/2.

As already mentioned, in four space-time dimensions duality for the free Bose
algebra 2lb(0) [1] and twisted duality (with the twist defined above) for the free
Fermi algebra g/($) [11,12] are known, yielding twisted duality for g(6?) (using
Tomita's commutant theorem, i.e. for 21 = 35 ® d , 23 and (£ von Neumann algebras,
2Γ = 23' (g)(Γ). Driessler sketched the proof of duality of the free Bose field in two
space-time dimensions in [14], and the argument in [12] translating DelΓAntonio's
structure results into twisted duality is dimension independent. In the appendix we
outline the proof of the corresponding structure results for the two space-time
dimensional fermions.

It is known [1] that 8ϊb((P1)'n3ϊb(ίP2)" = ^b(Θ'J'n%(G2)" = Kh{Θ[<ΛΘ2)" for
Θι,Θ2 arbitrary open double cones with bases at a common time. Although this is
not true for the free Fermi observable algebra (as we have defined it), we have:

Proposition 4.1. For arbitrary bounded double cones φ1,Θ2cz U2 with bases at a

common time, & fψ\)" r\% f{0 2) = %f(Θ[ nΘ2).

Proof. The inclusion %f(Θ[nΘ2)^ ^f(Θ{)" n %f{β2) is clear. Using twisted duality
the opposite inclusion is equivalent to

(3fr(0i) V&'fWΆ")" => ^ f /(0i u0i)" .

This is itself equivalent to

( 5 / 0 ! ) V ^f(Θ'2)")" = &f{Θ! u G '2Y, (4.1)

since the twist is implemented by a unitary operator. Polynomials in the set
{Ψ0(f)\feK(Θί uΘ2\ Ψo the time-zero Fermi field} (see previous chapter) are dense
in βr

f(Θ1 u Θ'2)"9 and a.sΘ1,&2 are open, the existence of a partition of unity in
over arbitrary open coverings of an arbitrary open set in U entails there are/ x

f2e^(Θ'2\ such that f = fί+ f2. By the linearity of the operators Ψ0(f), (4.1) follows
at once.

Remarks. This proposition is valid in four space-time dimensions, using the same
argument.

Thus, for arbitrary bdc's Θ, Θu we have, by twisted duality,

f (4.2)

(π0 is the Fock representation), which verifies condition (2) in Theorem 2.1.
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Moreover, since πo(S\Θ)en ^(Θx)) c ^ ' n g ^ J , condition (2') in Theorem 2.8 is
also satisfied.

With the funnel property already proven for the free algebras {$(&)} in Chap.
Ill, it remains only to verify the necessary properties of the Y2 + P{φ)2 model. The
dynamics of the Y2 model were first constructed by Glimm and Jaffe in [19,21].
Further results, including the P(φ)2 interaction, were obtained by Schrader [39,40]
using the methods of [20]. They proved the existence of a state ω r e n( ) on J^ as a
weak *-limit of finite volume interacting Y2 + P(φ)2 states ωg( ) (equal to
(Ω(g),Ώ(g)y, where Ω(g) is a vector in Fock space annihilated by the spatially cutoff
Hamiltonian H(g), depending on the cutoff function g) as g-> 1, that is described
partially in the following theorem.

Theorem 4.2 [40]. There exists a separable Hubert space Jfren, a ̂ -isomorphism π of
#", a strongly continuous unitary representation Wren of the space-time translation
group and a vector Ωrenej^ren, cyclic for π(#"), such that

ωren(A)=<Ωren,π(A)Ωreny

Wren(a, τ) ' x π(A) Wtca(a9 τ) = π(σaa(A))

WrcJa,τ)Ωren = Ωren for all (a,τ)eU2.

The infinitesimal generator H of the time translations is nonnegative. Further, for every
bounded open set Θ aU, there exists a unitary operator U&: J^ren-^^ such that

π(A) = U*AU&, Ae%(Θ\

i.e. ω r e n and its corresponding representation π are locally Fock on 3F (thus, locally
normal on the product of the CCR and CAR algebras).

Remark. {a,τ)^σaτ denotes the unique *-homomorphism of the space-time
translation group into the group of automorphisms of #", which is given on $(&) by

where geC£M(M) (or a characteristic function) satisfies g(x) = l on (p|α) + (t| =
{xe[R|dist (x, Θ) ̂  \a\ + |τ|}. V(a) is the unitary representation of the space trans-
lations on # \ We comment that the Lorentz boosts are also canonically realized by
a strongly continuous automorphism group [27]. See [19,21,40,27] for further
details.

It is easy to see that since the Fock space vacuum and the interaction in an
arbitrary finite volume are invariant under the gauge group defined above, one has,
in addition, a strongly continuous unitary representation C/ren( ) of the gauge group
on J^XQn, locally generated by eiθN, using the local Fock property. The twist operator
on jfren is given by

Therefore, it only remains to verify that the representation π of 3F given in
Theorem 4.2 is irreducible, i.e. that ω r e n is a pure state for # \ If the spectrum
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condition were known for the representation (^fren, π, Ωren) and if Uren(^) <=3i>
where 3 π = ^"π n # ^ is the center of J ^ , one could perform a central decomposition
of the state ω r e n with respect to the spectrum of 3 π as in [3] to obtain a set of
representations (J^ r e n ζ, πζ, Ω r e n ζ) and a measure μ on 3's spectrum so that

etc., such that all the above properties are maintained and n^(!F) is irreducible in
Jf7

ren ζ for almost all ζ. (The local Fock property for Jf r e n ζ follows again since each πζ

will be a ^-isomorphism between separable type III algebras g(#) and πζ(g(0)) and
will be, thus, unitarily implementable). One could then apply Theorem 2.1 to the
irreducible, locally normal, gauge representations (Jf r e n ζ , πζ, Ώ r e n ζ ) of (#", ^ , α, #"').
Since the spectrum condition should hold in any reasonable quantum field model,
only the condition U(^) a 3^ could be expected to fail, i.e. there could be non-gauge-
invariant "field objects at infinity". However, as pointed out in the remark made at
the end of Chap. II, if the Haag-Kastler-Araki axioms hold in the representation
p f r e n, π, Ωren), ocgo( ) will be unitarily implementable in (almost) all representations
(^ren,ζ> πζ> Ώ r e n ζ ) , which suffices for the application of our theorems.

Since, unfortunately, the spectrum condition has never been proven for the
"Hamiltonian" construction of the Y2 + P{φ)2 model indicated above (but see [52]
for the proof with periodic boundary conditions), much less the property U(^) c 3 ' ,
we shall take recourse to a construction through the Osterwalder-Schrader
reconstruction theorem of a Y2( + P(φ)2) model satisfying the Wightman axioms
using results of [10, 26] obtained by Euclidean methods. It will be necessary to
establish the equivalence of the two constructions since we need the Wightman
axioms from the one and the local Fock property from the other.

The space-time cutoff Euclidean Green's functions (EGF's) for n bosons and m
fermion-antifermion pairs (by gauge invariance, if the number of fermions is not
equal to the number of antifermions, the expectation is zero) are given through the
Matthews-Salam-Seiler formula [42] by

SΛ(L,T)(X1, • , *n> y 1, ' • > ym,Zl, - , Z m )

( 1 j i ) d 2 x } ά Q t S>F{yvzk'φΛ) x

x Π0(x z)det r e n(l-AK(0J), (4.3)
1 = 1

where

Z(Λ) - \dμo(φ) exp { - λ\Λ :P{φ) :(x)d2x} det r e n(l - λK(φΛ)\

dμo(φ) denotes the free Gaussian measure on £f'(U2) with mean zero and co variance
( - Δ + ml)~\ Λ(=l- T/2, T/2] x [ - L/2, L/2]) is a bounded rectangle in U2.
S'F(yί,zk;φΛ) is the kernel of

λ is the Yukawa coupling constant (that we have, for simplicity's sake, set equal to
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the P(φ)2 coupling constant); So is the free two point Schwinger function for the
fermions:

where p = poyo + p1y1 (y. are the Euclidean y-matrices (see [42])). K = K(φΛ) is the
operator with kernel K{x9y) = S0(x —y)φ(y)χΛ(y), where χΛ is the characteristic
function of A. The determinant in (4.3) is the m x m determinant of the matrix with
elements SF(yi9zk;φΛ).

det r e n(l - λK(φΛ)) = det3(l - λK(φA)) exp ( - λ2BΛ),

where

det3(l -A)= exp [Tr(ln(l -A) + A

and BΛ={-: Ίΐ(K2 + K*K): where K* is the adjoint of K as an operator on
L2([R2)©L2(1R2).: : denotes Wick ordering with respect to dμ0. This description is
somewhat formal, but Seller demonstrated that by introducing momentum cutoffs
the components of (4.3) are all well-defined as indicated and by performing the
renormalization cancellations and removing the ultraviolet cutoff, the resulting
integrand is indeed an integrable function with respect to the measure dμo(φ)[_4Z].

Independently, then, Cooper and Rosen [10] and Magnen and Seneor [26]
proved

Theorem4.3. If λ>0 is sufficiently small, then:
1) the infinite volume EGF's S(x;y;z) = limL τ _ ̂  SΛ (x y z) exist as functional s

in <?'(U2{n + 2m)); the limit is independent of the order taken.
2) the S(x\y\z) satisfy all the Osterwalder-Schrader axioms \_31~], including

exponential clustering. Hence the unique corresponding relativistic theory satisfies the
Wίghtman axioms, including a mass gap.

Remarks. The original proofs of [10] and [26] were for the pure Y2 model and with
the assumption that λ/mb and λ/mf are sufficiently small. However, with estimates of
[22] and arguments of [23] the above version of the original results can be proven.

The aim of the rest of this chapter is to prove that the two theories obtained in
Theorems 4.2 and 4.3 are the same in the weak coupling limit. We begin by
connecting space-time-cutoff objects in the Euclidean and Hamiltonian formalisms
through a Feyman-Kac formula. One version of this formula was proven in [30]
for the Y2 + P(φ)2 theory with ultraviolet cutoffs and no counterterms. A proof of
the Feynman-Kac formula with cutoffs and counterterms was given in [43] (see
particularly Theorems 3.2 and 3.3), and using the strong resolvent convergence of
the Hamiltonian as one removes the. ultraviolet cutoff [19] (see also [43]) and the
results of [42] already mentioned, one obtains for t{ > 0, i = 0,..., n,

Π {Ψ*(Xj*O)e-

LtΣtj)({xj,Sj}j^), (4.4)
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where the righthand side is the (unnormalized) cutoff EGF given in (4.3) with the
appropriate number of bosons and fermion-antifermion pairs arid with interactions
in the space-time region /l = [s0, s n + 1 ] x [ — L/2, L/2], where s0 is arbitrary and
Sj = Sj-! + tj- uj = 1,..., n + 1. In the lefthand side (a vacuum expectation value in
the relativistic Fock space Jf), Ψ**(x, 0) is a time zero field (Ψ# denoting either Ψ, Ψ
or </>, where Ψ = — i Ψ*y0), and H(L) is the interacting Hamilton operator with space
cutoff in the interval [ — L/2, L/2] with the conventional mass renormalization and
Wick ordering, but with the energy counterterm of [43]. This Hamiltonian differs
from the usual one [19] by a finite renormalization; thus, letting E(L) denote the
eigenvalue at the bottom of the spectrum oϊH(L), and defining H(L) = H(L) — E(L\
H(L) equals the Hamiltonian H(g) in Theorem 4.2 with g = χt-L/2,L/2][43, Corollary
2.3]. Of course, Theorem 4.2 is still valid for dynamics given with this choice of
renormalization constants. We adopt the normalization convention of [43], since
the proof of the vacuum overlap (which we shall use below) in [43] uses Nelson's
symmetry, which fails for the ordinary choice of vacuum renormalization counter-
term (see, however, [49] for an alternative proof where the difference between
counterterms is carried along).

If we denote by Ω(L) (a spatially cutoff interacting vacuum) a unit vector in $F
such that H(L)Ω(L) = 0, we know from [19] that there is a λo(L) > 0 so that for
all λo(L)^λ^0,Ω(L) is unique. However, it may be that λo(L)l0 as L-»oo.
Thus, we let P{L) signify the projection in 3F onto the subspace (it is of finite
dimension—see Theorem 5.2 in [19]) of vectors annihilated by H(L), From the
functional calculus for self-adjoint operators, one has (since spec(H(L) ^ [0,oo))

sΛim e-tH{L) =
ί->oo

and because P(L)Ω0 ψ 0[43, 49], one has

lim e'tHiL)Ω0 = P(L)Ω0 + 0. (4.5)
t-> 00

Let Ξ(L) = P{L)Ω0/\\P(L)Ω0\\. A straightforward argument using (4.4) and (4.5)
yields the space-time cutoff Gell-Mann-Low formula: for tί< t2 < ... < ί n ,

<3(L),"Π { ιP#(l J , 0 ) ^ - ( ί ^ 1 -

The existence of the righthand side is assured by Theorem 4.3, that of the lefthand
side by (4.5). Recalling that the interacting fields (with space cutoff) are given by

Ψl (x, t) = eUH{L) Ψ# (x, 0)e~ itH{L\ (4.7)

we may conclude:

Theorem 4.4. 77ieSL({xJ ,ίJ )}" = 1 are the Schwingerfunctions (analytic continuation
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to imaginary time) of the spatially cutoff Wightman distributions

7 = 1

Proof. Fix L and λ (λ in the range determined by Theorem 4.3). Because H(L) is
selfadjoint and positive and Ξ(L) is invariant under eitH{L\ the expression (4.6) is a
holomorphic function in {(ί1,...,ίn)eCn |Reί1 < Reί 2 < ... < Reίn} and the cutoff
Wightman distributions are obtained as boundary values of this holomorphic
function as Re(ί i + 1 — t i)j0,i = l,...,n.

In [43] it was proven that the following estimate holds in Y2 + P{φ)2 (for
arbitrary but fixed coupling constant):

£ (n I)1'2 C{L, T) [ ] II ft II9j I I M (4.8)
u j

for ||. || appropriate Schwartz space norms and C(L, T) a constant satisfying
l i m L Γ _ 0 0 C(L, T) < oo. Thus, using an argument of [28] that employs the Oster-
walder-Schrader positivity in the time direction of the cutoff Schwinger functions
(and not Euclidean invariance as in [31]), one obtains a uniform bound that, with
the convergence of the Schwinger functions given by Theorem 4.3, entails that the
boundary values—the spatially cutoff Wightman functions—converge in if'. (An
alternative argument would be to use the φ-bound below ((4.10a)) and the argument
of [48] to yield the convergence as tempered distributions of the cutoff Wightman
functions-the proof in [48] can be slightly modified to handle the fact that the
φ-bound in Theorem 4.5 has a Schwartz space norm in lieu of an I^-norm).
That is,

= lim <Ξ(L), Π ΦL(Xj,tj) Π Ψάl.ti) Π ΨL(h>h)Ξ(L)} (4.9)
L->oo j = i j =ί k=l

exists in 5^/((R2" + 4 m) for small enough coupling constant. Further, by Theorems 4.3
and 4.4, the Osterwalder-Schrader reconstruction theorem and the resultant
unitary equivalence of the Wightman theories, the Wightman functions in (4.9)
satisfy all the Wightman axioms including a positive mass gap. Since at every step
the states are invariant under the gauge transformations, the gauge group is realized
by a strongly continuous unitary representation Uw(^) in the resultant Hubert
space ^fw. The unique vacuum, designated by Ωw, is invariant under Uw(&).

The estimates of [40] can be immediately applied to yield the fact that the state

exists and satisfies all the properties listed in Theorem 4.2. Because the vacuum
expectation values of the two theories, (J4?W,ΩW,...) and p f ren5Ωren,...) coincide, the
uniqueness of the Wightman reconstruction theorem entails that JfV can be
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identified as a subspace of J^ren,Ωw with Ω ren, and the field operators on fflw with
those on J f r e n . It is now necessary to explicitly call upon the φ-bound [48,43, 49]:

Theorem 4.5. For arbitrary fe£fR(U2), we have in the sense of quadratic forms on # \

l), (4.10a)

where || || is a Schwartz space norm independent of L. Thus [48], in the sense of
quadratic forms on D{Hίl2) x D(H112) <= J^ r e n x Jf r e n,

±φw(f)ύ\\f\\(H + l), (4.10b)

where H is the generator of the time translations on Jtifren.
With the use of this φ-bound a straightforward argument (see Proposition 1.1 in

[48]) yields the equality of jfw and JT r e n (note that \\ΨL(f)y g 1, for every L,
carries over to the infinite volume limit: \\Ψw(f)\\#t^ 1). Furthermore, utilizing
the local Fock property, one sees that for all fe&iU2) (the set of infinitely
differentiate functions oti U2 of compact support), π(eiφif)) = exp{iφw(f)} on J-fren.
And since there is a partition of unity {ξΛ} c 9(U2\ this holds for all / e^(U2). Thus it
follows that the action of the unitary realizations Ww(-% WΓen( ), Uw{-), Uren( ), of the
gauge and translation groups coincide on Jf r e n, and that UW{P\) implements the
automorphism group {σ(A^τ)( )\(A,α,τ)eP\} of Theorem 4.2. Therefore we may
conclude the following theorem.

Theorem 4.6. For small enough coupling constant λ>0intheλY2 + λP(φ)2 model,
all of the limiting methods described above provide a locally Fock, gauge repre-
sentation (tf, π( ),Ω) Qf{SF, <S, α .̂ &*) with a cyclic vector Q that is the unique vector
invariant under the action of the Lorentz group, which is itself implemented by a
strongly continuous unitary representation. Furthermore, the spectrum condition is
satisfied.

Therefore, by a theorem of Araki [3], (jf,π(.),Ω) provides, as well, an irreducible
representation of 3F, so that all the assumptions of Theorem 2.1 are fulfilled. We may
thus decompose (^,π( ),Ω) with respect to the spectrum of U(&) and reduce the
representation of the observable algebra on the resultant (Abelian) coherent charge
sectors. The observable algebras satisfy duality on all these charge sectors, and by
Theorem 2.3 π(&) satisfies twisted duality. (Or one may apply Theorem 2.8 directly.)
Thus, all assumptions in the axiomatic study of DHR [12] have been verified (weak
additivity follows from the Wightman axioms) for this model.

Without going into details, we mention that by using ideas in £5} to introduce
appropriate boundary conditions at infinity in the Hamiltonian approach and
capitalizing upon the existence of two pure phases, i.e. two Wightman theories with
unique vacua (selected by these boundary conditions), in the pseudoscalar Y2 model
in the large coupling (low temperature) limit—proven by Euclidean methods in
[4]—, one may apply the arguments presented above to obtain, in this limit two
ilngr's π ± of (J% #, α, &*) to which one can apply the theory of Chap. II.
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Appendix: Structure Results on the Relativistic Free Fermi Field Algebra
ford =2

Defining operators A and B from L2(U)@2 to L2{U) by

where F = {/(1),/(2)} and C± are the operators defined in Chap. Ill, the time zero
Fermi field can be written as

where a,b0 give two Fock representations over L2(U) of the anticommutation
relations on Fock space Ff and [α(/),&o(0)] + = [β(Λ&ί(0)] + = O,V/,0eL2(R).
In fact, referring back to Chap. Ill,

a(g)=$b(k)g(k)dk9

b*{g)=\b'*{-k)g{k)dK

defines a(g), b(g), VgeL2(M).
As in [11] we define an unbounded operator φ from a dense subset of L2(Θ)®2 to

a dense subset of L2{&')®2 by

AF = AφF, FeL2(Θ)®2. (A.I)

To verify that φ is indeed defined as asserted, one first notes that A-G==0, Ge
L2(Θ')®2, implies G = 0. This follows because AG = 0 entails C_# ( 1 ) - C+g{2) = 0,
so that # ( 1 ) = CZ1C + g{2) = (l/m)(ω + N)gi2\ But ω + iV antilocal [41] implies g{2)

= giv = 0. Thus, if there exists a GeL2(Θ')®2 such that AF = AG, there is only one.
Using again the antilocality of ω ± iV, it is easy to show that CZ1C+ Sf(Q!) and
CZ^Cϊfψ') are dense in L2(Θ\ so for a dense set of/eL 2(0), one can find a
solution to the equation

and for another dense set there is a solution to

Thus, (A.I) admits a unique solution for a dense subset of L2(Θ)®2. From the
uniqueness of φ and the boundedness of A, one can conclude that φ is a closed
operator. Further, the uniqueness in (A.I) implies that φ " 1 exists and has a dense
domain. Thus, one has the polar decomposition U(φ*φ)lj2, where U is a unitary
from L2(Θ)®2 to L2(ffi/)Θ2 Moreover, because A*A+B*B=l, we may prove,
following DelΓAntonio, that

BG=- Bφ*G, GeL2(Θcf2 f]D{φ*)9 (A.2)

where D(φ*) denotes the (dense) domain of φ*.
Therefore, all of the ingredients necessary to the analysis in Sect. 11 in [11] are

verified, so that one can conclude the following structure properties of the local

algebras %f((9).
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Lemma A.I. 1) The Fock space Jf f of the relatίvίstic free Fermi field in two space-
time dimensions can be represented as an incomplete infinite tensor product with

respect to a vector φ = ® ι//-.,φ, eJ f\® M?

t , J* f = ®{2tf{®#?% where J f t and J?\ are
i i

two-dimensional Hilbert spaces. (This decomposition depends on the choice of (9).

2) g ( 0 ) = {/® . . . ® ( 9 3 ( J f . ) ( g ) / ; ) ® . . . | / = 1,2,...}",

.!« = 1 . 2 , . . . } " ,

where the Ts are the appropriate identity operators, so that g
3) %(Θ) is a hyperfinite factor and is of type I ifφ*φ(φ*φ + I ) " 2 is trace-class and-

type III otherwise.

Proof. The proof follows [11] and the appendix of [12], using (A.I) and (A.2) and
the fact that φ has a polar decomposition with U unitary.
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