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Spectral Behavior of Quasi Periodic Potentials*
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Abstract. Spectral properties of Schrόdinger operators of the type Hε =
— A+εV, where A is the Laplacian, Fa quasiperiodic potential and ε a coupling
constant, are developed. Fis taken to be finite sum of exponentials with generic
frequencies. For small ε a strong stability is shown. On the other hand, examples
(in the finite difference case) are given, for which a transition in the type of
spectrum occurs, as ε is increased.

0. Introduction

Not much is known about the spectral analysis of operators of the type H — —A
-j- V (where A is the Laplacian and V is some almost periodic potential) acting on
L2(RV) or /2 (Zv). The spectral analysis of such operators in the case of R1 could be
relevant in understanding the rings of Saturn (Avron-Simon [2]) and is also of
interest in insulator-conductor models of materials, Aubry [1]. The case of a
random potential is of considerable interest in physics (see Thouless [10]). In any
case the spectral behavior of the continuous and discrete cases are believed to be
similar, and we will discuss various aspects of both of them.

In spectral analysis there are two basic questions which are of interest.
(1) What is the spectrum as a set in the plane? (We denote this set by σ(H).)
(2) What is the nature of the eigenstates? More precisely are the eigenstates

localized (or pure point spectrum) or extended (continuous spectrum) or some
mixture? This latter question is the one which determines the insulator-conductor
properties of the material.

We will consider more generally

HB=-Δ+eV, (0.1)

and examine how the spectrum depends on ε. The coupling constant ε would
correspond to the reciprocal of the temperature, in the physical models. One of the
results of this paper is to give some examples of almost periodic F for which the
spectrum exhibits a phase transition from extended to localized states.
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The kind of potentials we wish to discuss are of the form

V(x) = Σ aje**«* V9 ξl9ξ29..., ξNeW (0.2)
7=1

an (continuous or discrete
xeRv or Zv

 case? respectively).

In case V is periodic, then it is well known through the theory of "Bloch waves"
that σ(/jΓε) consists of bands, and that the spectrum is absolutely continuous
independent of ε! (for a full account of this see Reed-Simon [8]). In Sect. 1 we will
give a derivation of these facts about the periodic case (not necessarily self adjoint)
of a lattice. This is done in order to motivate various constructions in the
nonperiodic case.

As far as almost periodic potentials go, some progress has been made in one
dimension. Moser, Avron-Simon [6,3] have shown that for the generic limit
periodic real potential the set σ (H) is a Cantor set. Thus complicated behavior is to
be expected. Sinai and Dinaburg [9] have proven that for a real quasiperiodic
potential whose frequency base satisfies some generic diophantine inequalities (the
continuous case), there will always be some continuous spectrum. We also mention
that in dimension one Goldstein, Molchanov, Pastur [4] proved that for a random
potential the spectrum is pure point (i.e. localized) with probability unity.

We will develop some theory for a generic V(x) of the type 0.2. That is to say
that the ξί,..., ξN are chosen generically (in every sense - by Lebesgue measure or
Baire category) out of Rv. Of course in this case Fneed not be real and H not self-
adjoint, but in view of the fact that the analysis is rather delicate, and the problem is
one of "small divisors," this is a natural starting point. Indeed this is precisely the
route that the classical small divisor problem of celestial mechanics took, when
Siegel first overcame the small divisors in his "model problem" which was not
Hamiltonian. It was only later that Kolmogorov-Arnold-Moser (KAM) were able
to do the Hamiltonian case (see Moser [7]).

Since the problems we are considering are not self-adjoint, we do not look at the
finer structure of the spectrum but only the question of existence or nonexistence of
extended and bound states. We prove in Sect. 2 that ifξl9...,ξNlie inside a cone of
angle less than π (continuous case) then σ (Hε) = [0, oo), there is no point spectrum,
and the spectrum contains extended states.

If we allow any generic frequencies, for example in dimension v = l,
d2

H—— —-^ + aeιax + be lβx

9 α, β > 0, α//J generic (in fact α/jβ very strongly inde-

pendent — see (2.23) — will do), then we show that σ (H) — [0, oo), there is no point
spectrum and there are extended states, provided that max {|α|, \b\} < β2/%e2.
Notice that if a = b, α = β, this is the Mathieu equation which has infinitely
many gaps in the spectrum. The above shows that for any neighborhood in the
frequencies and any generic point there of, all gaps are closed.
More generally if

H=- — + V ae«>*
dx2 £ = ι j
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with (ξί , . . . , ξn) satisfying the generic condition of being strongly independent over
Q (see Definition 2. 15), then we show that σ(H) = [0, oo) and there are extended

n

states for £ \a^\ sufficiently small. Simple explicit examples of such (ξί , . . . , ξn) are
given. J=1

In Sect. 3 we make a careful study of the simplest almost periodic potential on
/2(ZV):

= exp{2π/<m,O}? mεZv, ξeRv (generic).

The following phase transition appears.

Theorem 0.3. There are constants av<bv, v^2, av, bv increasing sequences,
a1 = bί = l such that

(i) For ε < av, σ (Hε} = [0, 4V], there is no point spectrum, and there are extended
states.

Fig. 1 0 4τ

(ii) Ifv>2, and av<ε<bv, then σ (Hε) looks like

Fig. 2

Pε is dense with localized states, while C has extended states but no bound states.
(iii) ε>bv.

Fig. 3

a (//g) — Pg? and Pε is dense with localized states.
The numbers av, bv are calculable, and the set Pε which is generally a lemniscate is

actually an ellipse in one dimension.
The various strong independence or generic conditions on the coefficients cannot

be dropped, without being replaced by some similar conditions. For example
Gordon [13] gives examples of almost periodic, nonperiodic F's which behave very
much like the periodic F's in that (0.1) has no point spectrum for any 0 ̂  ε < oo.
The frequencies he uses have the property of being very well approximable by
rationals.
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Section 1

For later reference and since some of the later ideas are based on the periodic case,
we derive the spectral theory for periodic potentials on /2 (Zv) in this section. Since it
is no harder to work with quite a general operator we do so.

Fix v ̂  1, an integer, and let Zv be the v dimensional integer lattice. Let H be a
constant coefficient "partial difference operator" acting on functions on Zv. More
precisely, let Dl, D2,..., Dv be the operators

Djf(m) =f(m + βj) -/(m), m eZv

and ej = (0,0,1,0, . . . , 0), where 1 is in the jih position. Thus H is of the form
P(Dί9 ..., Z>v) where P is a polynomial of v variables.

It is plain that //is a bounded operator on /2 (Zv). Further its spectral properties
are easy to determine by use of the Fourier transform (or Fourier series in this case).
Indeed forming the corresponding Fourier series yields a multiplication operator
on L2(πv) where πv denotes the v-torus.

Hf(θ1,...,θv)=p(θl9...,θv)f(θ1,...,θv),

where p (Θ1,..., θv) is a trigonometric polynomial. The spectrum of H is simply the
image of πv under p. If JΪis nontrivial so that;? is not a constant, then clearly there is
no point spectrum. If His self-adjoint then/? is real-valued and the spectrum is an
interval.

The operators Hε are of the form

where V is an almost periodic function on Zv.
The above paragraph concerns the case when ε = 0. When ε = oo, which we may

normalize as

H0 is already a multiplication operator on /2(ZV) and is diagonal. The spectrum is
pure point with the eigenfunctions being

1, if n = m

, otherwise,

and the corresponding eigenvalue is V(m). The spectrum in this case is

{V(m): m eZv}. Thus at the one extreme is an absolutely continuous spectrum and
at the other a pure point; the problem is to understand the transition.

By a periodic potential V we mean a V(m) for which there is a rank v subgroup
of Zv, call it Γ such that

F(m + y)-F(m), V y e Γ . (1.3)

Denoting by Γ* the dual lattice to Γ, that is Γ* = {x eRv: <x, y> eZ, Vγ eΓ} we
can write
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where h— |ZV/T|, and^ l 5 ξ2, ..., ξh are members of Γ*. The above is just the finite
Fourier series expansion of V. For a further discussion of lattices and periodic
potentials on Rv, see Reed and Simon [8].

Let θ = (0l5 Θ2, . . . , θv), then on taking transforms our operator H becomes

(Hg)(θ)=p(θ)g(θ)+ Σ <*j L2(πv). (1.5)

The elements 0 = ξί , . . . , ξh as elements of πv generate a finite subgroup which we
call G.

To each coset θ + G of G in πv we form the h x Λ matrix

(1.6)

where

The following is the "Bloch wave" theorem.

Theorem 1. σ(H) is the union over θ of the eigenvalues of M(β). Or if one chooses
continuous functions /11 (θ), λ2(θ), . . . , λh(θ) to describe the eigenvalues ofM(θ\ then

h

σ(H)= [J /Lj (πv). H has no point spectrum but to each λeσ(H) corresponds a
ί = l

measure μ which is supported on a coset of G (h points) such that

(It is clear that //may be extended to a bounded operator on the space of measures.)

Note 1.7. The Fourier transform μ (m) corresponds to the "Bloch waves" and are
the extended states of H. The spectrum is a union of the h connected curves /lr (πv)
showing the "band structure."

Proof. Consider the equation

(λ-H)g(θ) = ω(θ). (1.8)

For fixed θ, we consider this equation at the points θ + ξ ί 9 .. ., θ + ξh and define

and W(ff) =

(1.9)

then (1.8) becomes

Now if Iφ U Ί, (πv), and if weL2(πv), then let G(0) = (λ - M(Θ))~1W(Θ) for each
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0; and in particular let

Then clearly geL2 and (λ — H)g = w, so that λ$σ(H}.

h

On the other hand if λ e (J /lt (πv), then for some vector
we have l = ί

φ 0 and some Θ0,

Let/be the measure on πv given by g = ]£ z) <50 0+ ξ, where δ is the point measureJ'=1

at zero. It is apparent that H(g) = λg. It also follows easily by smoothing g that
λeσ(H)9 since if φε is an approximate identity then

is an approximate eigenfunction.
Finally if /eL2(πv) with Hf(θ) = λf(θ) for almost all θ, then clearly

μ-M(θ)| = 0

on a set of positive measure (in #). But this is impossible since the above determinant
is a trigonometric polynomial in θ which is nonconstant. The latter follows by
examination of the highest frequency which is obtained by the product of the terms
down the main diagonal. This completes the proof of Theorem 1.

We learn that if Vis periodic, then (1.1) has no point spectrum for 0 ̂  ε < oo. In
fact one can show the spectrum is absolutely continuous and that the same holds for
the continuum Rv case, Reed, Simon [8].

Example 1.10. If v - 1, V(x) = eίπx, xeZ, V(x + 2) - V(x\ ξί = 09ξ2 = π and take
P (D) — A— Laplacian (nearest neighbor), then

and

M(θ)
_ Γ 2 - 2 c o s θ 1 1

~[ 1 2-2cos(θ + π)J

11)2(Θ) = 2± ]/l+4cos 2<

There are two bands:

Fig. 4 0 1
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Section 2

Motivated by the construction of the extended states in the periodic case, we now
try to do so in the quasi-periodic "generic potential" case.

For simplicity we now restrict ourselves to

Hε=-Δ+eV, (2.1)

though what we do in this section would work if A were replaced by any constant
coefficient elliptic operator.

For the following discussion, assume we are in Rv or Zv, whose variable we
denote by x, and dual variable by ξ.

V(x)= X ajβW*-®.
7 = 1

On taking transforms in (2.1) we obtain a spectral equation just as before:

y> (2.2)
7 = 1

where

Λ«) = ί A - | έ l 2 ,
U-(2v-2 £ (cosξj)) for Zv.

k=l

Suppose that ξ0 is chosen so that

(2.3)

We try to construct a measure μ supported on the orbit through £0, under ZN

action:

So μ is of the form

= Σ y^2,..,,A+^1+...+^(0 (2.4)
Sl,s2,...,sNeZN

Then

where βj= (0, . . . , 1, 0, . . . , 0), and where 1 is in they'th position.
Now (2.2) leads to

N

Σ aj ys-e=Pλ(ξo + sι £ι + + SN £jv) 7S (2.5)
7=1
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If we can solve for the coefficients ys, seZN, and also have

Σ l7sl<°°, (2.6)

then Hμ = λμ, and μ (x) will be an extended state.
The system (2.5) is just a first order hyperbolic system (finite difference) on the

ZN lattice, and one may formally solve it by the method of characteristics. Since we
have chosen

we see that we may introduce a "source" at (0,0,..., 0) eZN by setting

ys = 0 if st < 0 for some i
and

We have satisfied (2.5) except in the first "quadrant." Now proceed inductively to
solve for ys on the hyperplanes st ̂  0, sί + s2 + . . . + SN — m, m = 1, 2, . . . , which
can be done by use of (2.5) as long as

To illustrate the above, take TV = 2

for

is given in terms of

(2.7)

Fig. 5

s-e1 s
s-e 9

Solve recursively for

on these lines

. = 0

A little closer look reveals that we may write ys as a sum over all paths joining 0 to s,
of certain products along these paths. If st ̂  0,

π

where k = sί + s2 + ... + SN .
(2.8)
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Thus formally subject to (2.7) we have found an "eigenmeasure" μ. The
question of the convergence of (2.6) depends on the behavior of the products ofpλ

along the paths and, of course from (2.8), is a small divisor problem. Before
discussing these analytic questions we show that the same products occur in
inverting

Now assume thatpλ(ξ) Φ 0 for any ξ. Let - w eL2(Rv) (or /2(ZV)), then if we are
to show that λ$σ(H) we need to solve

This leads to

-Λι(£)/(ί) + Σ aj
j = ι

or

ξ)+ ajf(ξ

We now substitute this expression for f(ξ) repeatedly back into the right hand
side. Doing this k times yields:

W(ξ) I f e^ + fr.) i

Pa® fcpΛ

+ γ γ V
' '

+ y y y

At1,2t1'"A'e1
We see that the same products over the same paths control the terms in the

above series. If we can let k-+ oo so that the series converges, then the above would
express f ( ξ ) in terms of w (ξ).

This completes the formal aspect; we now turn to questions of convergence, and
hence the analysis of the products of pλ along such paths. We will do so by giving
examples where we have been able to make the necessary analytic estimates.

Example, (i) Take the example of Rv, and such that the frequencies ξ± , . . . , ξN lie in
a set A which has the following property:

If A(n) = A + A + ...+An times, then we want

(n^^cn for larger,

where d(x, y) = distance from x to y. (2.11)

The condition (2.1 1) is easily met if, say, ξ1 , . . . , ξN lie in a cone in Rv with angle
less than π, or if N ̂  v and ξl9 . . . , ξN are linearly independent.

Theorem 2.12. I f ξ l 9 . . . 9 ξNeA and A satisfies (2.11) then

and H has no point spectrum.
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Proof. The al9 . . . , aN are fixed. First, we show that if /lφ[0, GO) then λ - H is
invertible. In this case, fix λ\

λ-\ξ\2*0 for all

so for large m it is clear what the behavior is, subject to (2.11). Hence:

1
= m2 (2.12)

for a suitable function C(ξ) on Rv.
Now for a typical term in the series (2.10) we have

|κ>||2CB)*||C(fl| |c

(k\)2 for some B. (2.13)

Thus if we can show that C e L°° , then letting k -> oo gives us /e L2 . But it is easy
to see that C is in L00 since it certainly can be chosen to be continuous as well as
chosen so that C(£)-»0 at infinity. Indeed, one has some ε > 0 such that

while the number of steps that our path can spend in a region where \pλ(ξ) | ̂  1 is
bounded, so the above follows.

At this point we have shown that σ(H)a[09 oo): To see there is no point
spectrum, suppose Ae[0,oo) with H f = λ f , /elA Then (2.10) will still hold for
those ξ for which pλ (ξ + ζh 4- . . . + ξj) φ 0 for any k. This set is clearly of full
measure in Rv.

For such ξ and any m we have

= V y
L j) Pλ(ξ

But for such ξ (2.12) holds for large m so that taking the limit as m-^ oo yields

0 a.e.,

i.e. there is no point spectrum.
Finally if λ e [0, oo) we construct an extended state as described earlier. One can

for most /Γs construct this with multiplicity of the v sphere, but the simplest is to
choose ξQ with | ξ0 \

2 = λ and such that ξ0 is in the same cone as A (e.g. choose ξQ to
point in the direction of any element of A). Doing this we have pλ(ξo) = 0 as needed
for (2.3), and pλ(ξQ + ξh + . . . + ξj) is bounded away from zero, so again (2.12)
comes into force with ξ = ξθ9 from which the convergence of the series (2.6) follows.

This completes the proof of (2.12).
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Example, (ii) We turn to a more interesting example. In dimension v = 1 consider

(2.14)
n

where V(x)= ]Γ a^x .
7 = 1

The point (ξ l 5 . . . , ξn) eR" will be described in more detail shortly and will be
generic.

Before continuing we need some definitions and estimates concerning certain
sequences.

Definition 2.15, A point ξ = ( ξ ί 9 . . . , ξJeR" will be called strongly independent
over Z with parameters (c, β\ where c, β > 0 if

\m,ξ1 + ... + mnξn\^C\m\-β for 0 Φ m = (m1? . . . , mn)eZ". (2.15)

It is not difficult to show that {ξ eR" : 3 cξ, βξ > 0 for which (2.15) holds} is a set
of full measure. Thus the condition (2.15) is generic. To obtain explicit examples
one can use algebraic number theory. For example if K/Q is a real extension of
degree n, and if ξ l 5 . . . , ξn is a Z basis for K, then (2.15) holds with suitable C and
β = n — l (see, for example, Meyer [12]).

We now introduce a useful function which appears in Katznelson [11]. Let

N(u)= inf {ml + m2 + ... + mn\\m1ξί + ... + mnξn\<u}. (2.16)
w ;^0

O φ m e Z "

It follows that if ξί9 . . . , ξn are strongly independent over Q with parameters (c, /?)
then

-1". (2.17)

By previous remarks it is clear that an estimate like (2.16) is true for generic

Let F= {ξl9 ..., ξn}. By {XI>&}\=Q being an F-sequence, we mean that
xί+ί — xίEFandx0 = θ. From (2.8) and (2.10) it is clear that the arguments of the
/7λ's are F sequences.

Proposition 2.18. I f ( ξ ί y . . . , ζn) eR" is strongly independent with parameters (c, β),
then for any F sequence {^,0}f=0 we have

ilk

This proposition tells us that strongly independent F-sequences have absolute
lower bounds for their geometric means.

Proof. Fix k and an F sequence xl9..., xk. Let
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log
k \ ι / k 4 k

i = l

Now clearly

N(au) + . . .

ι/k 2\llβ

-/? - .
C/

Proposition 2.19. Let ω =
{Xi,θ}^=0ί F as above

zω2eC, ω2 Φ 0 and θeR, then for any F sequence

ι/k

where Cω2 > 0 and depends on ω2 only.

Proof.
ιw2

w, θ X,

Fig. 6

We have 1 k I 1

τ X logl^.-ωl^- \log\
K f = = 1 /C o

where Nk(ω,M,0) = #{*,.: l^ -ωj ^w};

Nk(ω,u,θ)du.

Now it is clear that independent of θ we have

Nk(ω,u,θ) — 1 times

ί j

' ' N(au)

/2\llβ 1 1 1

9,«,β)Λ^(ί) β+ll —
\c i K o \OJ2 I

which proves the result.
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Now suppose (£1? . . . , £n,α1 ?α2} is strongly independent over Q with
parameters (C, β). Of course the set of such (ξl9 . . . , ξn)eR" is still generic, and the
set of numbers ma1 + na2, m, neZ is dense in R.

Theorem 2.20. Ifξ1,...,ξnareas above and

ax- ;-! -

then for max {\aί |, . . . , \an\} < Qxp{-2β(2

s)
1/β}/n we have σ(H) = [0, oo).

Remarks. (1) The theorem as stated does not allow for a zero frequency, that is a
term aQ, however such a term will simply shift the spectrum.

(2) Concrete examples for which the theorem holds can be written down by use
of the remarks following (2.15). For example:

H= --r^ + a, e^x+aie-^+a*eiVϊχ + a,e~l^x

will satisfy σ(H)= [0, oo) if

max
/ = !,..., 6

This follows from considerations in β(]/2, ]/3, ]/7).

Proof of (2. 20). First choose λ φ [0, oo), then we have the following lower bound for
the product of the pλ's along a path of length k,

where cλ = c(λ) > 0, by (2.18), since ± ]/Iφ[0, oo). It follows as before that if

, (2.21)

the series (2.10) converges, and thus λ$σ(H).
On the other hand if λ e [0, oo) n [mvίl + na2 : m, n eZ} which is dense in [0, oo)

we will show that λeσ(H). This will complete the proof of the theorem.
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For such a λ = ma1 + Λα2 choose ξ0 ̂  0, ξg = A, and so^Λ(^0) = 0. Construct//
as in (2.4). Now

Π \ξ}1 + + tjr\ Π 12^ + 2na2 + ξjl + ...+ ξjr

with C W j Π >0, by Proposition 2.17.
It follows that the series Σ \ γ s \ of (2.8) is finite if the condition (2.21) is satisfied.

Thus by previous arguments μ is an extended state and λεσ(H).
If there are only two frequencies α, β which are strongly independent over Q,

then we can make a slightly stronger statement.

Theorem 2.22.

d2

'-^rbe1^, oc>0, β<0,

then if max { \ a | , | b \ } < β2/Se2 (one could choose to make α more important as well) ,
then σ (//) = [0, oo) and H has no point spectrum, (e = natural base of logarithms.)

The proof is very similar to that of (2.20); the improvement comes from a
slightly better method of estimating the products ofpλ along paths. Before outlining
this proof we state two very useful lemmas, whose proofs are in the appendix.

Definition 2.23. (ξi , . . . , ξn) eR" is very strongly independent over Q if 3 c, σ > 0
such that

\\m1ξ1 + ... + maξn\\^c\m\-< for m Φ 0, meZ\

where || || denotes the distance to the nearest integer. Again this condition is generic
for ξeR".

Lemma 2.24. Let g (9} be smooth on πv and suppose that g (θ) Φ Qfor all θ, then ifξ is
tt-l

strongly independent over Q and if Γn(θ) = Y[ g(θ + rξ), then

uniformly in B, as n -> oo .

Lemma 2.25. Let αeR be very strongly independent over Q and let reQ, then for
suitable constant Cα r>0,
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Proof of (2.22). We proceed exactly as before, but first one may normalize as
follows:

and ξ = a/β is very strongly independent over Q.
Then as before we need to estimate products like

. . .

where j/λφ[0, oo) at ξjre{ — l9ξ}. We may write this as

where 0 ̂  ml ^ m2 . . . ̂  mk and mk — rak_ l ^ 1 is determined by the path on which
we are trying to make the estimate. It is clear, since the distance between integers is
greater than or equal to 1, that

where ||z|| is the distance from zeC to the nearest integer.

Writing ]/I = u + iv, u, v eR, v φ 0 we are reduced to the study of the sequence
k

u + θ + kξ modulo 1 . The last product can be bounded from below by f] \g(θ +jξ) \ ,
7 = 0

where g(θ) is smooth on the unit circle (here it is [0, 1] with zero and one identified),
andg( f l )φOfora l l<9, and

0

By (2.24) we have

(2.26)

π
along path /

length k /

C
(4e2)k'

It follows as before that if

, (2.27)

then series (2.10) converges and so Λφσ(/f). Again just as in example (i), even if
Ae[0, oo) (2.26) will hold for a.e. Θ (C= C(θ)) by the ergodic theorem, so that as
before there can be no L2 solutions of Hf= λf— i.e. there is no point spectrum if
(2.27) holds.

Finally if λe[0,oo)nβ, then (2.25) shows that if ξ2

0 = λ, i.e. Pλ(ξ0) = 0,

k = l
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so that from (2.8), Σ\ys \ < oo if (2.27) holds, or μλ as constructed in (2.4) has
< oo and Hμλ — λμλ. This completes the proof.

We conclude this section by observing that a proof analogous to (2.20) can
clearly be carried out for the case of the finite difference Laplacian (in dimension
one), plus a potential whose frequencies are very strongly independent over Q.

The analogoue of (2.22) for L2(RV) can be carried out for a V(x) which has at
most n + 1 frequencies.

Section 3

Thus far the behavior we have found is the same as the periodic case insofar as there
is no point spectrum. We will now consider what is probably the simplest almost
periodic potential and make a complete analysis of the spectral behavior as we vary
the coupling constant ε.

We take for V the function exp {2π/<ra, £>} on the Zv lattice and ξ will be a
generic point of Rv.

Hε=-A+εV, (3.1)

where as usual A is the finite difference Laplacian. In this case since the
corresponding product of the pλ(θy$ along the paths is just

(since there is only one frequency), we will be able to make a complete analysis. The
results were already described in the introduction.

We begin by considering some equations on the torus.

3.2. Consider the equation

on πv; (3.3)

that
g being given and we must solve for/.

Clearly a necessary condition for an L1 solution of (3.3) is

If this condition is satisfied one may still have difficulty solving for / if
ξ — (£1? . . . , ξv) satisfies some relations over Q. If

| e 2 π / < ί , m > _ 1 | φ θ for

then formally the Fourier coefficients of f ( θ ) are given by

<3'4)

To ensure that we have the coefficients of a function f(θ) one needs to impose
further conditions on g (θ) and ξ. For example if ξ is very strongly independent over
Q (as in (2.23)) and if g(θ) is smooth, then clearly the coefficients f(m) above are



Quasiperiodic Potentials 393

those of a smooth function. If g is analytic in a neighborhood of πv, then /will also
be analytic in any smaller neighborhood of πv.

For the rest of this section assume that ξ is very strongly independent.

3.5. A related equation is the following

f(θ + ξ) = g ( θ ) f ( θ ) on π\ (3.6)

First we remark that if g(00) = 0 for some 00, then iteration of the above yields

Thus since we are assuming ξ to be independent over Q, we have by Kronecker's
theorem nξ is dense in πv; we see that no nontrivial continuous solution of (3.6)
exists. Similarly if /(00) = 0 and /is continuous, then/Ξ 0. So if we are looking for
continuous nonzero solutions of (3.6) we can assume that neither /nor g vanishes.

Assume a branch of argg(0) is continuous; then (3.6) leads to

log/(θ + ξ) - log/(θ) = logg(θ). (3.7)

So a necessary condition to solve this is as before

Assuming g (θ) to be smooth (respectively analytic), we may find j\ (0) smooth
(analytic) such that

so that

gives a smooth (analytic) solution to (3.6).
However one may solve (3.6) more generally if

— - f arg(g(0))d0 = 2πra, raeZ, and
(2π) πv

since then log (g (θ)) — 2π/w, may by the above reasoning be written as
/i (β + 0 -Λ (0) and so g(0) =f(θ + ξ)jf(θ\ where /= exp {/J.

Furthermore a constant C can be written as f(θ -f ξ)/f(θ)

iff C/(m) = β2πί<m'^>/(m) Vm

iff C = 22π'<w'^> for some meZ v .

Thus we may solve (3.6) for smooth (analytic) /for a given g iff we can do it for
Cg where

C r= e2πι<w,θ 5 some meZ v .

We may summarize all of this as follows.
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3.8. If logg(Θ) is analytic then (3.6) may be solved for analytic /(θ), if

1

for some meZ, neZ v .
Notice that the points m + <«, O with meZ, rceZv are dense in R.

3.9. We will need to know that if the integral condition of (3.8) fails then one cannot
solve (3.6), even in ZΛ

Lemma. Suppose that the g of (3.6) satisfies log \g\ eL1 and that jlog \g\ φ 0;
(3.6) /ztfs wo nonzero L1 solutions.

Proof. Let /eL1, /(θ + ξ) = g(θ) f ( θ ) . Iterating this gives

g(θ)g(θ + ξ) ..g(θ + (n

Choose nk-+ao, so that | |n f cξ||->Ό; then

a.e..

Now I {θ: |/(θ) I φ 0} 1 > 0, so we see that

for θ in a set of positive measure. However

Λ H - l

- Σ log|g(θ + rξ) | ->CΦθ for a.e. θ
n r==0

by the Birkhoff ergodic theorem. This clearly is a contradiction.
The above analysis may be applied to the problem of getting the point spectrum

for the operator Hε of (3.1).

or

where (3.10)

Define

G(Z) = _L_ Jlog |z-/?(0) |</0.

Lemma 3.11. G «• subharmonic, continuous and harmonic outside of [0,4v].
G(z)-+oo as |z|->oo and β = G(2v}^G(z) for all z.

Proposition 3.12. For ε <exp{(j(2v)}, (3.1) Λαs no pomί spectrum, while for
ε > exp (G(2v)}, (3.1) has infinitely many localized eigenfunctions with eigenvalues
dense on the lemniscate

= log |ε | .
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Proof. 1

(2π)<

thus if ε < exp {/?}, then

Jlog |g(θ) |</θ=-log |β |

f log |£ |>0,

so by (3.9) there are no L1 solutions, let alone L2 solutions.
If ε>exp{β}, then the lemniscate Pε={λ: G(λ) = log|ε |} is nonempty and

looks something like Fig. 3.
Now for Im(λ) φ 0, λeP , we see that log g(θ) is analytic in θ. Now if

then G1 is analytic off the real axis and has constant real part along Pε, so the
imaginary part must vary and hence the set of /Γs on Pε for which (3.8) holds is a
countable dense subset of Pε. To each such λ (3.8) gives an analytic solution /(0) to
(3.10). So f(m) is a localized eigenstate.

Note that as ε -» oo the sets Pε approach circles of radius ε about zero; this is not
surprising in view of the perturbation of Δ off εK.

Note. We have not been able to determine whether there is a point spectrum for the
case of ε = exp{β}.

We now analyze the rest of the spectrum, the inversion and construction of the
extended states runs along lines similar to that of Sect. 2; we run through the
arguments briefly.

Consider
w(θ)9 weZA (3.13)

Denote pλ(θ) by g(θ).

Lemma 3.14. Ifc = —-~ J log \g(θ)\dθ < 0 andg(θ} φ 0; then we can solve (3.13)
\ / πv

for f in terms of w (θ).

Proof. In this case the series of type (2.10) for f ( θ ) in terms of w(θ) is

/(0) = vKΘ-ξ)+ Σg(θ-ξ)...g(θ-kξ)w(θ-(k+ί)ξ).
k=l

Now by Lemma 2.18,

\g(θ -ξ)...g(θ- kξ)\llk^ec<\ uniformly,
so

etc.
Notice that in the above we can allow g to be zero at some points and still get the

same result, since one can find ψ (θ) such that

and j log | ψ \ < 0. We have
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Lemma 3.15. If j log \g\ < 0, then (3.13) has an L2 solution for every weL 2 .

Now suppose that g (θ) Φ 0 and J log \g \ > 0, then to solve (3.13), we may divide
by g (θ) to get the equation

g(ff)'
The latter can be solved now by (3.14).

Interpreting the above lemmas we have shown that in the region

(i) G(λ)<log |ε |

we can invert λ — HE, i.e. λ is in the resolvent of Hε;

(ii) G(/l) >log|ε | , and g(θ) nonvanishing (i.e. /iφ[0, 4v]), then λ is in the
resolvent;

(iii) G(λ) — log |ε | has dense localized spectrum.

It remains to show that if

{G(l)>log|ε |}n[0,4v]cσ(//ε),

which we do by constructing a dense set of /Γs for which we construct extended
states. As before we need to control the product of the /?λ's. We will need some
technical lemmas first.

Let A c= Πv be closed with μ (A) = 0 (here μ denotes Lebesgue measure). For τ
> 0, let Aτ = {x: d(x, A) < τ} then μ (Aτ) -> 0 as τ -» 0. For our applications A will
be the zero set of a trigonometric polynomial and as such we will have an explicit
rate

μ(Aε) = 0 ( s ) . (3.16)

Proposition 3.17. Let A be as above; then if

F={ξeΠv\3Cξ>Q for which

\\nξ — x\\ > Cξn~σ for some σ >0

and all xeA, n ̂  1},

then μ(F) = (2πγ.

Proof. See appendix.

Now let λm, m — {1,2, . . .}, be a dense sequence in [0, 4v]π{G(λ) >log |ε|}. Let
A(, A'2, . . . be the corresponding zero sets {θ: λm — p(θ} = Q} = A'm.

Let {bm} be a sequence of points, bmeA'm and let

Am — bm — Am.

For each m we may construct Fm as in (3.17) (with A replaced by Am). Let

*ί = (Vm so that μ(FΛ = (2πγ.
m

Let B be the set of strongly independent ξ. Now if ξ e F= ̂  r\B, and also

dθ>0,
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we claim there is a measure μ (as usual) such that

Hεμ = λμ.

Proof. g(bm) = 0, so as in (2.4) set

μ= Σ yj
7 = 0

then

Take

_
bm + ξ)...g(bm+jξY

It remains to prove that

Σ W < ° ° (3 18)
Now

yξ-*ll^Cξr σ , 7^1, σ>0,

and xeA'm = zQro set of gm. This follows by choice of ξeF. So the y/s are well
defined. The above implies that

log \g(bm+jξ)\^ - C'σ logy for suitable C'. (3.19)

Let h (θ) = log \g(θ)\, and let ψB be an approximate identity; let

hε=ψε*h.

It is not difficult to show

£ Λβ(θ + rξ) = cn + 5(«,ε), (3.20)
r = l

where \B(n,ε)\^ ^ |αm(ε)l NΓ (independent of θ) (see (A.I)), and where the
m φ O

#m(ε) are the Fourier coefficients of Aε. Thus

J
U l f e i

(3.21)
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Next we estimate the difference

Σ(hΛ(θ + rξ)-h(θ + rξ)).
r=l

To do so let t be a parameter to be chosen and let

Ct = (AJt={x:d(x,Am)<t}.

Outside of Q, Vh is bounded, indeed

|S-p say,

so that
,εC6

' t
So

Σ A(«o+7Ό= Σ
7=1

1= Σ (A-ΛJ, //= Σ

Now 1 7| <* C7 — by the above;

= Σ λ(θo+7Ό- Σ
JξeCt jξeCt

(by uniform distribution1 and λ(Cf) = O(ί)) ^4nf C'σlogn by (3.19).

NOW l l ^ ε l l o o = l l^ε* ^ l l o o = l l ^ ε l l r

where 1/r + 1/s = 1 (we choose r, 5 shortly). Also,

v v - v/i

Therefore

So combining

Choosing now r = 2v/(2v-l), j = 2v, ί = l/(log«)2, ε = l/(log«)3, shows that

1 The sequence jξ is uniformly distributed in Πv
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It follows that
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so the series (3.18) converges.
Putting together all of these propositions of Sect. 3 we obtain the results claimed

in 0.1. The number av corresponds to the point at which the spectrum moves from
being [0,4v], and bv to the point where [0,4v] lies interior to Pε. These numbers are

1
f l o g 2v-2 dθ\,

v = exp{G(0)} = f l o g
7=1

dθ

In dimension v = 1, αv = bv = 1 so there is an abrupt phase change, and the level
curves G (X) = log | ε | , ε > 1 , are easily calculated to be confocal ellipses with center
(2,0) and arcs ε + ε"1, ε " 1 — ε (use Jensen's formula).

We remark that everything that we have said about Δ + F, F= exp {2πz'<m, ξ>}
can be done for an arbitrary constant coefficient operator H = P+V, F as above,
where P = P(Dί9 . . . , Dv) is a polynomial in D1? . . . , Z)v.

Appendix

v4J. Proof of (2.24)

Suppose log g is analytic. We carry out the details in dimension 1.

where am are of rapid decrease

02πin(m,oi) ^Λ
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and where
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m

f log | ίKΘ) |dθ,
\^l(>) πv

which proves the lemma.

A.2. Proof of (2.25)

ja±-+m

^-(qj)~σ

by strong independence.
The rest of the proof is just as the argument following (3.19).

A3. ProofOf'(3.17)

Let σ be fixed, ε > 0 and

Bε>n= { ξ : \\nξ — x\\ < εn~σ for some xeA}.

For such a ξ there is m e Zv such that

\nξ — x — m\ <εn~σ

or

P _ m
< εn

Since ξeD = [0,2π] x . . . x [0,2π] (v times) as is xeA^D, it is clear that the m's
involved satisfy

|m |^2 |« | , (A.4)
so if then

xj

rm

For each m

Thus

Thus

^ εn

if σ > v - l
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