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Abstract. We define and analyze the rotation number for the almost periodic
-d2

Schrόdinger operator L = —^ + q(x). We use the rotation number to discuss (i)

the spectrum of L\ (ii) its relation to the Korteweg-de Vries equation.

1. Introduction

Almost Periodic Potentials

The spectral theory for second order differential operators

2 ' *z w / v — '"V V l U

on the x-axis (— oo, oo) is well understood, having been developed by H. Weyl in
1910. In particular, if q(x) is bounded (which is the case when q(x) is almost
periodic), then one has the limitpoint case at oo and at — oo. The nature of the
spectrum σ (L), however, is not as well understood; it depends rather subtly on the
asymptotic behavior of q (x) for large \x\. For periodic potentials q (x)-m this case
one speaks of the "Hill's equation" - it is well known that the spectrum is
continuous and consists of finitely or infinitely many intervals, the so-called band
spectrum. These facts can be deduced from the Floquet theory, which describes the
behavior of the solutions of any system with periodic coefficients.

We are interested in the case of almost periodic potentials in the sense of H.
Bohr. In this case there is no such elementary Floquet theory, and little is known
about the nature of the spectrum. It certainly can have features which do not occur
in the periodic case; for example, one can have point eigenvalues, and one can have
nowhere dense spectrum (see [17]).
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Definition of Rotation Number

It is our aim to introduce a function α = α (A) - "the rotation number" - which is
motivated by Floquet theory, and which allows the determination of the essential
spectrum of L. The definition of the rotation number is simple enough: if φ
= φ (x, A) is any non-zero solution of (1.1), then φ' + iφ does not vanish for any x,
and we can consider its argument arg(φ' + /φ), which is defined mod2π. For any
real A, we define

1

JC-» + CO X

We will show that this limit exists, is independent of the particular solution chosen,
and defines a continuous function on the real A-axis. Since α(A) measures the
average increase of the angle in the φ'-φ-plane, we call α(A) the rotation number.
We will also show that, if α — α (A, q) is considered as a functional of q, then α is
continuous with respect to uniform variation of q.

There are other ways of introducing the rotation number. For example,

1

x-> - oo X

agrees with α(A), as we will see. More generally,

α(λ) = lim arg(φ' + iφ) \* = b

a. (1.3)
i*-αi-»oo b — a

Also, if N(a, b\ A) denotes the number of zeroes of φ (x; A) in [a, b]9 then

—-—^— »α(A) asZ? — a-+co. (1-4)

We can relate this last statement to the (regular) eigenvalue problem

— φ'fjrqφ = λφ on a^x^b',

In fact, it follows from Sturm's comparison theorem that the number v (α, b\ λ) of
eigenvalues λj ^ λ differs from N(α,b\λ) by ±1, so that

v(α,b 9 λ ) α(A
as b — α -> oo.

> — α

This limit is often called the "density of states" we will see that it agrees with α (λ)/π.
Finally, we give a description of α in terms of a complex solution ψ (x; λ) for real

λ. In this case, ψ (x; λ) is also a solution, and the Wronskian

is a constant. If Im [ψ, ψ] < 0, then ψ has no zero, and

8|6-βHoo. (1.5)

It will be easy to show the equivalence of these various definitions of α(A).
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Facts about Almost Periodic Functions

With any continuous almost periodic function q (x), one can associate a mean value

and a Fourier series

where the frequencies λv are the (denumerably many) values of λ for which
Mx(qe~ίλx)ήzQ. The frequency-module is the set

(1.6)

of finite integer combinations of these frequencies. It will be useful to consider the
set A = A (J?) of all almost periodic functions with frequency module contained in
Jt. It is closed in the uniform topology, it is separable (in contrast to the space of all
almost periodic functions), and it is an algebra: if/, geA (Jt), then/ g is also in

The Rotation Number for Complex λ

It turns out that α (λ) can be extended to a function continuous for Im λ ̂  0 and
harmonic for I m A > 0 ; one thus has a natural notion of rotation number for
complex λ. The simplest definition is based on (1.5): we consider any solution
ψ = ψ(χ-,λ) of (1.1) for which

Im [ψ, ψ] < 0 f o r x = 0.

Then one finds that this inequality holds also for x > 0 (note that this Wronskian is
not a constant, since ψ is not a solution of (1.1)), and therefore ψ (x; λ) has no zero
for x ̂  0. Then

lim--argι//(*;l) (1.7)
;c-» oo X

exists, and is the desired rotation number. It is harmonic in the upper half 1-plane,
and is there the imaginary part of a holomorphic function w (λ) which, it happens,
can be defined in an entirely different way.

For this purpose we consider the resolvent

Λz = (L-z)"1 (Imz>0),

where we write z in place of λ; it is an integral operator with kernel (Green's
function) G(x, y; z). For fixed z with Imz > 0, the Green's function is never zero,
and G(x,x', z) is an almost periodic function with frequency module contained in

(G. Scharf [23]). The same is true of G ~ l (x, x\ z), and we define

(1 8>
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Then w (z) is holomorphic for Im z φ 0, and Im w (z) agrees with the limit in (1 .7) if
Im z > 0. Thus α (λ) (λ real) may be viewed as the boundary value of the harmonic
function Imw(z):

Imw(z)^α(λ)asz->λ(lmz>0, λelR). (1.9)

From the standard formula for holomorphic functions with positive imaginary
part, we have

"<*>-»<*>- f - - <'•"»-oo

We remark that Rew(z) has also geometric significance: it measures the
exponential rate of decay of solutions of (1.1) which are in L2(0, oo). We will not
study Rew(z) in any detail in this paper.

Relation to the Spectral Resolution

The rotation number α (λ) has a close relation to the spectral resolution. To clarify
it, we consider the resolvent RZ = (L — z)"1 and its kernel G(x,y;z). In analogy
with the standard definition of a trace (which clearly does not exist, since Rz is not
compact), we define

τ(Rx) = Mx(G(x9x9zJ)9 (1.12)

which is holomorphic on the resolvent set. Similarly we define the "trace" of the
spectral resolution Eλ with kernel e(x9y, λ) by

τ(Eλ) = Mx(e(x,x;λy). (1.13)

(As we will see, care must be taken in interpreting the right-hand side of (1.13)). We
will show that

τ(£λ) = iα(λ) (1.14)

agrees with the density of states. This implies, in particular, that α is constant in any
interval in the complement of the spectrum. Moreover, the monotone function α (λ)
is constant precisely on the complement of the spectrum, and, in fact, if 7 is an
interval in the resolvent set, then

2a(λ)eJΐ(q) for λel. (1.15)

That is, the real intervals in the resolvent set (the gaps) can be labelled by the
nonnegative values ^jvλv in Jί(q). This basic fact will be proven in Sect. 4, see
Theorem 4.7.
The formulae (1.12), (1.13) can be extended to operators

f(L)=+ff(λ)dEλ
— oo

defined through the usual functional calculus. Here f(λ) is continuous and
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bounded. If even /(A) (1 -f A2) is bounded, then (1.13) leads to

For example, the trace of the fundamental solution of the parabolic differential
equation ut = Lu is given by

-

This is related by the Laplace transform to w'(z) = τ (Rz).
If f ( z ) is rational and 0 at z = oo one can define f(L) via the Cauchy integral

.

where the integration is taken over an appropriate path. Then (1.12) leads to

with w defined by (1.8). Both formulae for τ(/(L)) are, of course, equivalent.

Eigenvalue Problem on the Half Line

In addition to the operator L, given by (1.1), on the whole real axis, it is interesting
to consider the operators L+, L~ on the half axis [0, oo) or (— oo, 0], respectively,
with boundary condition φ(0) = 0. It is known (see G. Scharf [23]) that their
esential spectra agree,

tfess (L + ) = σess (L " ) = ^ess (L) ,

and, moreover, that

while L + , L~ may have point eigenvalues in the complement of σ(L).
The spectrum of L is generally double but that of L + , L ~ is always simple and is

determined from the density function ρ0(λ) which we introduce now. We consider
the eigenvalue problem

L + \ l / ( x ; z } = zψ(x;z); ι//(0;z) = 0; ^eL2(0, oo). (1.16)

If Im z > 0, then Lψ — zψ has a solution ψ + (x; z) in L2 (0, oo), unique up to constant
multiple (since we are in the limit-point case). Define

Then, for fixed x,m(x; z) is holomorphic in Im z > 0, with positive imaginary part.
As is well-known, there is a non-decreasing "spectral function" ρx(t) such that

Im/w(jc;z)= f Im%^;
— m I Z
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to make ρx unique, we require that ρx be right-continuous with ρx(0) = 0. We will
show that

w(z)=lim-]m(t;z)dt (Imz>0). (1.17)
X-» 00 X Q

We then prove that the measures {dρx \ x e IR} form an almost-periodic family of
measures in an appropriate sense, and that

lim - ] (dρs) ds = a (λ) dλ. (1.18)
x-» oo X o

α and w as Functίonals

Actually α = α(Λ;#) and w = w(z',q) can be viewed as functionals of q\ more
precisely they depend on λ — q and z — q, respectively. We will show that, if Im z = 0
and /?(•) is almost periodic with Jί(p)^Jί(q), then

~w(z,q + εp}\ε = 0= -Mx(G(x,x,z)p(x)),

which we write also as

^-=-G(x,x;z). (1.19)
δq

For p = — 1 we obtain

;;z)) = τ(Λ z), (1.20)

which shows that — — = w'(z g) is holomorphic on the resolvent set.

However, w is not 1 -valued on the resolvent set: if /is a spectral gap and λ e /, we
have

[w]= lim (w(λ + iε'9q) — w(λ — iε',qy)

Thus dw can be viewed as a differential on the resolvent set, and the values
2ια = i £ jv λv as periods of the differential.

V

Finally, we show that for any two values z l 3 z2, Imzy Φ 0, one has the identity

\ δq dx δq

where Wj = w (z7 ; q). If one interprets the left-hand side of (1.21) as a Poisson bracket
{w1? w2}, as is customary in the recent theory of the Korteweg-de Vries equation,
then we can say that the functionals wl = w(z1;q) and w2 = w(z2;q) are in
involution. Moreover, if q is C00, then the asymptotic behavior of w(z\q) for
z -> — oo is given by

f 00 "^

(1.22)
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where

and the JP are polynomials in q, q' , . . . . They are the densities in the familiar
conservation laws of the Korteweg-de Vries equation. That they are in involution in
the above sense follows from (1.21).

We will prove all these statements. The main burden will be the proof of the
existence and continuity of the rotation number α (A), which requires tools of
ergodic theory. This and the result (1.15) about 2α lying in the frequency module
Ji(q) for λ in a spectral gap will be proven in Sect. 4. The extension of the rotation
number to complex λ is discussed in Sect. 5. In Sect. 6 and 7 we derive properties of
the rotation number as functional of q and establish a connection with the
Korteweg-de Vries equation. These ideas are related to the work of Dubrovin-
Matveev-Novikov [7], P.D. Lax [13] and McKean-van Moerbeke-Trubowitz
[14, 15]. In Sect. 8 we discuss the relation to the work of Sacker and Sell, give an
example of a quasi-periodic potential with a point eigenvalue, and mention some
open problems.

Many of the properties of the rotation number derived here for almost periodic
q (x) are similar in nature as in the case of random potentials. In that theory (see
Pastur [11,19]) one derives "almost everywhere" statements about the existence
and continuity of the density of states showing the close analogy to the present
work, where exceptional sets of measure zero do not intervene. We also want to
point out the close relation to the work of S. Schwartzman [25] on "asymptotic
cycles," especially to Theorem 4.7.

2. The Hull of an Almost Periodic Function

In the previous section, we introduced the frequency module ^(/) of an almost
periodic function /, and the set A — A (Jέ) of all almost periodic function with
frequency module contained in Jt. It is possible to identify A(Jί) with the space of
continuous functions C(E) on a compact abelian topological group E, where Emay
be chosen as the "hull" (see below) of the function /.

I f / i s any almost periodic function, we define the hull E= E ( f ) = closure
{ft(x)= f(x+i) |ίelR}, the closure taken in the uniform topology. This is a
compact topological space. We will denote its elements by ξ, and the evaluation at a
point x0 by ξ (x0). Obviously/itself belongs to £and will be denoted by ξ0. Clearly,
if geE = E ( f ) then E(g) = E ( f ) , and E can be generated by any of its elements.

The translation f ( x ) -+f(x -f ί) gives rise to a flow ξ -> ξ - t on E; i.e., ί f ξ e E , x,
t e IR, we define (ξ t) (x) = ξ (x + /). It is well known that we may use this flow to
give E the structure of a compact Abelian group with identity ξQ: if

ξ1 = \im ξ0 tn, ξ2 = \im ξ0 sn
κ-» oo n-» co

are elements of E, then we define the product
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This limit is well defined and the product obviously commutative. Moreover,

and ξQ is the identity element of this group. Note that we may view the reals JRas an
embedded dense subgroup of E if we identify /eIR with ξ0 - teE.

We need a characterization of almost periodic functions in A (Jt}> due to S.
Bochner (see, e.g., [8]).

Proposition 2.1. Let f have frequency module Jt. A continuous function g on 1R
belongs to A ( J P ) provided the following condition holds: For any sequence tnfor
which f(x + tn)=ftn(x) converges uniformly, also g(xj^-tn) = gtπ(x) converges
uniformly.

Remark. It is clear that lim gta = gis determined by lim f(n =/, and is independent
n-» oo " «-» oo

of the choice of the sequence. Otherwise, if t'n is another sequence with /,;-»/, but
gtn-*h ή=g, then the mixed sequence tί9 1{, t2, . . . would contradict the hyperthesis.

For the concept of frequency module and Proposition 2.1 see, for example, Fink
[8], Theorem 4, 5, p. 61.

Now let /be almost periodic, J?= Jt(f) its frequency module and A = A (Jt)
defined as above. We will define a mapping o f A ( J £ ) into C(E\ where E= E(f)
is the hull of/. Let geA(Jt) and ξeE be given, where ξ is represented by
lim ftn= lim ξ0 tn. Then Hm gtπ = g converges uniformly, according to
n-»oo H-»OO ίπ~*°°

Proposition 2.1, and we associate with g the continuous function GεC(E) by

In particular, with g=/we associate

F(ξ)

Taking (tn) = (x) we obtain the relation

which shows that g can be recovered from G. One verifies that this mapping
A (Jί) -> C (E) is actually a homeomorphism with respect to the natural topologies,
and therefore they are both function algebras:

Proposition 2.2. A(J£) and C(E} are ίsomorphic as Banach algebras.
The Haar measure of the compact Abelian group E will be denoted by μ.

Alternately a measure v is defined on E by the mean value of g(x) = G(ξ0- x):

X-» OO X

These two measures agree, which shows that μ is invariant under the flow ξ -> ξ t
and, moreover, is an ergodic measure. In fact, μ is the only invariant measure under
this flow.

In the following we will frequently use the above extension of an almost
periodic function / to FeC(E) on its hull. We assume that q is the given almost
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periodic potential; Jί=Jί(q\ E — E(q) its frequency module and hull, re-
spectively. According to the above discussion, q (x) will be extended to a function
QeC(E), and we will often consider the family of differential operators

in a dense subspace of L2(1R). For ξ = ξ0 this reduces to the given one. If
ξ = lim ξ0 tn9 we can define L(ξ) also by

«-» oo

L(0 = l imΓ< L(QΓ-< , (2.4)
n-> oo

where Ttf=f(x+t) is the translation operator. Since T is unitary in L 2 (— oo,
+ 00) it follows from this representation that the essential spectrum <τess(L(ξ)) is
independent of ξ [23].

We illustrate the construction of the hull E and of C(E) with two simple
examples: if ω1? ω2 Φ 0 are two real numbers, ω1/ω2 irrational and

q (x) = Cl e
iωιχ + c2 e

iω**\ cί c2 φ 0,

then E is a torus T2. If ξ — (ξ l5 £2) are taken mod2π as variables on T2 we find

This follows from Kronecker's Theorem that the line (ω1 t, ω2 f) is dense on T2. For
any continuous function G(ξί9 ξ2} of period 2π in ξl9 ξ2, we find for

a quasi-periodic function with basic frequencies ω l 5 ω2.
For the example

GO 00

q(χ)= Σ cX2"*, Σ k v l < o o , ^ V Φ O ,
v = 0 0

the space E= E(q) is more complicated; it is a so-called solenoid.
We need a sharpened version of a theorem by H. Bohr according to which a

complex-valued almost periodic function /(x) φ 0 for which l/f(x) is bounded can
be represented in the form

f(χ)=\f(χ)\eW
χ+*W (2.5)

with almost periodic functions |/(x)|, ψ(x) and a real constant β given by

= lim - a r g - - lim i } Im^ (ί) ώ. (2.6)
-x-*oo X o /

In fact this factorization can be made within A(Jί\.

Theorem 2.7. If feA(Jt), f~1(x) bounded, then f can be represented in the form
(2.5) where

I/I, ψ, e^e

hence βεJί.
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The proof is readily reduced to the case |/| — 1, and in this case it is found in [8],
Lemma 6.7, p. 104.

Corollary. Iff, /' = — e^ί(^), and if any fin the hull E (/) has only simple zeroes,

then the number N(x) of zeroes of f ( t ) in [0,x] satisfies

Γ πN(x)
lim - eJί.

Λ:-> oo X

Proof. We form the complex-valued function

g=f'+if,

which also belongs toA(Jΐ) and does not vanish. The same holds for its extension
to C(E). Therefore g~l is bounded, and by Theorem 2.7

> p e <M .

On the other hand g is real precisely at the zeroes of/, and at such a zero

— argg(x) = Im — =1.

Therefore if argg increases by π, one has exactly one zero of/, i.e.

< π.

This proves the corollary.

3. ZΛSolutions and Green's Function

We assume that q is a real, continuous, almost periodic function with frequency
module Jt, and study the solutions of the differential equation

φ" = (q(x)-z)φ (3.1)

for z complex or real. According to our discussions in the previous sections we will
extend q to a continuous function Q : E-* IR on the hull E of q, and consider the
family of differential equations

φ" = (Q(ξ x)-z)φ, (3.2)

which for ξ — ξ0 agree with (3.1).
Since q is bounded, these equations possess up to a factor at most one solution

in L2 (0, oo). From the spectral theory of these differential equations it is known that
for Im z φ 0, or even if z belongs to the resolvent set of L, (3.1) has such a solution in
L2(0, oo) and we denote it by ψ + (x, z) φ 0. Similarly ψ-(x, z) stands for a solution
of (3.1) in L2 ( — oo, 0). These solutions are linearly independent, if z in the resolvent
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set, and the Green's function G(x9y9z)9 i.e. the kernel of (L —z)"1, is given by

" 7 j γ ^> Ί;

" }~ [Ψ + ,Ψ-] ' = ̂

where [ψ + 9 ψ _ ] is the Wronskian.
For Im z φ 0 the solutions ψ + ,ψ_ have no zeroes. Indeed, if ψ + (xθ9 z) — 0, then

z would be an eigenvalue of the selfadjoint eigenvalue problem (3.1) in [xθ9 oo) with
boundary condition φ = 0 at x = xθ9 and z would have to be real.

Since ψ + 9 (//_ are unique only up to a factor, it is natural to consider their
logarithmic derivatives

(x z) = ^+ (*>z) _ Ψ-

which are uniquely determined.

Proposition 3.3. m + ,m_eA (Jt)for Im z φ 0, and their extensions M+ = M+ (ξ, z),
M_ = M_ (ξ, z) to E are given by

ifψ±(x;ξ,z) are the L2 -solutions corresponding to (3.2).

Proof. According to Proposition 2.1, we have to show that m+(x+tn) converges
uniformly for any sequence for which q (x + ίπ) does. For this purpose we denote by

the uniquely determined L2 -solution satisfying

oo

l\ψn\
2dx = l; ^(0)>0.

0

Using the differential equation which ψn satisfies we see that

and by Rellich's Lemma ψn has a subsequence converging in H 1 (0, oo) as well as in

C1 [0, oo). Let ψ* be the limit of the subsequence and q* = lim q(x+ tn)ι then ψ*
«-» 00

satisfies the differential equation ψ*"= (q* — z)ψ* as well as the normalizations

00

J \ψ*\2dx = ί ; ι//*(0)>0,
o

by which ψ* is uniquely fixed. Therefore it was unnecessary to select a subsequence
and ψn tends uniformly to ψ*9 and
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With Proposition 2.1 this proves Proposition 3. 3.
By the same argument we see that for fixed s also

x+s (3.4)
ι// + Oc, z) ι// _ (x. z) d

belong to A (Jί) and can be extended to C(E). For G (x, x; z) this also holds for real
z in the resolvent set. The above argument is due to Scharf [23] who proved
G (x, x;z)eA (Jί). We will denote the extension of G (x, x\ z) to C (E) by Γ (ξ, z) so

that G(x,x;z) = Γ(ξ0 •*,*)•
We need a standard identity for ψ + ,ψ_. For any solution of (3.1) the

Wronskian [φ, φ] = φφ' — φ'φ satisfies the differential equation

For φ = ψ+ one has [ψ + , ψ + ] -> 0 for x -> + oo , Im z φ 0, and therefore the identity

00

[\l/ + 9ψ + ]= -(z-z) J |ι//+ |2^.
x

(See, for example, Coddington-Levinson, Chap. 9, Sect. 2.) For Imz > 0 we write
this in the form

and similarly

lmm_= -

(3.5)

Moreover, since Im m± can be extended to ImM± on the compact hull with

ImM + >0>ImM_ for Imz>0,

we conclude that there exists a positive constant δ = δ (z) with

ImM+? -1

in particular, Im m± are bounded away from 0.
The Green's functions on the diagonal x = y can be expressed in terms of m +,

m_ since

Hence

X X - , . - - . ί - X 1 \ * /
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Moreover,

Im G (x, x; z) = ~*^m l^^Γ + > 0. (3.6')

In the following the mean values of ra + , m_ will play a basic role:

Proposition 3.7. For Im z φ 0 we have

Mx(m+) = —Mx(m_) = l\ά
2G(x,x;z)J'

or equίυalently

JM + φ=-JM_φ=-J-ί-φ.
E E E ΔL

This quantity will be denoted by w — w(z).

Proof. By (3.6) we have

1

hence

and it suffices to show that Mx(m_)J

ΓMx(m+) — 0. For this purpose note that

(ψ-ψ+y d d
- + -

Since G (x, x; z) is almost periodic and Im G (x, x; z) bounded away from zero, so is
logG(X x z) bounded and

This proves Proposition 3.7.
The function w = w(z) defined in Proposition 3.7 is holomorphic for Imz φ 0

and satisfies

, R e w < 0 . (3.8)
Imz

The first of these inequalities follows from (3.6'), the second from the representation

(3.9)

Since ψ+ eL2(0, oo), one has

1 X

Γhm — Rera, at =
x-»+oo X o

and by the maximum principle for harmonic functions Re w < 0.
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Every positive harmonic function h (z) in Im z > 0 can be represented in the
form

(3.10)
\ -c

where ρ is monotone increasing and c ̂  0 a constant. Moreover,

-Q(*>i)= lim -
ε-» + oo 71

,. A('c = hm —
ί-» 00

where the first relation holds at all points λί9 λ2 of continuity of ρ.
We apply this representation to the function ImM+(ξ,z) and denote the

corresponding density and constant by ρ±(ξ,t), c±. From standard asymptotic
estimates of the solutions one sees that c+ = c_ = 0 (see [10]).

Proposition 3.11. Let μ be the normalized Haar measure on E and λl9 λ2 two real
numbers. Then, for almost all ξ eE, the function ρ+(ξ, λ) is continuous at λl and λ2,
and the relation

(ϊ 3 Λ ,* , Λ Γ 1 \2

ρ+(ς,/t 2) — ρ+(ς, ΛI) = lim — J
ε^ + o π λ

holds; the convergence is bounded in ξ.

Proof. Write ρ = ρ +. Since

and since ImM+ (ξ, ί) is continuous on E, this quantity is bounded on E, hence

with K independent of ξ. We note the continuity of M+(ξ,λ) in ξ and λ\ using
Kelly's theorem we see that for any real continuous function/: !R-> IR with compact
support the mapping

is continuous. Taking for f ( λ ) the characteristic function of an interval shrinking to
a point λ0 we see that the mapping

is a μ measurable and bounded function on E. By Birkhoff s ergodic theorem

-]H(ξ f)dt-+$Hdμ
X 0 E
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for almost all ξ e E. On the other hand, H(ξ- 1) vanishes for all/ > 0 except for those
ί's for which [ρj^X), that is, when λ0 is an eigenvalue of the boundary value
problem in [/', oo) with the boundary condition φ (ίf) = 0. These t' are exactly the
zeroes of ψ + (tf, λ0) = 0, and therefore the left hand side equals zero. We conclude

thus H = 0 for almost all ξ eE.
The second statement follows from the representation

π A! -"oo

with

L = -| tan'1——--tan"
t — λ — iε ) π

and the uniform boundedness of (1 + t 2 ) f ε ( ΐ ) .
For later purposes we prove the following

Proposition 3.13. For Imz > 0 there exists a δ = δ(z) > 0 such that

|t// + <Xz)Γ2 I \Ψ + (t,z)\2dt^δ-ie-δs for s^Q.
x+s

Proof. Since m + (x9 z) is almost periodic we can find δ = δ (z) > 0 so that

Imz

From the identity (3.5) we conclude that

satisfies the inequality

f'(X)=-\ψ+(t,Z)\2

By integration we find for s ϊ; 0 the estimate

which agrees with the statement.
This estimate yields also a pointwise estimate

This was shown before, but the main point of the proposition is to show that the
quantity in Proposition 3.13 tends to zero uniformly in x. This will be needed in
Sect. 6.



418 R. Johnson and J. Moser

4. The Rotation Number on the Real Axis

In this section we show that the rotation number defined in the introduction exists
and is a continuous function of λ on the real axis.

With y^ = y, y2 = y' our differential equation can be written as a first order
system

0

Since this system is linear, it gives rise to a differential equation for the lines through
the origin in the yl-y2 -plane. Writing

a line is characterized by θ(modπ). The differential equation for θ is found to be

JΓ\

— = cos2 θ-(q (x) - λ) sin2 θ (4.1)

as is also known from the so-called Prϋfer transformation.
We will extend the right hand side to a function

F(ξ, θ) = cos2 Θ-(Q (ξ) - λ) sin2 θ

on the circle bundle B over E, where θ is taken modulo π. We denote the flow
obtained on B by Φx: (£0>#o)~K£o' x> @(x> £o5$o))> where Θ(χ ,ξ0,θ0) is the
solution of θ' = F(ξ, θ) with initial value θ = Θ0, ξ = ξ0 for x = 0.

According to our definition in the introduction the rotation number α = α (T) is
defined as the limit of

g(^go.go)-g(0;go.go)=l.jF ( φ. ( g o t 0 o ) ) < f t. (4.2)

X X o

We will show that these time averages converge for all (£0,00)ei? and the
convergence is uniform on B.

First we show: If (4.2) converges for (£0, 00), then also for (£05 0X) and the limit
is independent of θi. For this purpose let 0 < Θ1 — Θ0 < πandletθv(^:) = θ ( x ; ξθ9 θv),
v = 0, 1 then 0 < Θ1 (x) - Θ0(x) < π for all x. Indeed, otherwise 0j (x) - Θ0(x) = 0, π
for some x, and by the uniqueness theorem for all x; this contradicts the assumption
for x = Q. Hence

Θ1(x)-Θ0(x)

is bounded and our claim is obvious.
According to the theorem by Krylov and Bogoliubov ([3], see also Nemytskii

and Stepanov [18]), the flow Φx on the compact space B possesses at least one
normalized invariant measure, say v, and by Birkhoff s ergodic theorem we
conclude that
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for almost all (ξ,θ) (with respect to v). More precisely, there is a set BQ^B with
v(B — BQ) = Q such that convergence holds for all (ξ,θ)eB0. Moreover, F* is
v-integrable,

(4.3)

and F* is invariant under Φx.
According to our preliminary remark, B0 is of the form B0 = E0xS1 and F*

independent of θ. Therefore F* can be considered as a function on F, which is
invariant with respect to the flow ξ -> ξ x on F. Since this flow preserves only the
Haar measure μ, which is ergodic, we conclude that F* (ξ, θ) agrees with a constant,
say α, on a set B± = E1 x S 1, where μ(E — Eί) = Q.Ey (4.3) this constant agrees with

α = J Fdv.
JS

This argument holds for any invariant measure v, and therefore

holds for any invariant measure v on B.

Now the existence of the limit in (4.2) will follow from

Lemma 4.4. Let G be a continuous function on B such that

B

for all invariant measures v. Then

b

f-
b-a

for all β = (ξ, θ\ and the convergence is uniform.

Proof. We repeat the classical arguments of Krylov and Bogoliubov. Since C(B) is
separable we can find a dense linear subspace D generated by a countable set of
functions. We assume the statement to be false for some function G e C (B). We may
choose D so that GeD and select bj, aj9 βj such that b^ — a^ GO and

We may assume that βj-*β. Using the Cantor diagonal process we can pick a
subsequence, which we call a^ b^ βj again, such that

1

converges for all HeD. This limit defines a linear functional /=/(#), HeD,
and since / is bounded (with norm 1) it extends uniquely to a bounded linear
functional on C(B). Since bj — θy->oo, one verifies as usual that / is invariant,
i.e. l(H- x) = l(H) if (H- x) (β) = H(ΦX β). By the Riesz representation theorem,
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/ defines an invariant measure v on B. But by our assumption

which is a contradiction, proving the lemma.
We apply Lemma 4.4 to G = F — a for which the hypothesis has been verified.

Hence

-](F(Φ'β)-«)dt
X o

converges to zero for all β eB and the convergence is uniform. Thus the expression
(4.2) converges to a limit α which is independent of ξ0, 00. Moreover, one has

θ(b)-θ(ά)
- -- > α for b — a-+cQ

b — a

for any solution of (4.1).
Now we consider α = a(λ) as a function of λ and prove its continuity. Suppose

for contradiction that α is not continuous at /l0eIR and λj-+λQ is a sequence with
α (λ,.) -> α* φ α (/10). Let JF} - F(Θ9 λj) = cos2 0 - (β (ξ) - ^) sin2 0 and Φ* the cor-
responding flow for λ = λj. If Vj is any invariant measure for this flow we have

B

We may suppose that V j - > v in the weak topology of measures, so that

It is easily seen that v is invariant under ΦJ. Finally, since

we conclude that

which is a contradiction.
We summarize our results:

Theorem 4.5. For real λ the expression (4.2), or for short,

θ(χ)-θ(ΰ)
X

converges for x^> + oo uniformly with respect to initial conditions (ξ0, θo)eB to a
function α = α(/l) which is independent of ξ0, 00, but continuously dependent on λ.

Moreover, α (λ) is monotone increasing, equal to zero for λ ̂  λ* for some /ί*, and
α (λ) -> + oo for λ ->• 4- oo .

The additional result follows from the alternate characterization in terms of the
zeroes of solutions and Sturm's theory, which we forego. We just mention that a
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zero of a solution corresponds to a value x for which θ = 0 (mod π), and by (4.1) one
jf\

has — = 1 at such a value. This shows that θ increases at such a zero and therefore
ax

one has one zero per increase of θ by π. Therefore, if N(x, λ) is the number of zeroes
in [0, x] of a solution φ (x) one has

Λ T Ύ v ]Λ

= α(λ). (4.6)
X-* co X

We consider α (λ) in a spectral gap of L. Let σ (L) be the spectrum of this
operator on the whole real line and let I~(λ1, λ2) be an open interval of R — σ (L).

Theorem 4.7. Ifq is almost periodic with frequency module Jt and I an open interval
in a spectral gap, then α (λ) is constant in I and

2a(λ)eJΐ for λel.

Proof. We recall that for λ in the resolvent set ψ± (x, λ), G (x, x; λ) are well defined
and

G (x, x: λ), — G (x, xι λ)eA (Jf).
ax

If we normalize ψ + 9 ι//_ so that [\i/ + ,ψ_] = '[ we have

G(x9 x; λ) = ψ+(x9 λ) ψ_ (x, λ),

— G(x,x;λ) = ψ+ψ'_+ψ'+ψ-,

and it is clear that at a zero of G (x, x, λ) either ψ + or ψ _ will vanish, hence at such a
zero

the sign depending on whether ψ+ or ψ_ is zero. In any event G(x9x'9X)9 and
similarly Γ(ξ-x,λ) has only simple zeroes. According to the Corollary to
Theorem 2.7,

,. τ t N 2 ( x 9 λ ) „
lim - 2 V ' ;e^,

X-* 00 X

iΐN2(x, λ) denotes the number of zeroes of G ( ΐ , ί; λ) for t e [0, x]. lΐN± (x, λ) are the
number of zeroes of ψ + , ψ_ in [Q,x]9 then

we conclude

Since α (λ) is continuous it follows, of course, that α (λ) is constant in /, which
proves the theorem.
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Remark. This theorem asserts for any gap /of the spectrum that there exist finitely
may integers jv such that

2<x = Σ./Ά in 7,
V

where λv are frequencies of q. The integers yv have a topological interpretation. If
one approximates G (x, x; λ) by a quasi-periodic function G (x, x;λ) = Γ (ξ0 - x, λ)
whose hull E=E(G) is a finite dimensional torus, thenyv can be related to the
intersection number of the cycle

of codimension 1 with the circles generating the one-dimensional homology group
ofE.

Another interpretation of the yv is as follows. For each xeΊR, the vector
(ψ + (x, λ), ψ'+ (x, λj) defines a straight line θ (x) in 1R2, hence a point (ξ0 - x, θ (x)) of
the circle bundle B. Then θ (x) is almost periodic with frequency module Jί, so S
= els {(ξ0 - x, θ (x)) I x 6 IR} d B covers E once. Approximate q by a quasi-periodic q,
so E = E(q) is a torus. Then theyv's measure the winding of S in the 0-direction as
one traverses the homology generators of E.

5. Extension of the Rotation Number to the Complex Plane

We give a new definition of the rotation number for Im λ ̂  0, which turns out to
agree with our original definition when λ is real.

Theorem 5.1. Iflmz ^ 0, let φ = φ (x, z) be a complex solution of (1.1} satisfying

Im[φ,φ] = Im(φφ'-φ'φ)>0 for * = 0. (5.2)

Then the limit h (z) of

Λ (5.3)

forx-+ oo exists and is independent of the solution chosen (as long as (5. 2) ho Ids). For
real λ we have h (x, λ) -> α (λ) as x -> oo .

Proof. We observe first that

^ Im [φ, φ] = Im (φφ" - φ"φ~) = 2 Imz |φ |2 ̂  0,

hence (5.2) holds for all x^O. Therefore, φ(x,z) does not vanish for x^O,
and Λ (x, z) is well-defined for Im z ̂  0, Λ: ̂  0. Incidentally, because of

Im[φ,φ]= — |φ| 2Im—, the condition (5.2) is equivalent to Im —<0, hence
Φ Φ

Next we show: if φ is a second solution satisfying (5.2) then

<π. (5.4)
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This implies that, if the limit h (z) of h (x, z) exists for one solution satisfying
(5.2), then it also exists for any other solution, and the limit is independent of the
choice of φ.

To prove (5.4) we note that neither the statement (5.4) nor the assumption (5.2)
is affected if we replace φ by cφ when c Φ 0 is a constant. Therefore, we may assume
that φ(0,z) = l, φ(0,z) = l, so that because of (5.2), we have Imφ'(0,z)<0,
Im φ'(0, z) < 0. If (5.4) were false, then there would exist an x* > 0 for which arg
φ (x*, z) — arg φ (x*9 z) = ± π, and therefore there would exist a positive number μ
so that

φ -f μφ = 0 for x = x*.

On the other hand, φ + μ$ is a solution for which (5.2) holds, because

T V V I Λ~ V / -l

φ +μφ

But as we saw, such a solution has no zeros. This contradiction proves (5.4).
To prove existence of lim h(x,z\ we treat the real case and Imz>0

X-* + 00

separately. For real λ, let φί(x,λ)9 Φ2(x,λ) be real solutions with

of v ίldl X — U .
\ΦΊ $2) \u lj

Then [φ l 5φ 2] = 1, and

Φ — Φi ~~ IΦ2 (5.5)

satisfies (5.2). We will show that

x Λ)'(t ΪΛ
(5.6)

is bounded, where N(x, λ) is the number of zeros of φ (x, λ) in [0, Λ;]. Indeed, by the
same argument used already in the proof of the corollary of Theorem 2.7 we have

which proves (5.6).
Combining (5.4), (5.6) and (4.6) we have

lim h (x, λ) = lim — = lim — = α (λ).
x-* oo x-»oo X ;x-»oo X

This establishes the existence of the limit and its identity with α (λ) for real λ.
Now we consider the complex case Imz > 0. According to Sect. 3 the solution

ψ- (x, z) eL2 (— oo, 0) satisfies the identity (3.5) and therefore φ = ψ_ satisfies (5.2)
and it suffices to establish the existence of lim h (x, z) for φ replaced by ψ _ .

x-» oo

To do this, note that by Proposition 3.3

„ V'-
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is almost periodic with frequency module in Jt(q). Hence

\/_
_) = — lim — J ^—

x-» oo X o ψ —

exists, and hence also

1 x \l/L
Im w_ (z) = — lim — J Im — dt = lim h (x, z)

x-»oo X Q ψ— x-»oo

exists. This completes the proof of Theorem 5.1.
We have represented the rotation number for Imz>0 as Imw_(z) where

w_ = —Mx(m_). According to Proposition 3.7 it can also be written as

= Imw,
^ ̂  v*9 •*>

with w defined in Proposition 3.7. We now proceed to show that h (z) — Im w (z) is
continuous in the closed upper half plane Imz ̂  0.

Note first that G(x,y;z) is holomorphic in z if Imz>0, hence w(z) is
holomorphic if Imz>0, and Imw(z) is positive and harmonic if Imz>0.
Therefore we may write Imw in the form (3.10), or

, (5.7)

where σ (λ) is monotone increasing. For the monotone function σ, one has

1 λ2

σ(A 2 )-σ(A 1 ) = - lim f Im w (λ + is) dλ (5.8)
π ε^ + o ,

ΛI

at all continuity points of σ. Also, for any continuous function /(λ) with compact
support, we have

oo Ί oo

f f(λ)dσ(λ)= lim - J f(λ)Ίmw(λ + ί έ ) d λ . (5.9)
ε-+o π .^

Finally, if wv(z) is a sequence of functions, holomorphic and satisfying Im wv(z) > 0
for Im z > 0, and if wv (z) -> w (z) pointwise, then for the corresponding densities σv,
one has

I /ώτv-» ] /Jσ (5.10)
— oo — oo

for all continuous functions / of compact support. We can prove

Theorem 5.11. The function h (z) = Im w(z) is continuous in the closed upper half-
plane Im z ̂  0, and

lim h(λ + iε) = a(λ) (λelR).
ε ^ + O

Proof. Define φ(x9z) = φί (x, z) - iφ2(x, z) (Im z ̂  0, x ̂  0). Then (5.2) holds,
and φ is entire with no zeroes if x^O, Imz^O. Hence the function h(x,z) is
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harmonic in Im z ̂  0 for every x ̂  0. If we represent h (x, z) in the form (5.7), the
corresponding density which we denote by σ(x, λ), satisfies by (5.8)

1 λ?
σ (x, λ2) — σ(x,λ1) = ~ J h (x, λ) dλ,

since h is continuous in Im z ̂  λ.
Now, h (x, z) ~»h (z) as x -> oo if Im z > 0. Hence for the density σ (λ) of h (z), we

have
σ ( Λ ι ) as x-*ao_, V 1 /

at all points of continuity of σ(λ)\ i.e.,

1 λ?
σ (λ2) — σ (λι) = lim — f h (x, λ) dλ

x +ao π λ

at such points of continuity. On the other hand, by Theorem 5.1 we have
h (x, λ) -* α (λ) as x->oo, and combining (5.4), (5.6), Lemma 4.4, and Sturm's
comparison theorem we see that the convergence is bounded on [λl, λ2] (in fact, it is
uniform). At any rate, we can interchange the limit and integral to get

σ (A?) ~~ & (Ai) = — f α (λ) dλ.
π λ

Hence we have

, x N Imz °?
2 , Imz>0. (5.12)

From this representation, and from the continuity of α (A), it follows by standard
arguments that h(λ + z'ε) -» α (A) as ε -> 0 (1 e IR), and that in fact /z (z) is continuous
in Imz^O. This proves Theorem 5.11.

Incidentally, from (5.12) one finds the representation

which determines w (z) up to an additive constant if α (λ) is known.
One can, of course, define a holomorphic function w(z) for Imz < 0 as well.

Using Proposition 3.7 as motivation, we set

for Im z Φ 0. Because of G (x, y, z) = G (x, y, z), we have

Imw(z)
w(z)-w(z), ——^->0 for I m z Φ O . (5.14)

Imz

Moreover, since α (λ) = 0 for λ < A* = left-most point in the spectrum of
— d2

L= 2 + q(x), we see from Theorem 5.11 and (5.14) that w(z) is real for real
CIX

z = λ ίg A*. In other words, w(z) extends analytically through (—00, λ*).
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However, w (z) can not be viewed as a one-valued function on the resolvent set.
Indeed, if 7 is an interval on the real axis outside the spectrum of L, then by
Theorem 4.7

Im vv (λ -f is) ->a(λ) = α7e

where α/ is a constant. By (5.14) we have

w(λ + is') — w(λ — iε) = 2iImw(λ-{-iε)->2i(xI ifλel and ε->0;

i.e. w(z) suffers a jump of 2i α7 which is non-zero unless / lies in the lowest gap
(-oo,A*).

dw
On the other hand, since α/ is a constant, it is clear that vι/(z) = — is

holomorphic on the resolvent set. We can view dw as a differential on the resolvent
set. If 7 is a loop crossing the real axis at 11 < 1* and λ2 e land nowhere else, then the

period Jdw = 2fα 7 ez ^(#).
7

We complete this section by relating w (z) to the half-line spectral functions
ρξ(t) (ξeE) introduced in Sect. 3 (see Proposition 3.11). First of all,

E

in the notation of Proposition 3.11: M+(ξ,z) is the continuous extension of
m + (x, z) to E, and μ is the normalized Haar measure on E. (Of course, M+ and Mx

have different meanings). From Proposition 3.11 we have
1 A2

lim - (lmM+(ξ,vJri£)dv^ρξ(λ2)-ρξ(λ1)
ε . + oπ λι

for μ-a.a. ξ, and the convergence is bounded in ξ\ λ± and λ2 are real numbers.
Hence, if /: IR-» IR is continuous with compact support, we have

J 00

lim - f /(v) f Im M+ (ξ, v -f iέ) dμ (ξ) dv
e^ + o π ^^ E

= lim - J /(v)Imw(v + ιε)Λ = ί J f(λ)dρξ(λ)dμ(ξ).
ε-»+0 Tl -π E -GO

Since w(v + /ε)->α(v) as ε->0, uniformly on compact v-intervals, we get

00 00

f /(v)α(v)Λ = j ί /(λ)</eί(λ)φ(ξ).
~GO _£• - CO

That is, if we "integrate the measures dρξ" [5], we get

(5.15)

where rfλ is the Lebesgue measure on IR.
We record that w (z) has the following properties :

0, >0, R e w < 0 for I m z φ O . (5.16)
Imz Imz

See (3.8); the middle relation will follow from Theorem 6.4 of the next section.
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6. H>(Z,#) as a Functional of q

The rotation number α (A) and also w (z) depend, of course, also on the potential
function q = q (x), and can be viewed as functional of q. Actually, both functional
depend on z — q, λ — q only:

w(z, q) = w(z- q), a (λ, q) = a,(λ- q), (6.1)

since the differential equation has the form φ" = ( — z + q)φ. We derive some
properties of these functional.

Theorem 6.2. α(A,#) is continuous in q in the sup-topology; i.e. given ε>0, there
exists δ = δ (ε) > 0 such that

|α (A; <?) - α (A; qQ) \ < ε if sup \q - q0 \ < δ (ε).
X

Proof. From Sturm's theory it follows that if q ̂  q, then the number of zeroes in
[0, x] of solutions φ(x,λ)9 $(x,λ) normalized, say, by φ(0,A) = 0, </>(0,A) = 0,
satisfy N(x, λ) ̂  N(x, λ). It follows that α (λ, q) ̂  α (A, q)ifq(x)^q (x) (see 4.6).
Therefore from | q — q0 \ < δ, we see that q0 — δ rg q ̂  q0 + δ, hence

and since α (A, #0 -f δ) = α (/I — δ, #0), we can write this in the form

α (λ + δ, #0) ̂  α (A, 0) ̂  α (λ - δ, qQ).

Now we know that α (A, q0) is continuous in A, so that we can choose δ = δ(ε) with
α (A + δ, #0) — α (A — (5, q0) < ε, which proves this theorem.

We can not expect differentiability properties of α. But for w(z;q) we will
determine the functional derivative in the following sense: for any almost periodic
function/? with Jt(p)ς=. M(q), consider the linear functional

δw
(6.3)

δw
through which -— is defined if it exists.

δq *όw
Theorem 6.4. For Imz Φ 0, the functional derivative —— exists and is given by

δq

and the z-derivative is

δw
-£-(*)= -G(x,x,z),

dw
— = Mx(G(x,x,z)).
az

Proof. If we set p — — 1 and use (6.1), it is clear that

d . d dw dw ίδw
^w(z,,-ε)|ε=0 = -w(z + ε,,)|ε=0 = ̂ (z,g), _= -

and so the second equation follows from the first.
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δw
For the computation of -— , we use the formula (5.13) and differentiate the

δq
Green's function G(x, j z g), which we abbreviate G(x,y). From the resolvent
identity, one obtains

δRz= -RzδqRz,

and since G (x, y) = G (y, x), we have

δG(x,x)=- J G(x9y)δq(y)G(y9x)dy=- ] G2(x,y) δq(y)dy

where W=[ψ + ,\l/-], and ι// + , ψ _ are the solutions of (1 .1) discussed in Sect. 3 and
5. From this we find

2 \ r - v/ J

This has to be compared with G (x, x) δq, and we claim

To prove (6.6), one uses the identities

" ' + Y -W

and rewrites (6.5) in the form

1 1

2G(x9x) 2W

Now differentiating the relation (6.7) makes (6.6) clear.

where

Ψ- -oo Ψ+ X J

(6.7)
— 00

with
1 ϊ// ^ ( ΛJ\

for x > v
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We claim that HεA (Jt). Since G (x, x) has this property it suffices to show that

ψI2(x) } ψ2-(y)δq(y)dy9 ψ + 2(x) ] ψ2+ (y) δq(y)dy (6.8)
— 00 X

belong to A(Jί). We show this only for the second term which we rewrite as

0

According to the argument of Sect. 2

ψ2

+(x)

for fixed t. The same holds for

since the integral can be uniformly approximated by finite sums. It remains to show
that this integral converges uniformly in x for s -* + oo but this follows from
Proposition 3.13. A similar argument applies to the first term in (6.8).

Hence H is almost periodic; taking the mean value of (6.6) yields the statement
of Theorem 6.4.

We write the second formula of Theorem 6.4 as

dw

where τ denotes an analogue of a trace: if the kernel of an operator A is a (x, y), we
define

1 x

τ(A)= lim - j a(t,i)dt,
JC-» 00 X Q

if this limit exists. This is natural for almost periodic a(x, x). Now we wish to
determine τ (Eλ) where Eλ is the spectral resolution of L, and its kernel is

e(x9y;λ)= £ J φ^λ'} φ^λ') dQίj(λ')
ι , j=l , 2 - o o

here φl(x;λ), φ2(x\λ) are normalized solutions, and

\dρ21 dρ22

is a symmetric, monotone increasing density matrix.
It turns out that, in general, e(x, x; λ) is not almost periodic; nevertheless we

have
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1 x 1
Theorem 6.9. τ (Eλ) = lim — J e (t, t\ λ) dt = — α (λ) exists and is continuous in λ.

x~»oo X o 7Γ

From this formula it is evident that α(λ) is constant in a spectral gap.

00

Proof. From the equation Rz= J (λ — z)"1 JEλ, one finds
— oo

00 1 °° d e (x x' λ)
ImG(x,χ z) = j Im^ dλe(x,x;λ) = Imz J A ' ' .

-oo A — Z -oo (/I — Z|

Moreover, if we define

x o

1 ί

at all points of continuity of ρί; , i.e. of e then we get

We know from Theorem 6.4 that ImOr(.x, z) tends to Imw' as x->oo. Now by
integration by parts we find from (5.12) with h(z) = Im w(z)

Imw/(z)_ d u(λ)dλ _ da(λ)

From our remarks on positive harmonic functions in the upper half-plane
(Sect. 5), we conclude that

e(x9λ2)-e(x9λl)-+-(<*(λ2)-oι(λj)
71

at all points of continuity of the right-hand side. But α is continuous (Sect. 4), hence
the convergence is unrestricted. Moreover, if λ < λ* = left end-point of the
spectrum of (1.1), then e(x, λ) = Q and α (λ) = 0. This proves Theorem 6.9.

We remark that there are almost periodic functions possessing point eigen-
values (See Sect. 8). Let λ — λQ be such an eigenvalue, and let φ 0 (x) e L2 ( — oo , oo) be
the corresponding normalized eigenfunction. Then

This shows that e (x, x; λ) need not be almost periodic. However, the discontinuity
cancels when we take

1 * 1
lim - J e ( f , f ; λ ) A = -α(λ).

Λ:H>OO X o 7C

There is also a formula involving de analogous to (5.15), which involves
spectral densities on (0, oo). To state it, recall that G(x, x\ z) is almost periodic for
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Im z > 0 with frequency module in Jί = Ji(q), hence extends uniquely to a function
Γ (ξ, z) on the hull E. For each ξeE9Γ(ξ9 )is holomorphic with positive imaginary
part in Imz > 0. Let deξ(λ) be the corresponding measure on R Then it is easily
shown that, Ίϊq(x + cv) -» ξ uniformly, then de (cv, cv λ) -> deξ(λ) in the sense that, if
/: R-> R is continuous with compact support, then

OO CO

J f(λ)dλe(cv,cv,λ)^ j f ( λ ) d e ζ ( X ) .
— oo - oo

Another way of describing deξ(λ) is as follows. Let (dρ^)9 i,j= 1, 2, be the spectral
density matrix for Eq. (3.2) and write

eξ(x9y,λ) = £ ί Φ ί ( x 9 λ t ) φ j ( x 9 λ ' ) d ρ l j ( λ f ) 9
i , j = l -oo

where φ\, φξ

2 are normalized solutions of (3.2); then deξ(λ) = deξ(09Q'9X).
If we now integrate the measures deξ with respect to the normalized Haar

measure dμ (ξ) on E, we get

l(deξ)dμ(ξ) = -dx(λ). (6.10)
E π

This equation is to be interpreted as saying that
oo Ί oo

ί J f(λ)def(λ)dμ(ξ) = - ί f(λ)dx(X) (6.11)
E - oo π - oo

for every continuous /: R-* R of compact support.
To prove (6.11) we apply the first formula in the proof of Theorem 6.9 to get

+ 0° de (λ}
lmΓ(ξ,z) = lmz f . . { ,2 . Imz>0. (6.12)

-oo \A — Z\

It suffices to prove: Given λl9 /l2e!R then for almost all ξεE

eξ(λ2)-eξ(λl)=\\m \lmΓ(ξ,λ + i&)dλ, (6.13)
ε-» +0 3

/!

and we have bounded convergence in ξ.
This relation is established by following the proof of Proposition 3.11 where Γ,

dβξ play the role of M+ , dρ (ξ, λ)9 respectively. For this argument one has to verify
that eξ(λ) is continuous at λl9 λ2 for almost all ξeE, or that the function

satisfies

for almost all ξ. This follows readily, even for all ξ eE, from the continuity of α (λ).
Indeed, since eξ.t(λ) = eξ(t,t; λ) we obtain from Theorem 6.9

-
x
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To complete the proof of (6.11) we derive the identity

= - f f ( λ ) Imw'(λ + is)dλ9

which follows from Theorem 6.4 and Fubini's theorem. Now, by (6.13), the
left hand side tends to the left hand side of (6.11) as ε-> -f 0, and because of
Im w(λ 4- zε)-»α(Λ.) the relation (6.11) follows.

Theorem 6.14. The support of the measure doc (λ) agrees with the spectrum σ (L) of

Proof. By Theorem 4.7 it is clear that the support of da (λ) is contained in σ (L), and
it suffices to show: If /is a bounded open interval on which α (λ) is constant then

σ(L)π/=0. (6.15)

From (6.11) we obtain

E 1

hence for almost all

i

Let us fix such ξ. Then we see from (6.12) that

ImΓ(ξ,;i + ϊε)->0 for

The reflection principle shows that Γ (ξ, z) is analytic on 7 and thus

is meromorphic on 7. Let Z denote the set of zeroes of Γ (ξ, z} on 7. Then it follows
from

£,z) for Imz>0
that

for

Hence also M+ (ξ, z) is meromorphic on 7 and

1 λ

lim - j Im M+ (ξ, λ' + iε) dλ' = ρξ(λ)
π Q

is piecewise constant on 7, with possible jumps on Z.
Now ρξ(λ) is the spectral function of the operator L+ = Lξ

+ given by (1.16) and
therefore σ(L^)π 7 contains only isolated point eigenvalues. Thus

Since (see [23]) the sets σess(L^+), σ (Lξ) agree and are independent of ξ, the assertion
(6.15) and hence Theorem 6.14 is proven.
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7. Connection with the Korteweg-deVries Equation

In this section we establish a connection of the rotation number with the Korteweg-
deVries equation. In this theory one defines for arbitrary smooth functional
Vj = Vj (q\ 7 = 1, 2, a Poisson bracket which in our case takes the form

We describe this expression only formally, and mention that under appropriate
(boundary) conditions this Poisson bracket is anti-symmetric and satisfies the
Jacobi identity.

Our remark is that the functional w(z,q) has the following remarkable
property:

Theorem 7.2. In the space A(Jt) of continuous almost periodic potentials with
frequency module Jί, one has for Imz^φ 0, j — 1, 2:

{w(zl9q)9 w(z2,#)} = 0;

i.e., w(z1,<5r) and w(z2,q) are "in involution" in the language of mechanics.

Proof. By the definition (7.1) and Theorem 6.4, we have to show that

G(x,x\Zι)—

has mean value zero. We write G^(x) = G(x,x;Zj). It is equivalent to show that

d d S 1 d

has mean value zero.
If we normalize ψ± (x,z) so that [ι// + , ι//_] = 1, the Green's function becomes

G(x,x',z) = \l/+(x,z)\l/- (x, z). Let us write ψ + (x, Zj) = α, (x), ψ _ (x, z; ) = βj (x)9 so
that Gj(x) = <Xj(x) βj(x) (j=l,2). The proof follows from the identity

i ̂ "^^ί) n ~- ' (7'3)

since the right-hand side is again an almost periodic function.
To prove (7.3), we use the differential equation

αj' = (q — Zj)ttj to derive (oqα^ — α2αi) / = α 1α2 — α2α
/

1

/ = (z1— Z2)u1a2>

and a similar relation for β. Therefore, differentiation of the right-hand side of (7.3)
gives

ιαi-^

= α1j81(α2]82)
/-α2/?2(α1j81)

/,

which agrees with the left-hand side of (7.3). This proves the theorem.
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From the asymptotic theory of Eq. (1.1), one knows that the Green's function
admits an asymptotic expansion of the form

\ rr fv\ Ί

(7.4)
2 -ι /

v ~—

valid in a sector about the negative real axis (we choose ]/ — z > 0 for z < 0). Since
G (x, x\ z) satisfies the differential equation

2G(G"-2(q-z)G}-G'2 + l=Q, (7.5)

as one verifies readily, one finds by comparison of coefficients a recursion formula
for the gj. One sees that the gj are polynomials in q, q', q", . . . . If one differentiates
(7.5), one obtains the linear third order differential equation

where D3 = D3 - 4qD- 2qf , £ = - - .
ax

This leads to the linear recursion formula

1, g0 = l, (7.6)

which determines Dgj+ί9 i.e. gj+1 only up to a polynominal, while the quadratic
equation (7.5) has the advantage of determining gj completely. It is a problem to
show that the recursion (7.6) gives rise to polynomials while for the quadratic
recursion (7.5) this is evident.

These formulas can be used to give an asymptotic expression for

w

(1) w(2}

dw
Indeed, by Theorem 6.4 we get the expansion of— from (7.4) and therefore by
integration z

These quantities give the conservation laws of the Korteweg-de Vries equation, as
follows from (7.6) which is referred to as Lenard's recursion formula in that theory.
From Theorem 6.4 it follows that also

(w(j), w(k}} = 0 {w(j), w (z, 0)} = 0 .

This implies that the functional w = w (z, q) is not only translation invariant, but
invariant under all higher Korteweg-de Vries flows

dq_
~τ~ — D— .
dt δq

8. Concluding Remarks and an Example

In this paper, we concentrated on studying the rotation number Im w, but it is also
of interest to consider Re w, which (if Im z > 0) measures the exponential decay of



Almost Periodic Potentials 435

ψ + (x; z) (see 3.9). In contrast to Im w, the real part of w is in general not continuous
in Im z ̂  0; an example (based on [16]) will be given in a forthcoming paper by R.
Johnson. However, Rew is harmonic on the resolvent set, as noted in [12]; this
together with results of this paper shows that the spectrum F= σ (L) of (1 .1) always
has positive logarithmic capacity when q is almost periodic. The boundary value β
of Re w on IRis of physical interest; in particular, if β (λ) < 0 except on a subset of IR
of Lebesgue measure zero, then the spectrum σ (L (ξj) of the Schroedinger operator
L(ξ) has no absolutely continuous component for μ-a.a. ξeE [19]. See [2] for
quasi-periodic difference operators with β (λ) < 0 a.e.

The study of Rew leads to another point of view: For I m z φ O ψ+(ψ_) is
exponentially decaying for x-+ oo (x-+ — oo), and one can show that they define a
hyperbolic structure in the two-dimensional solution space over E. Flows in a
vector bundle with hyperbolic structure have been studied by Selgrade [24] and by
Backer and Sell [20, 21]. They introduced a spectrum for such a flow (which differs
from that studied here); it turns out that this spectrum determines the limit values of
Re w on the real axis. This approach suggests also generalizations from almost
periodic flows on E, as considered here, to minimal or chain recurrent flows on E
[12].

We give an example of an almost periodic potential q which has a point
eigenvalue. An example of this sort has been given by A. Ya. Gordon [9]. One might
expect that this is not possible if q is sufficiently smooth, quasi-periodic and the
basic frequencies not close to resonance. Therefore we construct a real analytic,
quasi-periodic q (x) with two basic frequencies ωl9 ω2 for which the ratio ω2/ωί is
badly approximable by rationals, i.e. satisfies

\pω,-qω2\^c(\p\ + \q\rθ (8.1)

for some constants θ, c and all integers p, q not both zero.
The construction of this example depends on finding an odd quasi-periodic

function

ξ2}=Σansm(jnξ1-knξ2) (8.2)
n = l

for which

g(x) = ]f(t)dt^c\x\1-Λ for |*|^1, c>0 (8.3)
o

holds with some constant δ in 0 < δ < 1 . Then the function

φ(x) = e-<ιw

belongs to L2(— oo, + oo) and is a solution of φ" — qφ = 0 with

q=f'+f2- (8.4)

Hence φ is an eigenf unction for this q with eigenvalue λ = 0.
To construct such a function (8.2) we set
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it is well known that e~l satisfies (8.1) for any θ > 2. We set

/ Ί \ l 7 / Λ \ I X~^ \ )

oo / Λ \m

= wι!

and with δ in 0 < δ < 1

If we estimate επ by retaining the first or the first two terms in the last sum of
(8.5) we find readily

1 1

Therefore εn is a monotone decreasing sequence and

Thus the sum in (8.2) is absolutely convergent and / is defined. It is even a real
analytic function of x since for complex x the sum

00

X |flJsinh(6jImx|)<oQ
n = l

is convergent, therefore also q defined by (8.4) is real analytic, and it remains to
prove (8.3).

Integrating / we find

£(*)= Σ e5(l-
n = l

We obtain a better estimate by noting that

1-cos^x^l for ^-^
2£n

For any x ̂  6π > π ε$ 1 we determine A: ̂  3 so that

(8.6)

(8.7)

). (8.8)

Then we claim that (8.7) holds for all n in k ̂  n rg 2k — 3. Indeed, k rg n implies

π π

and n^2k — 3 implies

π 1 π
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since -^—^ < ^ 2.

Therefore (8.7) holds for k^n^2k — 3 and gives

2/c-3

n = k

if x satisfies (8.8). From x < n (k + 1) we get g(x) ^ C2 x
1 ~δ, as was to be shown.

It should be pointed out that the function F(ξ) on the torus is only continuous
and not smooth, even though/(x) is real analytic; hence also the extension Q (ξ) of
q(x) is not smooth. One could conjecture that point eigenvalues do not occur if
Q (ξ) is smooth and the basic frequencies satisfy

ΣJv<>
V

for some positive constants c9 τ, for all integers yv with £ I Λ I = 1 We have not been
able to decide this question. v

Another interesting question is to decide whether two almost periodic
potentials ql9 q2 for which ^(z9qί) = w(z9q2) for all z in Imz>0 give rise to
unitarily equivalent operators

at least under appropriate smoothness assumptions. Again this question remains
open.
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