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On the Vortex Flow in Bounded Domains
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Abstract. We consider the motion of N vortices in bounded domains in IR2. We
prove that the set of initial positions which lead to a collapse of two or more
vortices has Lebesgue measure zero. We extend this result to the stochastic
motion of the vortices, where the stochasticity comes from a Wiener-noise
term, which is added to the deterministic equation of motion.

1. Introduction

A system of JV vortices (x^D is the position of the z'th vortex and ^ e R i t s vorticity)
in a domain DQJR2 satisfies the following equations of motion

χ.(t) = Z J y j K ( x i ( t ) , x J { t ) ) 9 i = l , . . . , J V , (1.1)

with

K(x,y) = (Vx

1g)(x,y); x,yeD, (1.2)

g being the fundamental solution of the Poisson equation with the appropriate
boundary conditions, V1 = (d2, — δ j , and dk, fc=l,2 is the partial derivative with
respect to the kth component.

The evolution equation (1.1) is equivalent to the Euler equation (except for an
infinity constant due to the self-energy factor) and describes the dynamics of an
incompressible fluid in which the vorticity is sharply concentrated around the
points xv This model was introduced by Kirchhoff [1]. See also [2] for a precise
connection with the Euler equation.

The following three choices of the domain D are of interest for physics.

(i) D = R 2

? i.e. g(x,y)= - —\n(\x-y\).
In
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(ii) D = T2 = [ — L,L]2, i.e. g is the Green's function of the Poisson equation
with periodic boundary conditions.

(iii) D is a bounded domain with smooth boundary, and g is the Green's
function for Dirichlet boundary conditions. In this case the velocity field at the
boundary dD is tangent to dD, i.e. for xt = redD and n(r\ the normal to dD in r,

and this corresponds to the natural boundary conditions for the Euler equation.
Note that Eq. (1.1) has a hamiltonian structure in which the conjugate

variables are the coordinates of the vortice's positions. Hence the following
functions.

H=Yγiyjg{xi,xj) (energy), (1.3)

N
M = Σ y&i (baricenter), (1.4)

i = 1

N

/= Σ 7ixf (moment of inertia) (1.5)

are formal constants of the motion.
The typical logarithmic divergence of g makes the construction of a flow

satisfying (1.1) problematic. In the case in which y > 0 for all z, it is easily seen that
the above first integrals preclude the development of singularities for the
solutions, but in general collapses between vortices do appear for suitable initial
conditions [3].

In this paper we prove that if D is bounded [i.e. in cases (ii) and (iii)] the
probability (with respect to the normalized Lebesgue measure on D) of finding
collapses of two or more vortices in a finite amount of time is zero. Denoting by
"ε-collapse" the event in which two or more vortices are closer than ε, we prove
that the probability of an ε-collapse goes to zero as ε goes to zero. This implies
then the existence of an almost everywhere defined global flow satisfying (1.1).

The problem of constructing a flow defined almost everywhere for singular
vector fields is treated in [4] in a general setup. Unfortunately these results (also
valid only if the set of the singularities is compact) do not apply to the case
considered here, because our vector field is only L2_ε locally.

The method presented here depends crucially on cancellations which are
particular to our model.

The second problem we consider is the existence and uniqueness of the
diffusion process in T2 governed by a stochastic differential equation with a drift
term given by the right hand side of (1.1) and a diffusion constant β. This process is
physically interesting because of its connection to the Navier Stokes equation [2].
We only consider periodic boundary conditions. The consideration of bounded
domains D with physical boundaries is more complicated: One has to describe the
production of vorticity on the boundary which is necessary to restore the right
boundary conditions for a viscous fluid, i.e. for xt = redD,
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This case, as well as the case where the domain D is unbounded (both for the
deterministic and stochastic dynamics), seem to be more involved and presumably
require different techniques than the ones used in this paper.

2. Deterministic Evolution

Let us consider a two dimensional flat torus T 2 = [ —L,L] 2 , L > 0 , and the
evolution equation (1.1) with Green's function g belonging to periodic boundary
conditions, i.e.

1

fcΦO

Remark. We note that in the case D = T2 a correct fluid dynamical interpretation
N

would assume ^ yί=V = 0. V is the total vorticity of the fluid and since the
i = l

velocity field is periodic, V has to be zero by the circulation theorem. The
condition V=0 combined with the incompressibility hypothesis and the con-
tinuity equation allows reconstruction of the velocity field from the vorticity field
(up to a constant field determined by the initial conditions). This also shows the
formal analogy between the Euler equation and the initial value problem (1.1).
Nevertheless beyond the physical interpretation the evolution problem (1.1) in T2

makes sense also when FφO. We consider this more general case.
Let gε be any C 2(R 2 x R 2) periodic and symmetric function (of periodicity 2L)

such that for any ε > 0

gε(χ,y)=g(χ,y) if \χ-y\>*,

\r{)\^\rA)\^

for some constant C > 0 and define

Kε=VLgε. (2.2)

Let T2N3x-+xε(t) = Sε

txe T2N be the solution of the following initial value problem

m= Σ yj

xB

i(0) = x i ; i = l , . . . , N 9 ( 2 . 3 )

x = (xl9...9xN); x\t) = (x[(tl...,xE

N(t)).

Since Kε is periodic the flow Sε

tx = x\t) is well defined in T2 and V Kε = 0 ensures
the conservation of the Lebesgue measure on T2.

For (1.1) we can define a local flow St up to the time of the first collision of two
or more vortices. We denote by λ the normalized Lebesgue measure on T 2 N, i.e.
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λ(dx) = (2L)~Ndxί ...dxN. We define the collision time τ as

τ(x) = sup{ί|Sfx£iV0}, if xφN0,
(2.4)

= 0, if xeN0,

where N0 = {x\xi = xj for some i=K/} We write for ί^τ(x) Stx = (x1(t), ...,xN(ή).
The following theorem says that the set of initial conditions which lead to
collisions between vortices (collapses) has Lebesgue measure zero.

Theorem 2.1. For any T > 0 there exists a set NTCT2N such that

λ(Nτ) = 0, (2.5)

δ(x) = min(τ(x), T) = T if xe T2N\NT. (2.6)

Moreover let

d Γ ( x ) = m i n inf |x (ί) —χ.(ί) | ,
iΦj ί6[0,Γ]

then for 0 < ε < 1

λ({x\dτ(x) < ε}) S j (2.7)

for some constant Λ>0.

Proof. We set

τε(x) = min sup {t\ |x£(ί) - x ,(ί)| > ε i φj},

(2.8)
= 0, if |x — Xj\^s for some i+j\

and

δE(x) = min(T5 τ (x)). (2.9)

Clearly

limδe(x) = δ(x). (2.10)
ε->0

Note that for t^δε(x)

cε __ γε('Λ == ̂  Y ̂  vff) f9 1 1)

Set

<PM= Σ ^ i ' ^ j ) (2 1 2 )

and define

<p(S ίWx)=liminf(S ίβ(jc)x). (2.13)
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Then by Fatou's lemma and with φ = — φ

μ(dx)\φ(Sδ{x)x)\^λ(dx)\φ(x)\+μ(dx)lϊmmΐ J* dt\φ(Stx)\

ε->0 o

δε(x)

^Sλ(dx)\φ(x)\+limmϊSλ(dx) J dt\φ(St(x)\. (2.14)
ε->0 o

But for t^δε{x) we obtain in view of (1.1), (1.2), and (2.12)

φ(Stx)=yφ(x(t))= Σ (Kkit)φMt))'Xk(t)
at k=ί

= Σ Σ(Kkwβ(χi(tlχj(t)))- Σ y,κ(χk(t),χι(t))
k = 1 i < j 1=1

IΦk

= Σ Σ (r^x&ujm Σ y^φkitum)
k=l 7 = 1 1=1

jφfc IΦk
N N N

k=l j=l 1=1
j + k /ΦΛ;

where we used that

^t)g(xάt),x0)) = O, if j=ί. (2.15)

Thus by virtue of (2.1) for t^δε(x) and some constant C

/Φfc

Remark. Note that because of the cancellation (2.15) we find the bound (2.16) with
the function heL^T^^idx)).

We now employ (2.11) to obtain for tSδε(x) from (2.16)

)• (2.17)

Inserting this in (2.14) yields

δε(x)

μ(dx)\φ(Sδ(X)x)\^μ(dx)\φ(x)\ + liminϊμ(dx) \ dth(Sε

tx).

Observe that
δε(x) T

f dth{Sεx)^ \dth{Sεx)
0 0
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to conclude with Fubini's theorem and the fact that Sε is measure-preserving

T

μ(dx)\φ(Sδ{x)x)\ ^\λ{dx)\φ{x)\ + liminf j dt\ λ{dx)h{Sεx)
0

^\λ{dx)\φ(x)\+\dt\λ{dx)h{x)
0

= λ(\φ\)+Tλ(h).

Since /i£L1(Γ2iV

5A) we conclude that there exists a A-null set Nτ such that for all
xe T2N\NT, δ(x) = T and for tS T

\φ(Stx)\<ao. (2.18)

This proves the first part of Theorem 2.1. Inequality (2.7) is now a consequence of
the estimates

λ({x\dτ(x)<ε})Sλίίx sup φ(Stx)>-lnε\), (2.19)

and

Jλ(dx) sup \φ(Stx)\SA{l + T), (2.20)

which is obtained by essentially repeating the above steps, but using the fact that
Sv0^t^T, is measure-preserving. This follows from the previous part. Then (2.7)
is Chebychev's inequality.

As a corollary of the above theorem we have

Theorem 2.2. There exists a set M C T2N such that λ(M) = 0 and a one parameter
group of λ-preservίng transformations St:T

2N\M-^T2N\M satisfying (1.1).
Moreover if xφM, Stx is the only solution of (1.1).

00

Proof Obviously Theorem 2.1 holds replacing T by —T. Defining M= [J Nn
__ n— — oo

we have λ(M) = 0. The flow St restricted to T2N\M has all the desired properties.
Furthermore for any xφM and T > 0 there exists an ε > 0 such that Stx = Sε

tx if
ttkT. Let Stx be another solution of (1.1). Then there exists a first time 0 < ? < T
such that

for some i φ j ; otherwise Stx = Sε

tx = Stx for all t^T. But for t<t

\Stxt - StXj\ > ε

for all i φj, and thus Stx = Sεx = Stx which extends to all t ^ T by the uniqueness of
the solution Sεx.

The same result can be proved with minor modifications for the case of a
bounded domain D with smooth boundary dD: The Green's function g is a
fundamental solution of the Poisson equation with zero boundary conditions, and
the local divergence of g is the same as for the Green's function corresponding to
periodic boundary conditions and thus our analysis applies for this case.
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Our proof certainly fails in the case of an unbounded domain. However using
compactness methods one can define a global flow satisfying a weak form of
Eq. (1.1). But this is not very satisfactory since one does not know whether
collapses may be excluded with probability one.

3. Stochastic Evolution

In this section we establish the existence and uniqueness of the solution of the
system of stochastic differential equations

j j β>0, iJ=l,...,N (3.1)
j=ί

for /Ualmost all initial conditions x = (xv ...,xN)eT2N.
Here W^t), i = 1,..., N denote mutually independent standard two dimensional

Brownian motions, defined on some probability space (Ω, #", P). As above, K(x, y)
denotes the vector, field on the torus T2 defined in (1.2) by means of the Green's
function g with periodic boundary conditions. Since the Wiener process on the
torus is the standard Wiener process (Brownian motion) modulus T2, a solution of
(3.1) describes a process with continuous trajectories on the torus. As in the
previous section we introduce the ε-dynamics

dxεi(t) = Σ yjKMtl φ)dt + βdWJtt), (3.2)
i=i

where Kε is defined by (2.1) and (2.2). For all ε>0, KεeC\T2) and hence there
exists a unique diffusion process denoted by xε(t, x) = (x\(t, x),..., xε

N(t, x)) starting
almost surely from xeT2N at time zero and governed by (3.2).

Let St be the Markov semigroup associated to this process, i.e. for feLγ(T2T1)

(Se

tf)(x) = E(f{At,x))), (3.3)

where E denotes the expectation with respect to (Ω, #", P).
The following lemma states the conservation of the Lebesgue measure under

the action of St.

Lemma 3.1. Let feC2(T2N). Then for any ε > 0

μ(dx)(SEJ)(x) = λ(f). (3.4)

Proof. The generator of Sε

t is

By direct computation one proves that

jtS%dx)(S'tf)(x) = 09 for all feC2(T2N). Q
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Let τ and δ be defined as in (2.4), (2.6). Note that they are random variables on
T2N x Ω. For t< δ there exists an unique solution of (3.1) with initial value x which
we denote by x(t9 x), t ̂  t.

As before we want to prove

Theorem 3.1. For any T>0, δ = T λxPa.e .

Proof. Let φ be defined as in (2.12). Using (3.1) we write down the stochastic
differential of φ:

dφ(t) = φ(t)dt+ Σ ViΨ'dWlt). (3.5)
ί= 1

The following argument is adapted from McKean [5] (Sect. 2.5 and Problem 7).
Note that for all xeT2N and t^t

) (3.6)

Then with

we have that

o'

t N

\i-ί

(0-mir

\ 2

){s)\ ds<oo

i(s^O\Φ(s)-ι

Pa.e.

Φ~ι(t) N

= J Σ Viψ dWls) (3.7)
O i = l

is a one dimensional Brownian motion up to Φ(δ)^ oo (see [5], p. 29). Hence from
(3.5) we obtain in the sense of (2.13)

φ{δ) =]φdt + B{Φ(δ)) + φ{0). (3.8)
o

Suppose we show

φ(0)+] dtφ <oo λ x Pa.e. (3.9)

o

Then iϊδ<T limφ(t) = oo and hence limB(Φ(t)) = oo, which is impossible for B(t)

being a Brownian motion in either of the cases lim Φ(t) = co or lim Φ(t)< oo.

Thus it remains to establish (3.9), which is a consequence of the deterministic
analogue. Defining τε and c)ε as in (2.8) and (2.9), we may proceed as in the
deterministic case, replacing λ by λ x P and using Lemma 3.1 to obtain

δ(x,ω)

\λ{dx)\P{dω) j dt\φ{x{t,x,ω))\
o

δε(x,ω)

S lim inf\λ(dx)[P{dω) j dt\φ(x(t,x,ω))\STλ(h)<(X), (3.10)

where h is defined as in (2.16).
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In complete analogy to the deterministic case one has the following corollary:

Theorem 3.2. For λ-almost all xeT2N, there exists an unique solution x(t9x)
= (x1(t,x, ...,xN(t,x)), xi(t,x)ef2, starting from xef2N, of the stochastic dif-
ferential equation (3.1).

Remark. The above result is still valid if the initial value xe T2N is 2-absolutely
continuously distributed with a bounded density ρ.
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