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Abstract. The relation between the symplectic structures on the canonical and
radiative phase spaces of general relativity is exhibited.

1. Introduction

There are available in the literature, two Hamiltonian descriptions of general
relativity. The first and the more established one is based on spacelike hypersurfaces
and uses the initial value formulation of general relativity and the Dirac theory
of constrained systems [1,2]. Over the years, this formulation has been systemati-
cally developed and refined by several authors and has shed considerable light on
the structure of Einstein's theory. (See, e.g., [3].) In particular, these investigations
have brought out the role of the Arnowitt-Deser-Misner [4] energy-momentum
as the generator of space-time translations [5] and have paved the way for canonical
quantization of gravity [3]. The second Hamiltonian description became available
more recently [6]. It is based on null infinity [7] and uses techniques from the
gravitational radiation theory in exact general relativity, (See especially, [8] and
[9].) Here the focus is on the radiative aspects of the gravitational field; the phase
space is the space of radiative modes. This description has also given one new
insight. In particular, fluxes of energy-momentum and angular momentum carried
away by gravitational waves have been shown to be the generators of the
Bondi-Metzner-Sachs (BMS) group, the asymptotic symmetry group at null
infinity [10]. More importantly, the formulation has enabled one to carry out the
asymptotic quantization of the non-linear gravitational field [6,11].

In view of this situation, it is natural to ask for the relation between the two
descriptions. Apart from its intrinsic interest, such an analysis would clarify several
issues which arise in the two frameworks separately. For example, since the radiative
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phase space is not constructed from a cotangent bundle over a configuration space,
the symplectic tensor field thereon had to be simply postulated [10]. Here, one
was guided by general considerations such as the requirement that the Poisson
bracket between the basic variables should have the dimensions of action, that
one should obtain the correct results in the weak field limit, and that the expression
of the symplectic structure should fit in the pattern suggested by the spin zero
and one fields. However, one could not show that these considerations suffice to
determine the symplectic tensor field uniquely. It is therefore desirable to have as
strong an evidence as possible supporting the choice that was made. A strong—
perhaps the strongest possible—evidence would be that the chosen symplectic
structure is, in an appropriate sense, the same as the one on the canonical phase
space. The canonical approach would also be enriched from the analysis of its
relation to the radiative framework. For example, the canonical quantization
programme has met with severe difficulties in the construction of a Hubert space
of states (or a substitute thereof). In the approach based on the radiative phase
space, on the other hand, these difficulties do not arise: one can readily construct
not only the Fock spaces of asymptotic gravitons but also the Hubert spaces
required to handle the infrared problems, i.e., which are analogous to the charged
sectors in quantum electrodynamics [12]. Therefore, an understanding of the
relation between the two phase spaces may give one considerable insight in the
Hubert space problem of canonical quantization. In particular, the analysis may
shed light on the nature of the (canonical) quantum vacuum, which, one now
suspects, may not be simply a gaussian peaked at the flat metric.

The purpose of this paper is to provide the first steps towards establishing the
relation between the two phase spaces. At an intuitive level, one may divide the
problem into two parts: differential geometric issues and functional analytic
difficulties. In a broad sense, this paper resolves the first part. More precisely, we
shall assume that globally hyperbolic, vacuum, asymptotically flat, horizon-free
space-times exist and show that each such space-time leads to a natural symplectic
structure preserving identification of a point of the canonical phase space with a
point of the radiative phase space.

The main obstacle in relating the two phase spaces is, of course, that whereas
the canonical phase space is constructed from initial data sets on space-like surfaces,
the radiative phase space consists of certain equivalence classes of connections on
null infinity, J} Therefore, to exhibit the relation between the two, we shall
introduce a structure which can interpolate between the two regimes: the symplectic
vector space of linearized gravitational fields on a globally hyperbolic asymptoti-
cally flat, vacuum space-time without horizons. This introduction serves the
following purpose. A linearized solution induces on any Cauchy surface a set of
linearized Cauchy data and may be therefore regarded as a tangent vector at a
point of the canonical phase space. As one might expect, this identification preserves
the symplectic structure: We shall show explicitly that the symplectic structure on
the space of linearized solutions (off a fixed background) reduces to the symplectic
structure evaluated at the tangent space of any point of the canonical phase space

1 Throughout this paper, the symbol J will stand for future or past null infinity
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corresponding to the given background, when the linearized fields are identified
with their initial data.2 On the other hand, if the background is asymptotically
flat at null infinity, each linearized solution also defines a linearized connection
on ,/, and therefore, a tangent vector to the phase space of radiative modes at the
point corresponding to the given background. We show that this identification is
also symplectic structure preserving, thereby exhibiting the equality between the
canonical and the radiative symplectic structures. To summarize, the difficulty in
relating the two frameworks is overcome by first recognizing that a linearized
solution to Einstein's equation defines a tangent vector at suitable points of both
phase spaces and that the symplectic structure, being a tensor field, is completely
determined by its action on the tangent vectors, and then letting the linearized
solutions do the desired interpolation between the space-like surface and J.

2. Preliminaries

This section is divided into four parts. The first summarizes the usual Hamiltonian
formulation of general relativity; the second outlines the structure available on
the space of radiative modes in exact general relativity; the third describes the
phase space of linearized gravitational fields on a vacuum, globally hyperbolic
background space-time and the fourth recalls certain results on the asymptotic
behavior of these linearized solutions.

2.1 The Hamiltonian Formulation of General Relativity

Fix a C00 3-manifold Σ and consider thereon pairs {qab,p
ab

mnr) consisting of C°°
positive-definite metrics qab and Crχ) tensor fields pab

mm. such that pab

mnr = P{ab\mnrV

3

We shall assume that either Σ is compact or the pairs (q, p) are asymptotically flat
in a suitable sense. The space Γ of these pairs has the structure of a cotangent
bundle. It therefore possesses a natural symplectic tensor field Ω:

Ω\{qJ& β); (α', β')) = j (αβbj8'β*mBΓ - α'' abβ
ab

mnr)dS™\ (1)

where (α,β) represents a tangent vector to Γ at (q,p). (Thus, aab is a symmetric
tensor field and βab

mnr has the symmetries of pab

mnr). Denote by Γ the "constraint
submanifold" of Γ consisting of pairs (q,p) satisfying the following equations:

DaP
ab

mnr = 0; a n d , (2.a)

mP

h ™ = 0, (2.b)

where D and 0ί are, respectively, the derivative operator and the scalar curvature
of qab, and where indices are raised and lowered by qab. Each point of Γ represents
a permissible data for Einstein's vacuum equation: qab is the intrinsic metric on
Σ and nab\=(l/6){pab

mnr-^qabpc

cmnr)εmn\ the extrinsic curvature, where εabc is the
unique 3-form on Σ defined by εabczabc = 3!. Denote by Ω the pull-back to Γ of Ω.

2 Because of gauge problems, this result is not as straightforward as one might have expected

3 One often uses tensor densities of weight one in place of tensor fields pab

mnr
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Thus, we have: Ω\{qs{{ά,β)\(a'Jf)) = Ω\^-p)((d,β);(df,β')) for allvectors (άj) and
(α',/0 tangential to Γ at (q,p). This Ω is, however, degenerate: Ω((d,β);(ά',β')) = 0
for all tangent vectors (α',/0 to Γ if and only if (α,β) is the (restriction to the point
{q, p) of the) Hamiltonian vector field on Γ generated by the constraint function

CNNa{q,PΪ = j dS^iN{\pah

uυwpar
w-hv\uυ^Γ ~ #)**„ " 2NbDap

ab

mnrl (3)

Here, the lapse N and the shift Na are C00 fields on Σ, which, in the asymptotically
flat case, vanish at a suitable rate at infinity.4 The reduced phase space of general
relativity is the "manifold of orbits" of these constraint vector fields, restricted to
Γ. Denote it by f. The tangent space T at any point (q, p) of Γ can be identified
with the quotient T/S of the tangent space T at any point (q, p) of Γ (which projects
down to (q, p) in Γ) by its subspace S which is spanned by the constraint vector
fields. Hence, f inherits from Γ a weakly non-degenerate symplectic structure Ω:

β | ( ^ ( M ) ; ( α ' J ' ) ) = Ω\{^}(&β);(ά\βn (4)

where (ά,β) is any element of T which projects to (ά,j?) in T. (For details, see, e.g.
[13], [14], or [15].)

2.2. The Phase Space of Radiative Modes in the Exact Theory

Fix a 3-manifold J, topologically S2 x JR, equipped with a collection of pairs of
C °° fields (qab, n

a\ with qab symmetric, satisfying the following conditions: i) qab V
b = 0

if and only if Va is proportional to na; ii) £?nqah = 0; iii) (q,n) and (q,ή) are both
in the collection if and only if there exists a function ω on J such that
qab = ω2qab,n

a = ω~γna and S£nω = 0; and, iv) na is a complete vector field and the
space of its orbits is diffeomorphic to S2. Thus «/ is equipped with the "universal
structure" of Penrose's null infinity [16]. Fix a conformal frame—i.e. a pair (q,ή)
from the collection—on J and denote by V the affine space of torsion-free
connections D o n / satisfying

Daqbc = 0 and Dan
b = 0. (5.a)

Finally, introduce the following equivalence relation on # :

D~D' if and only if (Da - D'a)Kb = fqabn
cKc (5.b)

for any function / o n / (independent of the choice of Ka). Denote the space of
equivalence classes {D} by Γ. This is the required space of radiative modes of the
non-linear gravitational field in exact general relativity. Let us examine the structure
available on Γ. It is easy to show that connections D and D both belong to # if
and only if there exists a symmetric tensor field Σah with Σahn

b = 0 such that
(Da - DJKb = ΣabKcn

c for all Ka on «/. Hence it follows that the difference between
any two elements {D} and {D} of Γ can be completely characterized by the trace-free
part, yab, of Σab. Thus, Γ has the structure of an affine space; by fixing any one

4 N and Na have to fall-off "at least as 1/r" for CNtNa to be a C 1 function on Γ, i.e., to generate a

Hamiltonian vector field. According to the Dirac theory of constrained systems, such vector fields

generate gauge motions
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point {D0} as the "origin," one can coordinatize Γ by tensor fields yab satisfying
Ίab = Ί(ab)> y°bnb = 0, a n d Ίab^^^ ( τ h e t w 0 independent components of yab

represent the two radiative modes of the gravitational field.) Finally, the following
symplectic tensor field has been introduced on Γ:

β|{D}(y9 / ) : = ί (yab^ny
fcd - yfab^nycdk

ac^mnrdsmnr. (β)

Here, qab is any "inverse" of qab and εabc is the unique 3-form on J satisfying

8abcs
abc = 3! where εabc is defined by £abcεmnpqamqbn = ncnp [17]. It is easy to verify

that Ω is conformally invariant and weakly non-degenerate and has the dimensions
of action. These properties, together with the pattern suggested by the symplectic
structures of zero rest mass, spin zero and one fields, provided the original
motivation behind this choice of Ω. Further evidence came from the fact that the
action of the BMS group of J induces motions on Γ which preserve Ω and the
Hamiltonians generating these canonical transformations on (Γ,Ω) provide the
formulae for fluxes of energy-momentum, supermomentum and angular momen-
tum carried away by the gravitational waves. (For details, see [10] and [11].)

2.3. The Symplectic Tensor of Linearized Gravitational Fields

Fix a globally hyperbolic, vacuum space-time (M,gab). Let us suppose that this
space-time admits a foliation by Cauchy surfaces which are either compact or
asymptotically flat at spatial infinity in a suitable sense. Denote by hab a solution
to the linearized vacuum equation:

VmVmhab + 2Ramhnh
mn - 2V(flV H ( V - \hδh)

m) = 0, (7)

where V and Rabc

d are respectively the derivative operator and the Riemann tensor
on (M, gab). It is easy to verify that hab = V{aζb) satisfies Eq. (7) for arbitrary vector
fields ζb. Such solutions represent "pure gauge" linearized fields. Denote by V the
space of C00 solutions to Eq. (7) the intersection of whose support with any Cauchy
surface is compact and by V the quotient of V by the subspace containing pure
gauge fields V(αζb), where the support of ζa has a compact intersection with any
Cauchy surface. Consider the skew tensor ώ on V, defined by:

ώ(fc, ft') = 3 J εmn\(hmsVnh'pr - h'^JiJdS*". (8)
Σ

It is easy to check, using Eq. (7), that the integrand is a curl-free 3-form whence
the integral is independent of the choice of the Cauchy surface Σ. Using this
property (or, by direct substitution in Eq. (8)) one can show [18] that ώ(h,hf) = 0
for all Wab in V if hab is a pure gauge field, i.e., if hab = V{aζb) for some ζb. Hence
ώ induces a skew tensor ώ on V:

ώ({ft},{ft'}) = ώ(ft,ft/), (9)

where {h} in V denotes the equivalence class of elements of V to which h in V
belongs. This ώ can be shown to be weakly non-degenerate5: ώ({h}, {h'}) = 0 for

5 This holds provided the background metric gab does not admit Killing fields near spatial infinity
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all {h} in V if and only if {h1} = 0. Thus, (V,ώ) is a symplectic vector space. This
structure has been exploited in the construction of conserved quantities from
linearized fields in the case when (M,gab) admits a Killing field. (For details, see
[18] and [19].)

2.4. Asymptotic Behavior of Linearized Fields

The connection between the symplectic structure Ω of the canonical phase space
and Ω of the radiative modes will be established in the next section using the
symplectic vector space (F,ώ) of linearized fields. Therefore, we shall need
information about the asymptotic behavior of the linearized fields hab at null
infinity. Fortunately, an extensive analysis of this issue already exists in the
literature. We shall therefore merely quote the required result:

Theorem [20]. Let.(M,gab) be an asymptotically flat and empty space-time in the
sense of Geroch and Horowitz [27]. Denote by (M = M u / , ^ = u2gab) o n e °f its

conformal completions in which J* is divergence-free (i.e., in which α satisfies
VmVmα = 0 on J>). Let h'ab be a C°° solution to the linearized vacuum equation in a
neighborhood of J>, the intersection of whose support with some Cauchy surface is
compact. Then, there exists a solution hab, related to h'ab by a gauge transformation,
such that hab: = <xhab, habn

b and oc~ 1habn
anb are C00 fields on J> and gab^nhab vanishes

on J, where, na = faoc is the null normal to J.

3. Relation between Ω and Ω

This section is divided into two parts. In the first, we investigate the relation
between the reduced phase-space (f,Ω) and the symplectic vector space (V,ώ)
constructed from the linearized solutions, and, in the second, that between (V,ώ)
and the phase-space (Γ, Ω) of radiative modes.

3.1. Relation Between (f, Ω) and (V, ώ)

Consider a globally hyperbolic, vacuum space-time (M,gab). Fix a Cauchy surface
Σ and denote by (qab, p

ab

mnr) the point of the constraint submanifold of the canonical
space Γ defined by the initial data of gab on Σ. We shall assume that either Σ is
compact or that the pair (qab, p

ab

mnr) is asymptotically flat in a suitable sense and
show that there exists a natural one to one mapping Ψ from V to the tangent
space f{qp) of f at (qab, p

ab

mnr) and that Ψ maps Ω to ώ.

Lemma 1.1. Given a linearized solution h'ab in V, there exists a gauge related solution
hab in V satisfying habn

b = 0, where nb is the unit normal to Σ and = denotes equality
restricted to Σ.

Proof. Consider a scalar field N and a vector field Na on M satisfying

N = 0, Na = 0,2na WaN = nanbh' ab and qbmnaVaNb = - naqbmh 'ab.

Set hab = Wab + 2¥(aζb) with ξa = Nna + Na, where na now denotes an unit time-like,
hypersurface orthogonal extension to M of the normal to Σ. This hab is again in
V and satisfies habn

b = 0. Π
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Denote by V the subspace of V consisting of linearized solutions hab satisfying
habn

b = 0. By Lemma 1.1, the natural mapping, hab->{hab] from V to V is onto.
(However, it is not one to one: given hab in V,hab + 2V{aξb) is again in V provided
ξa satisfies naV(aξb) = 0.) The gauge condition habn

b = 0 is introduced for conveni-
ence only; it simplifies the task of computing the first order changes in the intrinsic
metric qab and the extrinsic curvature πab of Σ. A simple calculation yields the
following result: δqab = hab and δπab = \qa

cq
b

d^n(qmcqndhmn). Since pab

mm. is related

to πab via

nab _ ίΉab _ πaab\F

P mm — \Jl llίi )bmnr>

one has,
b ± l b d U ^U \nab , -foab . ft/.-αb _ τrnabY\p

Thus, the natural mapping Ψ from V to the tangent space T(^p) of the constraint
sub-manifold Γ at the point (qab, p

ab

mnr) is given by

Ψ(hJ = (oiab9β
ab

nmrl (Π)

where aab = ^^flb = feflb and βflb

mm. = (5pflb

mπκ has the expression given in Eq. (10). We
now ask if Ψ gives rise, naturally, to a mapping Ψ from V to t{ίιf)Y i.e., if Ψ maps
"pure gauge" linearized fields hab = 2V{aξb) to a tangent vector in Γ representing
an infinitesimal "gauge motion." An affirmative answer is given by the following
result:

Lemma 1.2. Let hab = 2V{aξb) be in V, where the intersection of the support of ξb

with any Cauchy surface is compact. Then, Ψ(hab) = (aab, β
ab

mnr) is the restriction to
(Qab>Pabmnr) °f t n e Hamiltonian vector field generated on Γ by the constraint function
CNtNa(q,p) (ofEq. (3)), where the lapse N and the shift Na are given by N = — ξan

a and
Na = qa

mξm. (Here, as before, na is the unit (future-directed) normal to Σ and
qa

m = δa

m -f nanm is the projection operator associated with Σ).

Proof Since hab belongs to V, naV{aξb) = 0. This implies that VaN = 0 and ^nN
a = 0.

Using these properties, it is straightforward to show that

ψ(L \ — (0 /VTΓ -4- (P n N( — &ab -I- Φπab -I- ~nab n1 cd$

_ l n a btcdf\p i a> nab \
3F tcdfP )£mnr + ^ NP mmh

where nab is the extrinsic curvature of Σ and &ab is the Ricci tensor of qab. On the
other hand, using the fact that N and Na have compact spatial support, one can
show [14] that the restriction to (qab,p

ab

mnr) in Γ of the Hamiltonian vector field
generated by CN Na(q,p) is given by:

(εmJδC/δfb

mM-δC/δqab)εmnr) = (j(Pah^ - \qabp V

N( - M* + \PΛqah + y

_ J_nc nd uvw ab\Q , cp ab
24rP cuvwP d Q i ε n m r + ^ i v P mnr
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Since (qab,p
ab

mnr) satisfy the constraint equation (2.b), we have

Ψ(hab) = ((δC/δpab

mnr)εmnr, ( - δC/δqab)εmnr). D

Remarks, (i) Since hab is an element of V, it follows that V(aξb) has compact spatial
support. Note, however, that ξa need not share this property: ξa may be a Killing
field outside a bounded world tube. This is why an explicit condition on the
support of ξa had to be imposed in the statement of Lemma 1.2. (ii) The
requirements on the support of hab and ξa can be weakened substantially without
altering the essence of the results contained in Lemmas 1.1 and 1.2. Let us suppose,
for example, that (M,gab) is asymptotically flat at spatial infinity in the sense of
[22] and denote by (M = Mvi°,gab = oc2gab\ one of its conformal completions.
Consider on (M,gab) linearized solutions hab which preserve the requirements of
asymptotic flatness to first order. (Thus, hab need not have compact spatial support,
it may fall off only "as 1/r" at space-like infinity.) Denote this space by V'. Consider
as gauge those elements of V' which are of the form V{aξb) where, on M, ξa falls-off
as α 3 / 2. (Thus the one parameter group of diffeomorphisms generated by ξa is
asymptotically identity.) Denote by V' the quotient of V' by its gauge subspace.
We could have used V' and V' in place of V and V in Lemmas 1.1 and 1.2 and
the above enlarged class of vector fields ξa in Lemma 1.2. Note, incidentally, that
if ξa generates (non-identity) spin symmetries [22], hab = V{aξb) belongs to V' but
not to its gauge subspace. Hence Ψ(hab) is not the restriction to (qab,p

ab

mnr) of the
Hamiltonian vector field generated by CNiNa for any choice of N and Na: If ξa

falls off slower than α 3 / 2, CN>Na defined by'iV = ξana,N
a = q\ξb fails to be C 1 on

Γ and therefore cannot lead to a Hamiltonian vector field.

Lemmas 1.1 and 1.2 imply that Ψ given by Ψ°{h} = {Ψ°h}{eT/S) is a well-
defined mapping from V to the tangent space T^^ of the reduced space f. We now
ask if this mapping preserves the symplectic structure. One has:

Theorem 1. ώ({h}9{h'}) = 0(φo{h}9ψo{h'}) for all {h} and {W} in V.

Proof. By Lemma 1.1, we can choose from the equivalence classes {h} and {h'}
elements hab and h'ab in V. Let us make such a choice. Then,

ώ(h, h')=3\ sm"oq(hmsVnh'pr - h'msVnhpr)dS«"
Σ

~2)b q\nmsynn pr n msynnpr)b ntU VΣ
Σ

= - i j {hJ?n(h'abq"b) - h"»J?nh'ab + hh'abπ"» - (h~h')}dVΣ,
Σ

where in the last step, we have used the gauge condition habn
b = 0 and h'abn

b = 0.
On the other hand, one has

Ω(Ψ(h), Ψ(h')) Ξ J (aabβ'ab

mnr - *'lΛp
Λ

nm)dSr'
Σ

Γ-i- ^ h' ΠamΠbn ±nab q? (h'cdn \ -4- τrh'ab

Σ
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— _ 1 Γ [1% Cf (h'cdn \ hab (P h' -X-hW rrab

— 2 J 1/*°2- n\ι Hcd) ^ °^ n^ ab ' ^ ^ ab
Σ

Thus6, ώ(h,h') = Ω{Ψ(h\ ψ{h')\ Hence, by Eqs. (4) and (9), we have ώ({h}, {hf}) =
/j}7 Ψ°{ii'}) for all {h} and {A'} in K •

Remarks, (i) Consider the case when (M, gab) admits no Killing field in a
"neighborhood of spatial infinity." Then, the symplectic structure ώ on V is weakly
non-degenerate. From Theorem 1 it now follows that the mapping Ψ must be one
to one. (ii) If we had enlarged V to V' as indicated in the remark following
Lemma 1.2, the mapping ψ would have been an isomorphism between V' and Γ.
Without this enlargement, however, Ψ is only an imbedding of V into Γ.

3.2. Relation Between (V, ώ) and (Γ, Ω)

Let us now make further assumptions on the background space-time {M,gab)\ let
us suppose that ( M , ^ ) is asymptotically flat at null infinity and is free of horizons,
i.e., has the property that the causal past of the future null infinity is all of M. We
shall now show that the natural mapping from V to the tangent space T{D} of Γ
(at the point {D} corresponding to the physical metric gab) sends Ω to ώ.

Fix a conformal completion (M = MvJ,gab = a2gab) of {M9gab) in which J is
divergence-free, i.e., in which α satisfies VαVαα = 0 (<^αV bα = 0). (In this sub-
section, = will denote equality restricted to points of J) Consider a linearized
field hab in V satisfying the Geroch-Xanthopoulos [20] gauge conditions. Thus,
ahab>nabnb> a n d ot~1habn

anb have C 0 0 limits on J and $£nhabq
ab = 0, where na and

qab are respectively the null normal and the degenerate intrinsic metric on J and
qab is any "inverse" of qab. We wish to compute the linearized connection "<>{D}"
induced on J by hab.

Let us first recall how one obtains the equivalence class {D} on J starting
from the space-time metric gab. Given a covector field K6 on J, set DaKb = VαXb,
where Kb is any C00 extension of Kb to a neighbourhood of J in 1VΪ, v ' is the
derivative operator compatible with gab on M and where the arrow stands for
"pull-back to JΓ Since any two C00 extensions, Kb and K'b of Kb are related by
K'b - Kb =fVba + ocVb, where / and Vb admit C00 limit to J, and since α = 0 and
VflVbα = 0, it follows that DaKb is independent of the choice of the extension of Kb.
By requiring that DJ be the gradient of / for all C 1 functions / o n / and that
D be linear and satisfy the Leibnitz rule with respect to outer product, one can
extend the action of Da uniquely to arbitrary tensor fields within J. Thus, D may
be thought of as the pull-back to J of V. It automatically satisfies Eq. (5.a). Under
the permissible conformal rescalings oϊgab9 both V and D change. One is therefore
led to introduce the equivalence relation of Eq. (5.b): Whereas D refers to a specific
conformal completion (M,gab) oi(M,gab\ {D} refers to all permissible completions.
More specifically, {£>} represents the radiative modes of the gravitational field
associated with the physical metric gab. [11]

6 In the light of this result, Lemma 1.2 may seem superfluous. However, it is not: we have not shown
that Ψ is on to
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Let us now consider a one-parameter family of vacuum metrics gab(λ) such that

9ab(ty = ΰab> Λe given background, and —gab(λ)\λ = 0 = hab, the given linearized

metric. Denote by λV the one parameter family of connections associated with7

Qa4J) = QPQJΆ* a n d by λD the corresponding family of connections on J. It is
easy to check that the first order changes in the connections V and D induced by
hab are given by:

and

VbΩ
2had -

(δD)aKb: = —λDaKb\{λ=0) = Um(-2a)hab(gcdVda)Kc = - 2habn
cKc,

where Kb and Kb are, respectively, arbitrary covector fields on M and J, na is the
null normal to J and hab = Lim ahab. It now follows that the tangent vector to Γ at

the point {D}, defined by the linearized perturbation hab is given by8 the trace-free
part oϊhab:

δ{D}^yab = hab-^mnq^qab. (12)

Thus, we have a natural mapping Φ from the subspace V of F, consisting of
linearized solutions satisfying the Geroch-Xanthopoulos gauge, to the tangent
space T{D} of Γ at the point {D}\

<P(hab) = hab-±hmnq™qab. (13)

We can now ask if Φ gives rise to a symplectic structure preserving mapping Φ
from V to Γ. To answer this question, we first establish two results.

Lemma 2.1. Let hab = 2V{aξb) where ξa admits a C00 limit to J. Let, furthermore,
the restriction to J of ξa be tangential to J. Then,

(δD)aKb = - 2h f lχKc = (&pa - Da^ξ)Kb.

Proof. Since hab = ̂ ξgab, one can take for gab(λ) the images of gab under the one
parameter group of diffeomorphisms generated by ξa these metrics automatically

satisfy gab{0) — gab and -ττgab{λ)\λ=0 = hab. With this choice, one has, for all covector
dλ

fields Kb on M,

Hence, using the fact that ξa is tangential to ,/, one has:

(δD)aKb = (jS?^β - $B&ζ)Kb = &ξDaKb -

where Kb is the pull-back to J of Kb. •

7 The dependence of α on λ can be removed by a gauge transformation

8 Recall that a tangent vector on Γ is represented by a symmetric trace-free tensor field

satisfying yabn
b = 0. By Geroch-Xanthopoulos gauge conditions, hαb satisfies habn

b = 0
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Lemma 2.2. Let hab = 2V{aξb) be in V, i.e. satisfy the Geroch-Xanthopoulos gauge
conditions. Let, furthermore, the intersection of the support of ξa with any Cauchy
surface be compact. Then Φ(hab) = 0.

Proof A detailed examination of the procedure by which Geroch and Xanthopou-
los impose their gauge conditions shows that ξa admits a C°° limit to J. Hence
&£* is also C* on f. However, ^ ξg ab = (oc~x ̂  ξa)g\b + a2 ̂  ξg ab = (a~' ^ ξa)g ab,

since a2hab±0. Thus, ^ξa = £mVmα = ξmnm = 0; ξa is tangential to J. Next, the
equation ££ξgab = (α~ 1<&ξat)gab implies that ξ\j is a BMS vector field. The condition
on the support of ξa now yields ξa = 0, whence, by Lemma 2.1, hab = 0. Thus Φ(hab)

Lemma 2.2 implies that Φ naturally defines a mapping Φ from V into the
tangent space T{D} of Γ: Φ({hab}) = Φ(hab), where /zflb is the unique element of {hab}
satisfying the Geroch-Xanthopoulous gauge. The question now is whether Φ
preserves the symplectic structure. We have:

Theorem 2. ώ({h},{h'}) = Ω(Φ{h},Φ{h'}\ provided habe{h} andh'abe{h'} satisfying
the Geroch-Xanthopoulos gauge have the property that hab and h'ab remain bounded
at i±.

Proof

where Σ is any Cauchy surface in (M,gab). Using the fact that εmnp

q = 0ί~2εmnp

q and
hab = ahab, one has:

, {h'}) - 3 j tr^KsWrr - VmsVnK ~ α'HV^^hV

Let us now use a conformal factor such that α = const surfaces are space-like
Cauchy surfaces in a neighborhood of «/. Since the 3-form appearing in the
integrands above is curl-free, we may choose for Σ a surface defined by α = const.
Then, substituting for V in terms of V one obtains

ώ({Λ}, {h'}) = 3f εmnp

qlhm$nh'pr - h<J n \ γ + oΓ ^ ^ ^ ( h ^ h ^ - h m shp α)]rf5^.
Σ

Finally, we replace Σ by J, Using the fact that habn
b = 0 and ifΛ(hα^βft) = 0 one

obtains,

where

y α b ^ ^ - ^ ^ ^ and T U ^ h ' ^ - l h

Thus,

ώ a Λ } , a ° { Λ ' } ) . D
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Remarks, (i) In Sect. 3.1, the restriction to linearized fields hab with compact spatial
support was for convenience only: As noted in the remarks following Lemma 1.2
and Theorem 1, we could have enlarged V to V' without affecting the results and
their proofs in any essential way. The situation is different in Sect. 3.2 because the
Geroch-Xanthopoulos analysis [20] itself has to be extended to incorporate the
linearized fields which fail to have compact spatial support. Because of the curvature
singularity at i°, such an extension would not be straightforward: ahab may not
be smooth on «/ [23]. However, a preliminary investigation into these problems
has shown that the possible loss of differentiability of ahab would not be severe
enough to upset the relation between the symplectic structures ώ and Ω. (ii) The
condition on the behavior at z+ is required in Theorem 2 to ensure that the integral
over a Cauchy surface Σ can be replaced by the one over J + , i.e., that the leakage
through i 1 can be ignored. Although there do exist examples of source-free test
Maxwell fields on asymptotically simple background space-times in which the
corresponding leakages for Maxwell fields cannot be ignored [24], one expects
from the investigations of gravitational geons that for linearized Einstein fields off
vacuum backgrounds, "bound states" would not develop, and hence, that the
assumption is not too restrictive. In particular, one hopes that a large family of
vacuum space-times may exist in which the entire ADM mass is radiated away
by some finite retarded time so that the space-time is flat in a neighborhood of
ί + . Linearized fields off such backgrounds would automatically satisfy the condition
in question, (iii) The results of this subsection shed some light on two issues in
particular. The first concerns the Geroch-Xanthopoulos analysis where the result
that a2hab vanishes on J> came as a surprise: since u2hab is the perturbation of the
rescaled metric gab, the intuitive ideas on stability of J lead one to expect only
that oc2hab would admit smooth limits to J>. From the symplectic viewpoint, on
the other hand, the vanishing at J> of u2hab is essential: For fields which vanish
in a neighborhood of ί*, for example, one can argue, via Theorem 2, that, if oc2hab

admits a smooth limit to </, this limit must be zero. That is, in the light of
Theorem 2, the stronger than expected fall-off of hab is no more a surprise. The
second issue concerns the choice of {D} as the basic variable in the construction
of Γ: Intuitive considerations lead one to think of metrics as the basic variables
in Einstein's theory, rather than connections. The analysis preceding Lemma 2.1
resolves this apparent paradox: since δD = hab, it is the connections on «/ which
are the appropriate analogues of the metrics in space-time.

To conclude this discussion, let us summarize the main results of this section.
Fix a non-compact 3-manifold Σ and consider thereon a pair (qab,p

ab

mnr) which is
asymptotically flat at spatial infinity in a suitable sense and which satisfies the
constraint equations (2.a) and (2.b). Let us assume that the vacuum solution gab

of Einstein's equation obtained by evolving (qab9 p
ab

mnr) is asymptotically flat at
null infinity and free of horizons. Then, for all elements {h} and {hr} of V (which
are well-behaved at Ϊ + /Z~), one has:

where {q,p) in f is the equivalence class of elements in Γ to which (qab, pab

mnr)
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belongs and {D} is the element of Γ singled out by gab.
The key question now is whether or not the assumptions on the solution gab

can be satisfied by a large class of initial data sets (qab, pab

mnr). If such a class were
not to exist, most results from the gravitational radiation theory itself would have
to be regarded as uninteresting. In particular, the phase space (Γ, Ω) would have
very little physical significance at least in classical general relativity and one would
have to make a fresh start all over again. However, if the recent results of
Christodoulou et al [25-27] on the "boost problem" as well as those of Friedrich
[28] on the characteristic initial value problem on J are any indications, such a
prospect seems rather unlikely.
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