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Abstract. We prove for a general class of Gibbsian Random Field on Z" that
the set of tempered Gibbs states is compact. This class contains the Euclidean
random fields. Moreover if the interaction is attractive, there is a unique
minimal and maximal Gibbs state u_ and u, ., are unique translation invari-
ant and have the global Markov property. We also prove that uniqueness of
the tempered Gibbs state is equivalent to the magnetizations m, = u,(q,)
being equal which is true if the pressure is differentiable. - -

Introduction

It is well known in statistical mechanics, that any statistical mechanical system
with a compact state space has a compact set of Gibbs states. We prove in this
paper, by utilizing a criterion that goes back to Dobrushin [11], that also for
statistical mechanical systems with a non-compact state space the set of Gibbs
states is compact provided the interaction satisfies certain conditions, and we
consider as Gibbs states only the tempered Gibbs states. In fact we prove that the
set of tempered Gibbs states form a Choquet simplex. This holds especially for the
Euclidean lattice fields, and also for a much wider class of lattice interactions given
by one and two-body forces.

The compactness of the Gibbs states gives us the existence of the maximal u,
and minimal p_ Gibbs state in the case of an attractive interaction. Let us point
out that the Euclidean lattice fields have attractive interaction. In the case of
compact state space and attractive interactions y, and p_ were introduced by
Preston [40] which also proved that they were pure. Later Folmer [19]
pointed out that they also have the global Markov property if the corresponding
interaction is Markov. Using the compactness for the tempered Gibbs states in
the case of non-compact fiber, we are able to prove not only that the maximal
and minimal Gibbs states exists, but also that they are pure, translation invariant
and have the global Markov property. Moreover the set of tempered Gibbs
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states reduces to one point if and only if u, = p_, i.e. uniqueness is equivalent to
u, = u_ . Since for any translation invariant interaction u, and p_ are translation
invariant, we have that the magnetizations m, = u,(q,) do not depend on the
position x and of course m_ <m_. Using the technique of the Wasershtein
distance we also prove that m_ = m__ implies uniqueness of the tempered Gibbs
states. We also prove the existence of the pressure and the result that differenti-
ability of the pressure implies the uniqueness of the Gibbs state.

Among the main motives for writing this paper was the quest for pure Gibbs
state with the global Markov properties. Folmer and Preston had pointed out in
the case of compact state space the unique advantages of the maximal and minimal
Gibbs states. However, in the Euclidean lattice field theories the state space is
not compact, moreover the uniqueness and global Markov properties are especially
important in these models. Of course in the case of the continuous Euclidean
quantum fields the question of uniqueness and global Markov property is even
more important. It turns out that many of the techniques developed in this paper
extend to the continuous case. This is the topic of a forthcoming paper by the same
two authors.

It is only fair to mention here that much of the inspiration for extending the
known results from the compact state space to the non-compact state space was
provided by non-standard analysis. For a treatment of these problems by non-
standard analysis we refer the interested reader to [52].

I. Definitions and Notations

Let R be a denumerable subset of Z". For Xx, y, belonging to R we denote by d(x, y)
their distance in Z*

d(x,y)= Zv: |x, =yl (L1)

A slowly increasing sequence q = (q,) ., is an element of R¥ such that

AN > 0,sup d(0, x) Vg | < + . (L2)
xeR
& Will denote the set of such sequences. In much the same way %, will denote
the set of fastly decreasing sequences.

Giving a matrix r = (1(x, y)) we shall put

(x,y)eR2>
[ ]l =sup X |r(x, )], a)
xeR yeR (13)
Il = sup X [rGe, IL + nd(x, y) IV b)
xeR yeR

1.3.a).b). define algebraic norms on the algebra &7, of fastly decreasing matrices:

res/ g<sup Y [r(x, y)|d(x, ¥ < + 0 VNeN. (L4)

xeR yeR

At each site xe R we define a random variable o with values in R. The configura-
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tion space for the process 6, = (d,) . can be taken as the product Q, = R¥ with
the product Borel structure. £ is a polish space for the product topology since
R is denumerable.

Let §(R) be the set of finite subsets of R and F(R) the set of every subset of
R. For AeF(R), let Z , be the o-algebra generated by the subprocess o, = () _,.
If we identify Q, with Q, x Q (where A°= R\A), a # ,-measurable function is
nothing but a function depending only on Q. At last, M(Q,) will denote the set
of probability measures on Q.

In order to describe the thermodynamical behaviour of a system, we use the
Gibb ansatz:

for each finite region A €F(R) and each configuration q .. in Q
distribution of ¢ , conditionned by ¢ ,. = q . is given by

the probability

Ac»

Fch(qu) = Z,@) " []dq, exp(= VgIN]IT [Texp(— W, (g, —9g,)| (.5a)

xed xed yeR

where Z ,(q) is a normalisation factor.
In order to be precise we shall investigate the following special examples:
A) The W’s are a 6" positive convex function with strictly increasing, unbound-
ed, absolutely continuous first derivative. Moreover, there are Je.o/; and n> 1
A1) W, () = J0x, )1+ q|)
or
A2) W(g) =J(x,y) for almost all g.
B) V is a %? positive function and there is M, >0, o> Max(n — 2,0) (or
o = 01if A2 holds), 4 > O such that

lq| > M,=VP(q)> A|q|"

Note that A2)=Al).
From A1) it follows immediately that 1.5a is defined provided qe %%, and is
continuous with respect to q. We shall put

Eldg)=0 if q¢% (15b)

Since ¥, is a Borel subset of , it follows that 15a-1.5b) defines a Borel function
of qe Q2.

Examples: i) The free field with mass m: R = Z".
Vig=3m’q> W, (@)=3¢" if dlx,y)=1

and W, = 0 otherwise.
i) The P(¢) lattice field: as before but

Vig)=3m*q> + P(q),
where P is a polynomial bounded from below.

iii) W(q) = alq|”1 <o <2 satisfies Al.

The main property of the family (E ,.) .5z, = € is that it is a local specification
in the following sense [18, 40, 41].
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Definition 1.1. Let f (Q) be the set of positive, possibly infinite, Borel function on
Q.
A local specification is a family & = (E ,.) 13 r) Where foreach 4, E . maps f, (Q)
into itself and satisfies:
S1) Normalisation: E (1) = 1.
S2) o-additivity: If (F ), , is a sequence in f (), then
Y EW(F)=E Y F)
nz0 nz0
S3) Locality:1f Fef (Q), E ,.(F)is% ,.-measurable, and if F is % ,.-measurable
E,(F)=F.
S4) Compatibility: 1If A, = A, then
EACIEA%:EA%EAC1 =E .
The central problem in statistical mechanics is to find the global properties
of the process o, from the knowledge of the local specification &.
In particular the distribution of ¢, can be represented by a probability measure
w1 on @, whose conditional probabilities E u(-|% o) coincide p-almost surely with
E

Definition 1.2. Let & be a local specification. The set ¥(&) of Gibbs states of &
is the set of probability measures u on Q, such that for any Ae®(R)

A¢*

E(|#,)=E,(-) p-almost surely.

As it is well-known, %(&) can contain more than one point [11]; this pheno-
mena is connected with the notion of phase transition. However, in the case of
unbounded spin we are investigating, many Gibbs states have no physical re-
levance.

For instance, for the free field on a lattice, Guerra, Rosen and Simon [27]
have shown an example of such an irrelevant Gibbs state.

One way to avoid such examples is to constrain g, to a growth condition at
infinity, as suggested by euclidean field theories:

Definition 1.3. A tempered measure is a probability measure p on Q, such that
(u(| 0 ])eg is in P The set of tempered measures will be denoted by M (2,).
The set M, . (€2;) will denote the set of probability measures on €, such that
(ulexplalo,[))cp€ S

In the Appendix, we study the space 9, and give a characterization of compact
sets of MM,. Moreover we prove that &, has pu-measure one for any ueIi , and
1.5b is irrelevant.

It is easy to verify that pe%(&) if and only if uE ,. = u for any AeF(R). On the
other hand if E ..(Jo_|) < + o, and ue, then puE ,.eM..

The first problem is to prove that % (&) =M, N %(&) is not empty. Actually
we shall prove that it is a compact set with the help of a criteria first established
by Dobrushin [14].

Then we will use the technics of the FKG order [20] as developed by Preston
[40] to prove the existence of states with “+” or “—” boundary condition. If
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& is translation covariant, locally Markov and reflection positive, then u, are
translation invariant, globally Markov and reflection positive. Moreover _{&t(g')
is reduced to one point if and only if 4, = u_. The differentiability of the pressure
with respect to the external magnetic field is sufficient to insure this condition.

II. Existence and Compactness

We first remark that any limit point of the family (LE ;) 45, Where pedR, is a
tempered Gibbs state. Conversely if ue% (&) then p = puE, .V AeFR) and it is
such a limit point. We get a way of describing %,(¢). In the examples L5 if the
hypothesis A1-A2 holds, we shall prove that ¥ (&) is moreover compact. This
justifies the following definition. (See Appendix for the definition of #".7 . Topo-
logies)

Definition I1.1. A local specification & is compact (respectively J compact)
if it satisfies the following conditions:
(i) YueM,, (UE 1) 43, IS @ compact family in (I, #") (respectively (IM,, T7)).
(i) The set 4 (&) is # '-compact (respectively J -compact). It follows from
this definition that % ,(¢) is not empty if & is compact.

Proposition IL.2 [44]. If & is a compact local specification then 4 (&) is a Choquet
simplex.

Proof. We recall that a Choquet simplex is a metrizable compact convex set
such that any element can be decomposed in a unique way into an integral over the
set of its extreme points [9].

Since M, is a polish space, the # -compactness of & implies that ¥ (£) is compact
and metrizable. Moreover ue% (&) if and only if

ME . =pn YVAFR). (IL1)

From this it follows that % (&) is convex.
Nowlet# = () 4%, betheo-algebraatinfinity,and u,, 1, be two tempered

A<F(R)
Gibbs states. Then, if u = é(u1 + u,) we get
p,=Fu FeL{Qy, By, w. (I1.2)

Since y, satisfies IL.1, u is again a Gibbs state, and F, is #_-measurable. Then both
F AF, and F v F, are #_ -measurable, and therefore pu, A u,,p, v p, are
tempered bounded positive measures satisfying I1.1. This is precisely the definition
of a Choquet Simplex [9a), 9b)]. We recall that pe% (&) is extremal if and only
if every #_-measurable set has measure zero or one [40].

The interest of the Definition II1.1 comes from the following criteria first des-
cribed by Dobrushin [7, 14].

Theorem I1.3. Let & be a local specification. The following is sufficient for & to
be W -compact.

Egllo.) 4, + Y rix, o], (IL3)

yeR
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where A =(A,), g€ %> and r(x,y) =0,
[r] <1]r], y< oo VN,n>0. (I11.4)

Remark.

1) The matrix r describes the sensitive dependence of E,,. with respect to
the boundary conditions.

2) The proof of this theorem does not depend on the real character of g_. It
can take values in any complete metric space (X, p), and |o_| has to be replaced
by p(¢, 0,) where ée X, and p is the metric. [14]

Proof. From the appendix, a closed subset K in IR, is # -compact if there is a
positive sequence c €% such that

,,u(‘crxi) <c,x€eR,pek. (IL5)
First let us prove that % (&) is # -compact. If ue % (&), we get from I1.3

w(|o,|) = WE

o, [) =4, + L yua,)). (IL6)

YER

Let m be the sequence m = (u(| 0 _|)), g, 11.6 can be written as:

T-rm=A A=(4) (IL.7)
Since r has positive matrix element, I1.7 can be solved by:
m=(1-r"!A (IL8)

provided the Neuman series in the right hand side converges. But A is slowly
increasing. Let N be such that (for some K > 0).

A_<K(1 +d(O0, x))". (IL9)
Since ||r|| <1and |rf, , < + ,#, can be chosen so small that
0<n<ng=|r|, <1 (IL10)

This is sufficient to insure the convergence of the Neuman series for (1 —r)™ L.
Moreover

A
I R L R Y

[1 + nd(0, y)

K
= w(t = Il sup) = g

y

TéKU+M&mP

(IL11)
for some K’ > 0.

Then, (1 —r)~'A is in &}, which proves the % -compactness of G (6).
Let us prove now that for ue,, the family (4E,.) ez 1S compact in I,
Let A be a finite subset of R and, K q» IV such that

(IL.12)
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If x¢ A WE ,o(
m, = uE,

o ]))=u(|o,|), whereas if x€ A the estimate IL.3 gives:

a )4+ Y rlx, ym, + K Y rx, y)[1 +nd©, ) ¥
yeA yéA
<A, +K|r|, y[1+7d©0,x)]" + r m(x), (IL.13)
where r,(x, y) = r(x, y) if xe A, ye A, and r (x, y) = 0 otherwise. In much the same
way, the right hand side of I1.13 defines a sequence A’e &, such that

1 -r,m<A, (IL14)
which gives xeA.
m(x) (1 —r,) A (x) (1 — 1) 'A(x) (IL15)
for riy(x, y) Sr'(x, y) if x,yeR,n = 1. If x¢ A
m(x) = kE (|0, [) = ullo,]) £ 4, < (1 -7 'A ) (IL16

and we have proven the proposition.
Remark. If A, < AV xin1L3, then: thereis 4’ > O such that
u(lo,|) S A'VxeR, pue%(8) (IL.17)

as can be seen easily from this proof.

III. Compactness: Exponential Bound

In the examples 1.5 we shall prove more than the Dobrushin estimate: every tem-
pered Gibbs state is in M, , . The following result is the main step in this context:
Proposition II1.1 (Exponential Bound). Let & be alocal specification. Let us assume
the existence of constants A > 0, B> 0, C and of a positive matrix r = (r(x, y))

x,yeR?
such that Y
alo,| A 2
E, . (") Sexp Sa +Ba+a) rix,ylo,|+C]|, (I1L.1)
YER
with
[e| <1 and ”l’][",N < + ©oVN. (I1L.2)

Then, & is I -compact, and every tempered Gibbs state u satisfies for some A’ > 0,
B'>0,C"20:

A/
u(ealf’xi) __<__ exp<?a2 + Ba+ C,> VXER, [J.th((g)) (1113)

Proof. Clearly 111.1 implies I1.3, and & is a # -compact local specification.
Let q be an element of ¥} and let m% be the sequence:

mY(x) = Log E%.(e“!°~!). (11L.4)
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From S4, I11. 1 we get:

A
m¢(x) = Log E4.(E . (€!")) éEaZ + Ba + Log E4.(exp(a).r(x, y)|0,])) + C.
’ (IIL5)

Since Y r(x, y) < 1, we can use the Holder estimate to find:
y
2

m (x) < A% +Ba+C+r,mi(x)+a Y r(xz)|q) (I1L6)
z¢A

which implies as in Sect II (using r(x,y) = 0 ||| < 1)

m4 (x) <(1 —rA)‘l(A%+Ba+ C)+a Y X A=)y 2)q.]

yeAd z¢A
2

a
<SA—+Ba+C+a},
2 z¢A

el (11L7)

Since g€ ¥, the last term in the right hand side goes to zero as A goes to R, which
means

2
lim sup E9.(exp(a|a,|)) Sexp (A'% +Ba+ C’). (11L.8)

At R

Now let u be a tempered Gibbs state. We know that . has u-measure one.
Therefore, giving L > 0, the dominated convergence theorem implies:

p(min(exp(alo,|), L)) = pE 4 (min(exp(a|o,|), L))
< u(lim sup E ,. (min(exp(a| o |), L)))
A

2
< exp(A'fz— +Ba+ C’). (11L9)
By Fatou’s Lemma it follows that if LT+ o

2
p(explalo,|)) < exp (A/% Y Ba+ C'>. (I1L.10)

The compactness with respect to J comes from the remark A 7 in the appendigj

Theorem IIL2 Let us consider the local specification & defined in 1.5, where V and
(W..,)s.yer satisfy A-B. Then, & is 7 -compact and the exponential bound II1.1 holds.

Proof. In order to estimate exp (a|o_|) it is sufficient to estimate exp (ag,) with
a€R. But the estimate is the same for ¢ > 0 and a < 0. Thus let us assume a > 0.

First of all; #7359 — E{,.(exp (a0,)) 3R is increasing (the ordering on & is
the product ordering in R®). Indeed:

0
Fs E}.(exp(as,)) = E{ . (exp(ac ) W) (o, — q,))

y
— E{.(exp(ac ))ER,. ( Wx(,ly) (6,—4g)) (IIL.11)
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Since geR — exp(ag) and geR — WY (q — q,) are increasing functions (by A), the
right hand side is positive (FKG inequality, see sect. IV).

Thus we can choose q,€ % big enough and assume q = q, to get an upper
bound.

Now let p, be a positive real. We get immediately:

[ dgexp(— V(@) — W.(q;9) + aq))
El (exp(ao,)) S e + 20 , (111.12)
fdgexp(—V(g)— W (q;9)

po

with
Wi 9= 2 W, ,@—q,) (I11.13)

YER

We shall estimate the last term in II1.12. We note the following result

Lemma IIL3. Under the hypothesis A, we have

) AK>0 |Wh(@| <KJ(x,y)(1+|q)) " (I11.14)
i) geR—> W _(q;q) is " for every qe S
and
0
5 Va0 = 1L Wi —q) (IT1.15)
q YER

Proof. We have for g > 1,

2g
W, (2q)~ W, (@)= [ duW")w) (T1L.16)
q
Therefore, since W) is increasing
aWiig) =W, (29)~ W, (q) <qW)(2q). (I11. 17)
From this one gets for some K > 0
lal = 1= Wg)| < KJ(x, [T +]gl]" (I11. 18)

Ifjg| <1,
|Wh(g)| < Max(WNL), WE(— 1)) 2" 'KJ(x, y)[1 +|q|]"~*, (L. 19)
and it is proved.

The same estimate suffices to prove ii). O

Now to find a bound for III. 12, we shall expand the integral around the mini-
mum of the exponent. Since it is ' with respect to g, the absolute minimum g, is
the solution of

0
vig,) + 2 W.(q,:q) =0. (I11. 20)
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Lemma IIL4. (i) Thereis0 <q,€ % suchthat if q 2 q,, the equation 111.20 has a
unique solution q (q).
(ii) For q = q,, q, is an increasing unbounded function of q.

Proof. Let M be a positive real, and J(M) be the set of g€, such that IIL 20
has at least one solution g, greater than M. We claim that J(M) is not empty.
I11. 20 always has solutions because V! is asymptotically strictly increasing

0
and unbounded, and (;/Z" is a strictly increasing function of ¢g. On the other hand,

if every solution of 111. 20 is bounded by M, for every qe #%. V!(g,) would remain
bounded, whereas if g, —» + o, W{)(g, — q,) goes to + o, contradicting III. 20.
Now let M, = M, (see Sect. I-B.) such that:
sup V(g) = V(M ). (IL. 21)
q=M;
M, exists by the assumption B because if || = M, V"(q) is strictly increasing.
Therefore if
a= sup VW(g), (I11. 22)
q=Mo

it is sufficient to choose M| > M, such that V')(M,) > a.
Now ifqe J(M ), Eq. I1L. 20 has only one solution g, = M, because

0
qe[M,, o] = V‘”(q)+a—qW(q;q) (I11. 23)
is strictly increasing. On the other hand, if ¢ < M, we have: (due to III. 21)
0 0
V®(q) + 3 Wi(g;q) < VMg, + % W(g,;9)=0. (I11. 24)

Thus, if qe J(M,), I11. 20 has exactly one solution (greater than M ).
Clearly g, is increasing in q; indeed: let q' > q, q' # q, then:

0 0
Vg, + 3@ 0) < viig,) + % w(q,.9) =0. (IIL. 25)
and if
(1 a ’
g—> +o V ’(q)+a—qW(q,q)—>+oo. (ITL. 26)
Therefore, there is g, > g, such that
., 0 .
Vi(q) + % Wi(q.,q)=0. (I1L. 27)
Picking q,, in J(M,), we have proved our lemma. O

Lemma IILS5. Let q, be as in the previous lemma. For q 2 q,,q€ ¥y, we have for
some K, = 0.
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[ dgexp(— V(g) — W.(q;q) + aq) .
I(q) = %— <K, eXp(zA _
§ dgexp(— V(g)— W (q;9) 1

9c

2

+ aqc>. (IIL. 28)

Proof. Let F be a function on R and define

[ dg exp(— Flg) + ag)
Ip=%— : (I111.29)
j‘ dge @
4c
We claim that if F,, F are two functions such that F, — F is increasing on
[g,, o], then

I, =1y, (I11. 30)
Forif F,=aF  + (1 — «)F,, we find (with obvious notations)
61
@a = Zz que F“(q)fdp e " [e“ —e®][(F, — F,)(q) — (F, — Fo)(p) ].

(@) gc qc

(IIL 31)

Since both g - e**and F, — F  are increasing on [g,, o0 ], the integrand is positive,
and the claim is proven.
Let us apply this remark to our case:

F1 =Viq) + Wz(q ;q), a)
4 (I11. 32)
_ at2 ¢+ 2 @+ 1 (@ +2 b
o, (0( + 1)(0( + 2)[q (q qc)q )] )
Indeed, by definition of g, we have:
q
FO=v®g) + WPig;9) 2 [duV(u)
qgc
> Ajduu =F{,q2q, (I1L 33)
4c
Because V®(u) = Alu|* by (B) for u > g, > M, and
Wg;9)— Wg,;9020 g=gq,. (II1. 34)

Thus F | — F, is increasing on [q,, o0 |. Now, replacing F, by F , and putting

X
q=4q.,+ W’ (I11. 35)

c

we get (with Z(g ) a normalization factor)

1 a
<_ Ax? [do(1 - 0)(1 + q—,f—ﬁ> + a;%) I11. 36)
0 ¢

c

I(q) £ ; 51
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By the dominated convergence theorem, the normalization factor Z(g,) con-
verges to:

© _ 2
lim Z(g) = | dx exp<%> = /24, (IL. 37)
¢ > O 0
whereas the numerator is dominated by:
i — sz 2 2 a
[dxexp T+ ax/q¥? )= exp| a*/2Aq; I11. 38)
0
and the lemma is proved. O

Due to IIL 12 with p, = g, and III. 28, Theorem IIL 2 will be proved once the
following holds:

Lemma IIL6. The following estimate holdsif qe J(M )
4. =B+ Y r(x,»)lg,, (I11. 39)

YER
where B> 0 and r is such that |[r| <1,|r], y <+ ©V¥N 20.

Proof. Let us assume o>n—2. Then g, minimizes the function g — V(q) +
+ Y W, (g — q,). Thus one gets

yeR

V(g) <V(g)+ WUq,;9) < V(0)+ ) W, (—aq,) (I11.40)
y
Using A1 — A2 one concludes

VM) + (g, ~ M)VOM,) + A | (g, — widu < VO0)+ Y J(x 1+ g T
o ! (I11.41)

., A !
Changing eventually A into 5 we then can find a constant B, such that:

q.>M, = g P EB A Y[+ g)Tr (11142)
y

4
2o + 1) (o + 2)

Thus, there are constants B,, A, such that

q. §Bz + AzZJ(x° y) Y+ 2)[1 + ,qy”n/(a+2). (111.43)
y
Since
n<o+2(1+|q,[)"*? <ale) + &1 +|g,]), V&> 0, (111.44)
and thus I11.39 is proved.

Let us assume A2 to hold. Then from II1.20 we get

6qc (2) aqc 2)
oy T § WiNa.~ 4)5 = Wia.~ . (I11.45)

y

V(q,)
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From A2 — B (taking a« = 0) we get:

oq J(x, )
e SN 111.46
0q, ~ A+ J(x,) (x: ) ( )
y
from which III.39 follows with
1]
="l <] 111.47
Il =57 a4
and
131,
My
H ”y,zv A+“JH<+ O
IV. The FKG Order
The configuration space @, is ordered by
q=q<q =g, VxeR. (Iv.1)

We denote " (Q,) (respectively A _(€,)) the set of bounded increasing respect-
ively decreasing) measurable functions on Q.- (€;) is a convex cone; it deter-
mines the order in the following sense

Q=9 <=FQ =F(q) YVFeX (Q). (Iv.2)

Moreover, if uu, , i, are probability measures on Q, coincidingon " (), 4, = K, ,
for A" (Qg) N €(Q2y) separates the points of 2, contains constants and is invariant
by complex conjugacy. Thus, for every compact set K < Qp, 6(Q: )N A" (2g)
generates a dense *-algebra in 4(K). Thus u; and u, coincide on compact subsets
and this implies p; = u,.

A dual order can be defined on MM(Q,) by

fy € py <>y (F) S py(F)  VFEeA (Qp). (Iv.3)

It will be called the FKG order [40].

The remarkable property of our model comes from the fact that the local
specification & leaves " (£2;) invariant (see Prop. IV.2 below). Following Preston
[40] we propose:

Definition IV.1. A local specification & = (E ;) s 5z, 18 called attractive, if fog any
AeFR)

E (A (Qp)) A () (Iv.4)
Proposition 1V.2. The local specification L5 is attractive, provided (
satisfies A.
Proof. Indeed, let F be in 4" (Q,), and ¢ =¢q". We get

ES.(F)= [dpd(® )F®D 4, 940)- (IV.5)

xy)xy
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Replacing F(p,,q,.) by F(p,,q/,.) inside the integral, gives an upper bound of the
right hand side. On the other hand, the probability measure u4 has the form:

dudp,) = Za )H(dp exp(— V(p,)— X W, (b, —g))exp(— Y W, (p.— D).

xed y¢A x,yed
(1V.6)
Since
62
. (=Y V) + X Wb —4,)) — Y W, p.—p)
px py x'ed v EA x',y'ed
=Wap,—p) =0, av.m
it follows that p4 satisfies the FKG inequalities [43]
H(G,G,) Z i(G IHYG,), Gyu Gyed (2. (IV.8)

In particular if Ge 4" (2,):

0
y¢A= au}(G) 2 AMUGCW o, — q,) — UYGWAW, (0.~ q,)}
y xed (IV.9)
is positive. Thus:

HUG) SHY(G), Ged (@) (IV.10)

If G(p,) = F(p,, q,) we get the result:
E3.(F) £ 13(G) £ u3(G) = ES.(P). (IV.11)
O

The main property of local compact attractive specifications is described in the
following:

Theorem IV.3. Let & be a local, compact attractive specification. Then 4 (&) has
a unique maximum (i, and a unique minimum i _ for the FKG order.

Proof. First we prove the existence of a maximum. Let (1), , be a totally ordered
net in G (&). Since & is compact, it has a limit point x_ in % (&). In particular there
is an increasing subnet o(f) such that

u (F)= 1i£n up(F). YFEA (Qp). (IV.12)

Since - u,, is increasing in the FKG order we get:
p (F)=sup u(F) FeX (Q). (Iv.13)
Thus p_ is unique since it is uniquely defined on 4" (Q,), and is precisely the

supremum of (u,),_,- By the Zorn lemma, % (¢) has maximal elements.
Let now u, and u, be two such maximal elements in 4 (&). In Q, the map

(4,9)€Q, x Q, = q v q = (max(q,,q.)), €2
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is measurable. Let p be the image of u, ® p, under this map. We claim that:
peI,. For

p(lo )= fdu,(@du,®lq, v
< du,@du,@)(a,] + Ip,)) < 1, (lo, ) + (o). (Iv.14)
On the other hand, p 2 p,,i =1, 2, because:

Fed ,(Qg)= p(F) = [dp,(@du,@)F(g v p)

2 [du@F(@, i=1,2. (IV.15)
Since & is attractive, it follows that
i=1,2, p=pE, cpE, YAeFR). (IV.16)

Since & is compact, (pE ) 4qr, 18 compact in M, and any limit point p_ is a
tempered Gibbs state such that

Ky OCp sy oL p . (Iv.17)
By definition of u,, u, we get
Ui=p,=p_ . 0 (IV.18)

The previous theorem is too abstract. The following result gives a rather con-
crete construction of u .

Proposition IV.4. With the hypothesis of Theorem 1V.3, the maximal state ji, is
given by:

p, = lim E9, (Iv.19)
ATR
for any q€ &y such that
) g. >0 Vx. (IV.20)
il) 3N > 0 depending only on &, such that
d(0, x)V

)

xeR x

<+ . (IV.21)

If moreover & satisfies the exponential bound I11.1, then, ii) can be replaced by
iia) g, = BLog|d(0, x)|'/ (Iv.22)
for B large enough.

Remark. The estimate IV.22 has already been proposed by J. Lebowitz and E.
Presutti [31].

Proof. For qe.%;, the Dirac measure 6, belongs to M (2,) and Ef. =0, E .. &
being compact, this family of measure has a limit point u .
Now, let F be in ", (), and p be in %,(&):

wWF)= [ du@E(F)+ | du(p)ER.(F). (IV.23)

PA°Sqa° pacftqac
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Since & is attractive, E5.(F) is an increasing function of p; on the other hand F is
bounded by | F|_ . Thus:

W(F) S ES(F) + |F| n{peQy:3xéA, p. 2 q,}. (IV.24)
The last term of the r.h.s. can be estimated by:
N
y o)) <y Kd(0,%)" _ g, (IV.25)
x¢A qx xeA¢ qx

where K >0, and N =0 depends only on & since %,(&) is a compact subset of
M,(Q,). By the hypothesis for any sequence A, “converging to R, lime¢, =0.
Choosing a suitable subsequence 4, we get:

WF) Sp (F) Fex ,(2p) (IV.26)

which proves that u_ = u .
Now if & satisfies the exponential bound IV.25 can be replaced by (see eq. I11.3)

Y inf[u(exp (ao,)exp(— ag)] < ¥ exp(i(—q;—;i)z) (av.27)

c
xede ¢ xed!

Since R = 7" the r.h.s. converges provided IV.22 holds with
B?

d

V. The General Properties of y,

The remarkable states 4, may have inherited properties of the local specification.
In this section we prove that u, are extremal in % (&) and that (&) is reduced
to one point if and only if 4, = pu_. We prove that u, are translation invariant
if & is translation covariant. They are reflection positive under suitable properties
of &. At last, we prove that they have the global Markov property if & is locally
Markov. In what follows & is a local compact, attractive specification.

V.a Extremality

Proposition V.1. The states p, and p_ are extremal in % (&) and 9 (&) has one
point if and only if u, = p_.

Proof. Assume p, =ou, +(1 —aju, with 0 <a <1, u,€%(&). For F belonging
to A" (Qg) we get

p (F) = ap (F) + (1 — a)u,(F)
po(F) 2 p(F), i=1,2. (V.1)
Thus
t (F) = p,(F) = p,(F), VFeX ,(Qp), (V.2)
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which means

Py =l = My (V.3)
If moreover u, = p_ we have by construction:
po(F)y=pu (F)SuF)=su (F) VFex (Qp) Yue%(é). (V4)
That is
p=p, =p_ Yueg(é). (V.5)

V.b Covariance. Let t be a Borel isomorphism of Q,, into itself. For F a measurable
function, we put

tF(q) = F(z™'q). (V.6)

Definition V.2. & is said to be t-covariant if for any A€ F(R) there is A4 eF(R)
such that

1E, . = E . (V.7

Proposition V.3. Let & be t-covariant. Then 4 (&) is t-invariant. Moreover if the
action T respects the order (ie. T5' A (Qp) = A (Qp)) then u, and p_ are t-
invariant. If T reverses the order (ie. 1™ ' A (Qp) = A _(Qp)), T u, =p_.

Proof. Let u be a tempered Gibbs state. Then t*yu satisfies for every F bounded
and measurable and A€F(R)
T U(F) = u(tF) = WE 4 (tF)) = W(tE ,(F)) = T*pE ,(F). (V.8)
Thus
™*G(6) = G (). (V.9
Since u, is maximal we get:
p_ocT*u oo, p_oct M oo, . (V.10)
If moreover t* respects the order we get from V.10:
Fed (@)= p (F)=1""*u (tF)S p, (cF) = t*p, (F) S p, (F),  (V.11)
which means:
U, =1, . (V.12)
If ©* reverses the order, F is decreasing and
FeX ,(Qg)=p (F)=1""*u_(tF) 2 u, (tF) = *p (F) 2 p_(F). (V.13)
Thus
u_=1t*p, . [O(V.14)
Examples. (i) R=7" (wq),=q,, acZ'. (V.15)
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The local specification in I.5 is translation invariant

iff Wk =W 0@, Yx,Vy (V.16)
(translation invariant interaction). Then 7 respects the order.
ii) 19 = —q (spin flip). (V.17)
The local specification is t-invariant iff it is even, which means
Vi-g=V(g W, (-a=W,_(q Vx, yeR (V.18)

In this case, 7 reverses the order.

V.c Reflection Positivity. Let us consider the case R = Z". Let II be the hyper-
plane IT = {xeR", x, = 1}, and 6 be the reflection about II. § leaves Z* invariant
and exchanges the half spaces IT_ and IT _ defined by II in Z*. Let © be the cor-
responding action on the bounded measurable function on Q, :

OF(q) = F(bq) with (0q),=q,, x€Z’. (V.19)

We denote by 2, the closed convex cone generated by OF F where F is bound-
ed and #4;; -measurable. (We take the closure with respect to the topology induced

by weak topology in [ ) L*(Q, B, u) for every tempered measure p).
ueM;

Definition V4. & is reflection positive, if for any finite f-invariant subset A of
R =277, and any f-invariant configuration q, E4.(F) =0, FeZ .

Proposition V.5. If & is reflection positive, p, and p_ are reflection positive i.e.:
p,(G)2z0 VGeZ, . (V.20)

Proof. Let q be in & such that 6q =q. Then G(q) 20 VGeZ , by definition
of 7.
In particular if g > 0 satisfies IV.21, and 0q = g, then for G being in 2, we have:

i, (G) =1limE%(G) 2 0. (V.21)
4 0
Example. Let us consider the model 1.5 with the following restrictions:

RP1) W, =0 unless d(x, y)= 1.
RP2) Wy 0,=W,, X yeR.
RP3) exp — W, (q) is a function of positive type.

Proposition V.6. If the W’s obey RP1-3), then the local specification in 1.5 is
reflection positive.

Proof. Let A be a finite subset of Z* f-invariant and A4, = AnII,. We claim
that if xe A, , yeZ” are such that d(x, y) = 1, then either yell ., or y = 0x. For
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if y¢II,, we have

d(x, y)=|x, — y,| + ilxa—ya]=1 (V.22)
and -
x,z1 y 0 (V.23)
Thus
i =yl=1 x,=y,=y=0x (V.24)

Let 04 (respectively 04 _) be the set of xeA + (respectively 4 _)
such that d(x,0x)=1; we put A, =1 \A_ (respectively A_ =
I\A_) A, (=A,04_ (respectively A_,=4\04_)

Then if F is %,; -measurable and bounded

ch(@F.F) =
Z(q ——fdw,, P4, Jduy, (0),, l)xelgm dp,d,, exp(—V(p,) —
= VPox) = W, o (0, — Po))OF, F(p 1, q,,.), (V.29)
where du,, , is some measure on 2, , Z(q) a normalization factor, and:
FW(pA,qAC)=F(PAane+)€XP( DD ) p.—4,) (V.26)

XEA, YEA S

The numerator in V.25 can be written as:

I TT dpdpo,exp(= W, 0 (b, = P ) E (b 04e ) E(py, (00).)  (V:2)
x€dA 4
for some F. Since exp (— W, 0x(@) 1s of positive type, we get a function in 2,
because

Y. M,OFFe? if(M,), 20. (V.28)

ijlij =
0=1,jEN
The same is true for Z(q). Since q = 0q and FeZ = F(q) = 0, we get the result.
O
Remark. RP3 is verified by any function W given by the Levy—Kintchine formula
[51]
W(g)=aq* +bg+c— [ (€% —1—igs)dvis)— [ e®dv(g), (V.29)

Isi=1 Is|=1
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where v is a positive measure with:
| avis)+ | s?dv(s) < + . (V.30)
Islz 1 NES!
+ w0
If we want W to satisfy the assumption 4, it is enough to assume | s? dv(s) < + o0,
a =0 and s*dv(s) is a measure of positive type. For example ~—«

W(g)=alql’, 1<0=2 (V.31)

satisfies RP3.

V.d: The Markov Property. A measure u has the Markov property if for every F,
% ,-measurable, E (F |4 ,.) depends only on the “boundary” of A; we will disting-
uish between the global Markov property for which no constraint is imposed on
A, and the local one for which 4e&(R) is needed. To be more precise we adopt the
following definition [1, 2, 3]:

Definition V.7. 1°) A local specification & is locally Markov if one can find an
integer r = 1, such that for any finite subsets A, 4, of R, with dist (4,, 4,) >r,
and any function F, (i = 1, 2) # , -measurable one has:

EAlquc(FI.FZ) = E(Alqu)c(Fl)E(Alqu)c(Fz)' (V.32)

2°) A tempered measure is locally Markov if the specification &, =
(E,("|%# 4)) segw, 1s locally Markov. It is globally Markov if V.32 holds for &,
for any subset 4, A, of R with dist (4,, 4,) > r.
The main result of this section is described below.

Theorem V.8. Let & be a locally Markov, local, compact attractive specification.
Then, if & satisfies the Dobrushin estimate I1.3, u. and u_ have the global Markov
property.

Proof. The main property of & is given by Lemma V.9 below. Once it is proved,
the theorem follows trivially:

Lemma V.9. Let & as before, and O = R. Then
E% (F|B,)= 1Am:z E& o) (F) (V.33)
for measurable function F, and every q€ & such that

d(, x)V
( X)—< + co for some N.

q,20x€e0, ).

xef x

Proof. Let p be a slowly increasing sequence on (%, pe .., and let &, , be the local
specification on Q, defined by:

0= E%) 450, (V.34)
with

ER.(F)(@) = E ,(F (V.35)

) l{‘lx =px;x¢0}°
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In other words, the configurations coincide with p outside @. Since the Dobrushin
estimate holds for & we get

xe( E?

o)A, + Yrx, 0lp, |+ Y rx, o, (V.36)

y¢o ye@

r|, y <o implies that &, , obeys

{x}”

P = (p,) ¢ being slowly increasing,
a Dobrushin estimate with
A=A+ ) rx)|p,l (V.37)
y¢0
By virtue of Theorem I1.3, & .0 18 a compact specification. It is also attractive if

& is, as can be trivially verified from V.35. From Theorem IV.3, there is a maximal
probability measure, say M *0 on (&, o). From Proposition 1V.4

@(F) = lim Eﬁ’cq(F) pES ., (V.38)
Ar0
d(, x)V

where €%, g = 0 and Z < + oo for some N depending only on & and

xe q,
p. Thusp— MP’@(F )is @@c-measurable.
Now let G be a %,.-measurable function and q be in &’ as in Prop. IV.6

i, (GF) = lim E4.(FG) = lim ES.(E,,,,(GF))

A”R A~R
= lim E4.(GE,_ .(F)), (V.39)
A 7R

where o,.(x) = o_if xe®“. Due to V.38 we get
1 (GF)=p (GM ] F)). (V.40)

Since M :@w(F ) is B, measurable, the definition of the conditional expectation
gives:

E, (F|B,) = M. (F). (V.41)
Examples. 1If the W’s satisfy A with
W, =0ford(x,y)>r,

then the model has the local Markov property.

V1. The Pressure and Uniqueness Criteria

V1.a The Pressure. Coming back to the model L.5, we define the pressure with
“free boundary condition” as follows:

Z4 = [ T1(dg, exp(— V(g ))exp(— Y, Y. W, (4, —4,) (VL1)
xeA xeA yed
and
. 1
p’ =lim — T log Z/,. (VL2)

AR
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Here |4| denotes the number of points in A4, and the limit 4 /R is taken in the
van-Hove sense [44].
Proposition VL.1. If V and W’s satisfy A, B then p’ exists.

Proof. Without loss of generality we can normalize V(g) such that

[dgexp(~ V(g) =1. (VL3)
Then, since W, > 0 we get
Z/ <1 (VL4)
From the Jensen inequality we get
Zhzexp— Y [dgdpexp(—V(p) = V@)W, (p—q. (VL)
x,yed
Let us put
a= [dgdpexp (~ V(p) ~ V(@)[1 +|p - q|]" (VL6)
It follows from B that 0 < a < + 0. Thus:
Zizexp—a Y J(x,y)= exp —|4|a]T]. (VL7)
x,yeA
On the other hand if 4,, 4, are disjoint, Wx’y = 0 implies
VA Z{hZﬁz. (VL)

This estimate together with VL4, VL7, implies the result [46, 47].
Now, let q be in ¥ and we define

Z,@=[]ldp,exp(= V() exp(= 3 > W, (p,—p,)

xed oA yed
rexp(— Y Y W, ,(p—4)), (V19)
oA yid
PA@) = — 1711\ log Z ,(q), (VL.10)
and
pt= ilrr; [du@)p @), peM(Q2y). (VL11)

Proposition VL.2. Let us assume A, B. If ue% (&) then p* exists and coincides with

oA
p’, provided there is ¢ > 0 such that '/|1|1 ]£—> Oas A~R.

Proof. From W __ 20 we get
Z,q=Z. (VI.12)
By the Jensen inequality we get:
Zq)zZjexp— ) Y AW, (0,.—4q,)>, (VL13)

xedygd



Random Fields on a Lattice 319

with an obvious definition for (-} ,.
From A, we can estimate the right hand side as follows

(W, (0, —4)>, ST )+ o ]y, + g, (V1.14)
Now we claim that there is a constant K, such (see Lemma V1.3 below)
U+|o > <K, Vxed YAeFR). (V1.15)

Assuming this estimate we get
fau Y X AW, (0, ~ ), SK, Y ¥ I, )
xed y¢A xeA y¢A

because, for pe% (&), p satisfies the “exponential” bound IIL3, thus u((1 + |o,|")
is uniformly bounded in y€eR.

Now let
Ay = {yg¢A;dist (4, y) <|A[}. (VL16)
(Here 04 = {y¢ A;d(A, y) £1}.) Then
Y Y I, y) < | oAl (VL.17)
xed yed,
if J'(x, y) = J(, x). On the other hand, (VL.18)
ST HenSHY T dxn sl i)
xedygAuAd, xed ygAuA; IAI
Thus
1 1 oA 1
- T log Z/, < [du(q)p (@) < — Wlog Z+ 0<]A|1‘£> + 0<|AVN> (VL.20)

and the result follows.
It remains to prove:

Lemma VL.3. The estimate VI.15 holds.
To prove V1.15 it is sufficient to prove

’

A'a?

Cexplalo)3, = e

+ B'a+ C/> YAeFR)a> 0. (VI1.21)

This estimate follows from III.1, where we have put W, , =0 unless xe4, yeA.
Then, the matrix »(x, y) does not depend on 4.
V1.b) Uniqueness Criteria

Proposition V1.4, Let & be a compact, attractive local specification. Then 4 (&) has
one point only, if and only if

p(o)=pn_(o,) VxeR (VL.22)

Remark. Using the Lebowitz inequalities such a result can be proved in example
[32]. However here we follow a rather general argument.
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Proof. By Proposition V.1 it is enough to prove that V1.22 implies p, = p_ .
Let f = (f,), ., be a positive rapidly decreasing sequence on R and

of)=> o f.. (VL.23)

Let R; be the corresponding Wasershtein distance (see the Appendix). We get:

Ryt i) = § ds[ie, Gt o (00) — (1 (0®))]  (VI24)

Since pu, >up_ and y, . (o(f))eA" (2,), we can forget the absolute value to
get

Re(p, ) =p (o(f)) —u_(o(£))= L f(n,(0,)—p_(6))=0, (VI25)

f being arbitrary, pu, = p_. |

Now let h be a real number, and let p(h) be the pressure corresponding to the
model 1.5 with V replaced by

Vi(q)=V(g) — hq. (V1.26)

Clearly p(h) is a concave function of h. We assume moreover that W, depends
only on x — y, on R = 7" (translation invariance). Then we get:

Proposition VI.5. Let us consider the model 1.5,A, B,on R =7", with W,__ depend-

(x,)
ing only on (x — y)eZ". Then if p(h) is differentiable at h = h, the set of tempered
Gibbs states corresponding to V, is reduced to one point.

Proof. p(h) = lim p“(h), (V1.27)
P =J - T A[ log Z"(q)du(q). (V1.28)

Thus, p%(h) is concave and of class ' in h. A well-known result on the concave
functions [ 17, 24 ] allows us to give:

op(h )_ . 8p‘/‘1(h0)
0h0 —h{rln o (V1.29)
But
apﬁ(ho)
T A|5 @B ¥ 0) =~ Alngu(a) (V1.30)

In particular for u=p, ,u,(6,)=m, Vx, for u, are translation invariant (Prop
V.3. Example 1). Thus

ap(h,)
oh

since u can be choosen arbitrarily in % (&).

=m, =m._ (VL31)
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Using Proposition V1.4 the result is proved. O
Example. Let us consider the ¢* theory on the lattice:

W (@) =34 dix,y=1
=0 otherwise (VL32)
V(g)=3(m* — 0%)q* +Ag*, 1 >0.

The Lee—Yang theorem allows us to prove that p(h) is analytic in h for Re (h) # 0
[26, 27, 49]. In this region we have the uniqueness of the Gibbs state:

Corollary VI.6. For the (1p* + bp?* + ho) theory on the lattice, the set of tempered
Gibbs states is reduced to one point provided h # 0.

Remark. In this example, let 4" be the unique Gibbs state corresponding to the
case h > 0. Then if u is a Gibbs state for h = 0, the FK G inequalities give:

o pt, (VL33)
Thus, due to the compactness of &
limlim p"E .. = p, (VL34)
h~0 A~R

If & is the local specification corresponding to h=0. This construction was
precisely done by Frohlich and Simon [21] in the context of field theories to get
the ” + ” state for the P(¢), theory.

Appendix: Tempered Measures

As before Q, is the space R® with the product topology; ¥ is the subset of slowly
increasing sequences in Q. &} is equipped with the topology o(, &), where
& s the set of fastly decreasing sequences, by the canonical duality:

QeI fe s 4|f>=Y q f.. (A.1)

xeR

Since & is separable, if 2 is a dense denumerable subspace of ¥, the map
Qe S = ({q|f D) ,eR*=Q, (A.2)

gives an homeomorphism between ., and its image X - in the topological space
Qy. It is well-known [48] that the weak topology and the strong topology on %
coincide, that %% is a polish space, and that a subset B of & is compact if and
only if there are Cy; > 0 and N € N such that

qeB=|q | < Cy(1 +d(0,x))"s (A.3)

Now let M (Q,) be the set of tempered measures on Q. For f belonging to
Fr={feF:f. 20 Vx} we put

pe@= Y filal- (A4)

xeR
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Then peM(Q,) if and only if peM(Q2,) and
upe) < + oo Ve, (A.5)
Let # be the weak topology on I, and we equip M, with the induced topology.

Proposition A.1. [39] For every ue,, the subset & of Q has y-measure one.
Proof. We get easily, using the Tchebischef inequality

U\ ) < {aeQy :3xeR|q | 2 (1 +d(O0, X))} (A.6)
<e¢ ————#(10"1) .
= S (1 +d(0, x))N.
Choosing N big enough and ¢ as small as we want, we get the result. |

Proposition A.2. [39] Let C be a positive real number and N be an integer. The set

€(C, N) = {peM(Qy); uo,|) < C(L +d(0, x))"} (A7)
is compact in (M, #") and
m= (J ECN. (A.8)
CeN,NeN
Proof. Giving ¢>0,C >0 and NeN, we define
C
fsz{quR;|qx| §?(1 + d(0, x))N”“}. (A.9)
By the Tychonov theorem ¢, is compact in Q, and
wlo|) 1
QNA ) < X <
HE ) *Bxécu +d0, X))V =8xezk(1 +d0,x)" "+t (A0)

if ue€(C, N).
By the Prokhorov theorem [42], &(C, N) has a compact closure. But

D
[T (u(lax[))xeR is lower semi-continuous, and therefore G(C, N) is closed as an
inverse image of a closed set by &.
Corollary A.3. (M, #") is a Suslin space [8].

Proof. M, is the denumerable union of compact metrizable space. [see [8], Sect.6
n.2, Prop 8] O
Let M, (R) be the set of probability measures on the real line such that

+§w du(s)|s| < + oo. (A.11)

—

On M, (R) the Vasershtein distance can be defined as follows [6, 14, 16, 50]

+ o0
R(/l, V) = j dSl,ll(X[s’m]) - V(X[s,m]) ’ (A12)
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where y, , is the characteristic function of [s, co]. It is known that (R (R), R)
is a complete metric space with a stronger topology than the weak topology.
Giving fe &, we define
op=0.f., (A.13)
xeR
and for eI (Q,) let y, be the measure on the R image of u by o,. Since ueI,,
pe €M, (R). Then we define

Ry, v) = R(y;,v;) fe&, (A.14)

Proposition A.4. [39] The family (R);. », defines a topology I on M, for which
(M,, T)is a polish space. T is stronger than W'.

Proof. We first note that fe ¥, — R, is continuous because
IR (1, v) = Ry(t, V)| < Ry _ (1, V). (A.15)
For R, can be defined as:

Ry(u, v) = inf { [ dm(p, @)|o;(p) — o((@)|; me W (i, )}, (A.16)

where W(u,v) is the set of probability measures on Q, x Q, the projections of
which are p and v respectively.
On the other hand

Ry ) S ullog) + (o) = T £ lullo ) + (o). (A.17)
xeR
It follows that if 2 is denumerable and dense in &, the family (R,);_, defines the
same topology 7. Thus J is metrizable and complete because (see A.16)

lu|oe]) — v(|og )] < Rel, v). (A.18)

Moreover if ueM(Q2,) and p,(f) = u(|o,|) < + o Ve S, then p, is a continuous
semi-norm and therefore peIR,.

At last 7 is Hausdorff because Ry(u, v) = 0 Vf implies y; = v, Vf€ &%, which,
by the Kolmogorov theorem is equivalent to pu=v.

The fact that 7 is stronger than #” is a consequence of the definition of R;
[[14], theorem 2].

Definition A.5. A subset H of 9 is called uniform if for any fe &
lim | dplo|=0 (A.19)
A= lolfz A

uniformly for ue H.

The great interest of this definition comes from the following characterization
of compact subset of (M,, 7).

Proposition A.6. A subset H of (M,, ), has a compact closure if and only if the
following conditions hold.

(i) H is uniform.
(ii) 3C>0,NeN, Hc<EC,N).
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Proof. Let us assume H to be 9 -compact.
Since Yfe % u — u(|o;|) is continuous, for the 7 topology the semi-norm

pyu®) = supu(lo|) (A.20)
ueH

is everywhere defined and lower semi-continuous on & . Since Sx is a Baire
space, py, is continuous, ([8] § 5) and we can find C > 0, Ne N such that

pu® <C Y |1+ dix, 0V £, - (A21)

xeR

Thus H < &(C, N).
Moreover let ¢ be positive, and fe ¥ ; then there are u, ..., f,, u€ H, such
that VueH

inf Re(u, 1) < ¢/4 (A.22)

J

Let F , be the function on R,

F,=0lp| S4/2;F (p)=2lp| — 4, 42 <|p| = 4

F,(p)=1pl.Ip| = 4. (A.23)
Then: |F (p) — F ()| <2|p — q| and
§og12.49100¢] < JAuF (o) < 2Ryl 1) + [du;F y(ay). (A.24)
Choosing A(e; f) such that 4 = A(e, f) implies
JduF (o) <e/2, j=1,...n (A.25)
we get
Vioqi2adulo;| <&, peH (A.26)

and H is a uniform set.

Conversely if H satisfies (i) and (ii), H is weakly relatively compact. But since
H is uniform J” and %" coincide on H by the result of Dobrushin [14, Theorem 2].
Then, H is J relatively compact. O

Remark A.7. We note now that in Sect.IIl, the exponential bound is sufficient to
insure that & is compact in the sense of the 7 -topology. Forifx, (p) = lifp = 4, =
0 otherwise

3C(a)> 0, |oglx . (0,) < Ay exp (alo;, — A4,))Cla) (A.27)
and
1|o¢ |1 4(0¢)) < Ay exp (— Aya)C(a)u(exp (acy)), ueIn. (A28)
This estimate proves that if pe I,
lim pE (1 (05)|o;]) =0 (A29)

A= oo
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uniformly in 4, and

lim p(y ,(o;)|oe]) =0 (A.30)
A-©
uniformly in ue% (&), because & satisfies the exponential bound. O
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