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Abstract. We prove the existence of a spontaneous magnetization at low
temperature for the one-dimensional Ising Model with 1/r2 interaction energy.

1. Introduction, Basic Ideas and Main Results

It has been known for some time that the one-dimensional Ising model exhibits
a phase transition when the forces are sufficiently long range. If the interaction
energy is given by

J(ι -j) ~ J(r) ̂  c\

then there is a spontaneous magnetization at low temperature. This result is due
to Dyson [2,4] and was obtained by comparison to a hierarchical model. On the
other hand if

JV

lim [ln(JV);Γ1/2 Σ J(r)r->0,

Rogers and Thompson [7] showed that the spontaneous magnetization vanishes
for all temperatures. The same result is expected if the exponent 1/2 is replaced
by 1. See [3,8] for other related results.

In this paper we establish a phase transition when J(r) = 1/r2. This is a borderline
case which has been discussed by Anderson and Yuval [1] in connection with the
Kondo problem. Thouless has also studied this model and predicted a discontinuity
in the spontaneous magnetization as a function of temperature—the Thouless
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effect [10]. Simon and Sokal [9] have rigorously established this discontinuity
assuming

i) there is a spontaneous magnetization, for β = T~ι large, and
ii) the spin-spin correlation (σxσy}(β) — (σx}(β)2 has a uniform power fall-off

forj8>j8c.
Some time ago Dyson established the Thouless effect in a hierarchical model [4].

We shall apply an energy-entropy argument similar to the one we developed
for the two-dimensional Coulomb gas [5] to establish the existence of a spontaneous
magnetization for the 1/r2 model at low temperature, T = β~ί <ξ 1, thus establishing
i) above. The simplest form of this argument is due to Landau and Lifshitz [6].
In order to explain their idea we first set up our notation. Let

HL{σ)=Σ\i-j\-2{\-σiσϊ (1.1)

denote the energy of a configuration, σ = {σJ ι e Z, of Ising spins σi = ± 1. We impose
the boundary condition

σ.= + 1 , for | i | ^ L ,

where 2L is the length of a finite subsystem, and we shall let L tend to oo. It is
convenient to introduce the lattice Z* of nearest neighbor bonds, b = (i,i + l\
ΐeZ. (Note that Z* « Z + 1/2 if we identify b by its midpoint.)

Each configuration σ of spins completely specifies a subset Γ = Γ(σ) c Z£, where
Z J Ξ Z * Π [ - L,L], which is the set of spin flips, i.e.

beΓ iff τb = σiσi + ι = -\.

Note that our choice of boundary conditions implies that the cardinality of Γ(σ) (i.e.
the number of spin flips in Γ(σ)) is even. Conversely, each even subset Γ c Zf of spin
flips determines a unique configuration σ = σ(Γ) of spins. Subsets of a configuration Γ
of spin flips are denoted by y, y\ γl9 γ2,.... Given some γ a Γ, let b _ (y) be the smallest
and fr + (y) the largest bond belonging to 7, and let d(y) be the diameter of y, i.e. the
total number of bonds of Z* lying between the left endpoint of b_(y) and the right
endpoint of b + (γ). (It is assumed that Z* is equipped with its natural order.)

The basic energy-entropy argument may now be described as follows: Consider
the elementary configurations, Γ = {b_,b+} a Z*, whose energy is given by

H(Γ) = 4 X

for some positive constant Cv Here, i<b means that i is smaller than or equal
to the left endpoint of bj>b means that i is larger than or equal to the right
endpoint of b. [For the reader familiar with [5] we note that H(Γ) is proportional
to the electrostatic energy, with respect to the two-dimensional Coulomb potential,
of a dipole of length d(Γ) in the plane.] The entropy of the class of elementary
configurations Γ with diameter d{Γ) = l is / — I, because there are /—I such
configurations for which σo= — 1. In the approximation in which only elementary
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configurations are included one concludes that for Cxβ ^ 3

uniformly in L, hence

<σo)
+(β)= lim

L->oo

[Here < >^(j8) denotes the expectation in the equilibrium state of the model at
inverse temperature β with boundary conditions σt= + 1, for \ί\^L. The limit
L-» oo exists, by correlation inequalities [11].]

The above argument is similar to the Peierls argument for the two-dimensional
Ising model. To make it rigorous, we must consider general configurations of spin
flips. This makes our rigorous energy-entropy arguments somewhat involved.

We now establish some further notation and definitions. Each configuration
Γ of spin flips is partitioned into disjoint subsets /y1,

<y2' ' called "primitive" (or
"connected") contours in such a way that the following Condition D (D for "distance")
holds:

a) The cardinality of each ya is even, (J ya = Γ, and

b) dist (ya,γa,) £ M [ m i n ( φ α ) , φ α , ) ) ] 3/2, for α f α'. (1.2)

c) If 7 is a subset of some yα (called a "constituent" of ya) satisfying the inequality

f ( 1 . 3 ) .

then card (7) is odd, [we say that y is charged'], for all α.
In b) and c) of Condition D, M is a constant independent of Γ and 7, to be chosen
later.

In order to establish the existence of a partition of each configuration Γ into
primitive contours {y 1? y2,...} satisfying Condition D, we choose the finest partition
{y<χ}oc = 1,2,... °f ^ satisfying a) and b). Then c) is automatically fulfilled (see also Sect.
2 of [5]). The uniqueness of {yα} will not concern us—we arbitrarily assign to
each Γ an arbitrary, but fixed partition satisfying Condition D. We briefly comment
on the construction of {ya} in the appendix [For readers familiar with [5] we note
that the ya correspond to the neutral multipoles, or molecules, p, introduced in
Sect. 2 of [5]. Charges in the Ising model studied here are defined modulo 2-even,
odd. Thus, each ya can be interpreted as a neutral molecule of spin flips.]

Condition b) ensures that neutral molecules, ya, are far separated, and hence
their total energy is nearly additive, i.e.

[Recall that in the nearest neighbor Ising model the energies of disjoint contours
are exactly additive.] In Sect. 4 we show

Theorem A. LetΓaTf be an arbitrary configuration of spin flips, and let y be
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a primitive contour of Γ. Then

-constM~\\nMf\ (1.4)

for M sufficiently large.
Property c) in Condition D is our primitivity (or connectivity) condition and

will be crucial in the energy estimates, (i.e. in the proofs of Theorem B, below, and
Theorem 2.2).

Now we estimate the probability that σ0 = — 1 in terms of our primitive
contours:

(1.5)

where Γ ranges over all allowed configurations, and χo(Γ) = 0 if σo(Γ) = 1, χo(Γ) = 1
if σo(Γ) = — 1. Here σo(Γ) is the value of the spin σ0 in the configuration Γ. Note
that if {γa} are the primitive contours of Γ then χo(Γ) = 0 unless there is some
contour yα separating 0 from + L. Given a set y of spin flips, let I(y) c IR denote
the interval spanned by the endpoints of y. Thus χo(Γ) = 0, unless 0e/(yα), for some
α. Let α = 1 label the primitive contour of minimal diameter enclosing 0. Then by
Theorem A

y e-(β/2)H(yί)e-βH{Γ~yι)

y e-βH(n

r

OεJ(yi)

if M is chosen sufficiently large; see (1.4).
The last inequality follows because, given any Γ,Γ^y1 also appears in the

denominator. To estimate the sum over <y1 we need rather involved energy-entropy
arguments similar to those in [5].

In order to estimate the energy and entropy of primitive contours y, we introduce
a sequence of length scales, 2",n = 0,1,2,.... Let

"0 = P M ( ) 0 ] + 1, (m2( )^l0gb a Se2( )),

where [x] is the integer part of a non-negative number x. For every n ̂  n0, let
Nn(y) be the minimum number of open intervals of length 2" needed to cover y.
For n > n0 we set Nn(γ) = 0. We define

The quantity N(y) measures both the energy of a primitive contour y and the

entropy of the family of all primitive contours, y, such that Oel(y) and N(γ) takes

some given value.
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Our principal estimates on the energy and entropy of primitive contours may
now be stated as follows.

Theorem B. Let {y<x}a = 1>2 3 be a partitioning of a configuration Γ of spin flips
into primitive contours satisfying Condition D. There exists a constant ε > 0
independent of Γ such that for M sufficiently large

H(Γ) - H(Γ ~ ya) ^ \H{ya) ^ εN(ya), (1.8)

for every α.

Theorem C. Let ^L{R) be the collection of subsets y c ZJ such that N(y) <ί R,
R = 1,2,3,..., and Oel(y). There exists a constant C2 independent of R and L such
that

czrd%L(R)^eC2R. (1.9)

Theorems B and C permit us to estimate the sum on the right side of (1.6)
uniformly in L:

OeI(Vί)

< y e-βεReC2{R+ί)

R> 1

< 1 , for jg>l,

uniformly in L. Thus we have proved

< σ o > + ( β ) Ξ m Ξ lim <σ o > L

+ W> 0, (1.10)
L->oo

for β > 1.
Next, we show that m = 0, for small β. This actually follows from the results

in [12]. Here, we sketch a proof based on Simon's inequality [13] in a form given
in [14]: Let Io denote the interval [-/0,ZJ, ί0 = 0,1,2,3,.... Let jφlo. Then in
the thermodynamic limit (L= 00, the existence of which follows from [11])

ielo
kφlo

where < >0(j8) is the equilibrium state at inverse temperature β with boundary
conditions σn = 0 when \n\ > l0. Since <σoσ i>°08)^ 1, (1.11) implies that for
sufficiently small β

<σoσj)+(β)-+0, as [/|->oo; (1.12)

see [13]. (Choose e.g. Io = {0}. Then (1.12) holds if β < Σ 1*'Γ2 F o r m o r e

\iψθ )

details we refer to [13] and Sect. 3 of [14]). By the Griffiths inequality [11]

2)^β\j\-2 (1.13)
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Next, let βc be the supremum over all those β for which

(σoσj>+(β)S const \j\~\ (1.14)

for some ε > 0. Let β<βc. In (1.11) we may choose Io = Io(j) = \ - y , y . It

then follows from (1.11) and (1.14) by iteration that

<σoσjy(β)ύaβ)\j\-2, (1.15)

for some finite constant C(β). Thus, for β <βc

<σoσj)+(β)x\j\-\ as |;|->oo.

From Newman's Gaussian inequality (e.g. [14], and refs. given there) it then follows
that all connected correlations fall off at least like l/[distance]2 if β < βc.

If β p 1 one cannot use these arguments, because the correlations in (1.11) are
not connected. It is conceivable, however, that our definition of primitive contours
and Theorems A through C would permit one to prove convergence of a low
temperature expansion for connected correlations if β p 1 and M = M(β) is chosen
conveniently. We pose this as an open problem.

The remainder of our paper is organized as follows. In Sect. 2 we prove
Theorem C. The proof is quite easy in comparison to its higher dimensional
analogue [5]. This is because we can exploit the natural order of Z*. In Sect. 2
we also introduce a new measure of y, ΛΓ( y), which counts the number of far
separated, odd (i.e. "charged") constituents of y, and we show that if y satisfies
Condition D, c), see (1.3), then

The following section is devoted to proving that N and N' are equivalent,
i.e. that there exists a constant C such that

These two inequalities and Theorem A yield Theorem B.
In the final section, we show that the interaction energy between a primitive

contour and the remaining contours of an arbitrary configuration of spin flips is
relatively small. Thereby, we establish Theorem A. As shown above, see (1.6) and
(1.8)—(1.10), this will complete our proof of the existence of a phase transition and
spontaneous magnetization at low temperature.

2. Entropy Estimate and a Lower Bound on H(y)

An arbitrary collection of spin flips γ ςz Z* may be specified by an increasing
sequence of integers K} k =i> 2,...Λ < h+v W e define the logarithmic length, L(γ\
of γ by

= Σ UMi f c + 1 - i* )] + l}. (2.1)
k= 1,2,...
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Lemma 2.1. For any collection of spin flips y ̂  Zf

(2.2)

where N(y) is defined by {1.7).

Proof We define

Ϊfc = [ l n 2 ( i k + 1 - i k ) ] , k = l,2,.... (2.3)

Let jrfy) be a minimal collection of open intervals of length 2ι needed to cover y.
By minimal, we mean that Jfy) contains the smallest possible number of intervals,
i.e.

see (1.7). For every / = 0,..., /k, J γ(y) necessarily contains an interval covering ik

which does not cover ik+1. Lemma 2.1 follows by summation over k. •

Proof of Theorem C. Clearly every y is determined by fixing z\ and specifying

^ni(h + i — h)- ̂ y (2.1)—(2.3) and the assumption N(y) ̂  R, we have

Σlk+l^L(y)^R. (2.4)

There are less than 2R + 1 ways of specifying (in order) integers lk + 1 ̂  1 which
satisfy (2.4). [In fact it is easy to see that there are precisely 2L~1 way of choosing
a sequence of integers nk ^ 1 such that Σnk = L.] Furthermore, there are less than
2lk + 1 integers z ̂  1 such that [ln 2z] = lk9 since

Thus we conclude that there are less than

collections of spin flips y with L(y) ̂  N(y) ̂  R and with ix fixed. If we require that
Oel{y) then there are fewer than d{y) possible choices for iί and thus Theorem B
follows after noting that

d(y)^2L{y)^eRln2. •

Now, we turn to the definition of N'(y). Let J'n(y) be the subcollection of
intervals, /', of length 2n contained in Jn{y) (defined in the proof of Lemma 2.1)
which are isolated in the sense that

dist (/',/) ̂  2M23n/2 = 2b + 3nl\ (2.5)

for all IeJ>n(y\ I =/= Γ. UJn(y) consists of a single interval we set J'n{y) = Φ We define

N'(γ) = \y\+ Σ \Jf

n(y)\. (2.6)

Here |S| denotes the cardinality of the set S. Let Γ be an arbitrary configuration
of spin flips, and let y c Γ be an arbitrary primitive contour in a partition of Γ
into primitive contours satisfying Condition D, Sect. 1. Then by (1.3) Γnγ is charged
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for any Γ e<f'n(y). More precisely, | Γ n y | is odd. Thus | <f'n(y) | is a lower bound for the
number of charged blocks of spin flips (i.e. ones containing an odd number of spin
flips) on a scale 2". The following theorem shows that N'(y) is a natural measure of
the energy, H(y\ of y.

Theorem 2.2. // Γ satisfies (1.3) (Condition D, c)) then

H{γ)^N'(γ). (2.7)

Proof. Note that for any configuration Γ of spin flips, σfσ7 = — 1 if and only if

l [/J]nΓ | is odd. (2.8)

Let χr(ij) = 1 if (2.8) holds and χr(ij) = 0 otherwise. Then

2Yj\i-j\-2χΓ(Uj). (2.9)

Now, let Γ be given by y. If in (2.9) we consider the subsum for which \ί—j\ = 1
we have

Σ \i-JΓ2Xy(UJ) = \y\. (2 io)

Next, let /^ be an interval in J>'n{y) and / n + 1 an interval in J^n + i(y) covering Γn.
We may then choose In + x such that Γn and /n + x are centered at the same point
which we may for convenience suppose to be the origin. Let

Dn = Dn(Γn) = {ij\i < 0 <;, ijeln+1 - /;}.

If f and j belong to /)„ then, by the definition of J'n(y\ | [ ί j Ί n 7 l is o ci (i Thus
χy(i,j) = 1. It is then easy to show that

2 Σ \i-JΓ2φJ) = 2 Σ \i-JΓ2^h (2-11)
i<j i<j

for each Dn. It follows from the definition of <f'n(y) and Dn that the sets

Dβ'lI'eJ'M n = 1,2,3,...

are disjoint. By (2.10) and (2.11)

n^l/'e/;(y) i,jeDn(Γ)

3. The Equivalence of N and ΛP

Theorem 3.1. There is a constant C independent of M such that

N'(γ) S N(γ) £ C(\nM)2N'(y\ (3.1)

for any finite subset y aZ*.
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Proof. Define J"n =Jn~ Jf

n, and set

/(w) = [ f ( n _ f t - 2 ) ] , (3.2)

where 2M = 2b. We claim that if n is such that 2/ ( n ) < d(γ)—so that Jf(n)(y) contains
at least two intervals—then

xjy)£k\s"m(y)\ + N'm(y)
(3.3)

^Nm(γ) + N'm(γ),

where NJy) = \JJy)\, N'n{y) = \.f'n(y)\. We note that if n is such that 2m^d(y)
then, by the definition of Jn(γ), Njiy) = 0, so (3.3) holds trivially. We shall iterate
(3.3) to obtain (3.1). To establish our claim, let It be an interval in J "f(n){y). By
the definition of J"f(n) there exists an interval I2 in J "f(n)(y) such that

dist(/ 1 ,/ 2 )<2M2 ( 3 / 2 ) / ( n )

Hence 7 t and 72 can be covered by a single interval of length 2". Also if 71,/2 and
73 belong to J}in)(y) and are such that dist(7£, 7 2 )^2M2 ( 3 / 2 ) / ( w ) , z = l, 3 then
I1UI2UI3 c a n t>e covered by a single interval of length 2n, provided M is large
enough. Thus at most \\^"f(n)(y)\ intervals of size 2" suffice to cover all the inter-
vals in J^"f{n){y\ and (3.3) follows.

Let δ = b — 2. Clearly, (3.3) can be applied only if

/(w) = [f (n - <5)] ̂  0, i.e.n^δ. (3.4)

For each n we now iterate (3.3) l(n) times, where / = l(n) is the maximal number
for which

fl{n\n) > 0.

Here fm denotes the m-fold composition of / with itself. This yields

N B (y)g Σ ^ m + 1N'fm(n)(y) + 2-'NfHn)(y)
m=l

(3.5)

m = 1

Here we have used the fact that |y| ^ NJy), for all n. Now, we make two elementary
assertions which are easily checked (see Sect. 3 of [5] for details):

W = |[(ln2(3/2))-1 ln2(n/n0)], otherwise, l ' j

where
π0 = 2(| + δ) ̂  const In M.

2) Let
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Then

\SmJ<6@r (3-7)

By (3.5)

N(γ)= Σ NJy)

F X JV; (y) ^ (£

where

E= Y 2-I<">gw0 + y f — Y^const(lnM)2,
n = o π V W /

where 1 < p = ( l n 2 f ) ~ 1 < 2 . Here, we have used (3.6). T h e b o u n d on F follows
by s u m m i n g over n with fm(n) =j fixed a n d using (3.7), i.e.

0 0

n = 0

W

m = 1

' o< y (
fn,W7 = j = o y

0 0

^ 3 6 χ

00

m= 1

N'(γ).

Remark. Theorem 3.1, (3.1) and Theorem 2.2, (2.7) clearly imply the lower bound
on H(γa) stated in Theorem B, (1.8), with ε = const ( lnM)" 2 .

4. Interaction Energy: The Proof of Theorem A

Let Γ be an arbitrary even configuration of spin flips, and let {γ, γ2, y3,...}
be a partition of Γ into primitive contours satisfying Condition D, Sect. 1. We set

and specify γ by the positions {ik}k = 1 2 oϊ all spin flips contained in γ, where the
sites ik belong to Z*, and ik < ίk +1? fc = 1,2,3,....

We define W(y,Γ') to be (— 1) x interaction energy between y and Γ' which is
given by

- W(γ, Γ) = H(Γ) - H(Γ) - H(γ). (4.1)

Using (2.9) and (4.1) we see that

W(γ9 Π = 2 X \i -j\ -2{χΓ (i,j) + χβj) - χr(ij)}

(4.2)

Theorem 4.1. If Γ = yuy2uγ3^j... satisfies Condition D, Sect, 1, then there is a
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constant C 3 independent of M such that

0<W(y,Γ)^C3M~1\nML(y), (4.3)

where L(y) is the logarithmic length of y defined in (2.1), and M is the constant
appearing in Condition D, (7.2) and (1 j ) .

Remark. By (2.2) and Theorem 3.1,

L(γ)£N(γ)g:C(lnM)2N'(γ).

Thus by Theorem 2.2

Using (4.1) and (4.3) we conclude that

H(Γ) + H(y) - H(Γ) ^ const M'^lnM)3 H(y),

i.e.

- c o n s t M

Hence Theorem A is proven, and this yields the upper bound on {\)H(y^} in
Theorem B, (1.8), provided M is large enough.

Proof of Theorem 4.1. Let Ik denote the interval [ifcJίfc + 1 ] , where {ik}k=i,2,3,...
defines y. Note that by (1.2) if y α n i f c ^ 0 , for some α ^ 2 then I(yjczlk; [see
Condition D, b). We recall that 7(yα) c (R is the interval spanned by the endpoints
of y j . In order to bound W we define for each fe three sets of pairs (z'J) of sites,
Ak, Bk and Ck, where

Λ = {O'j')|ie/(yβ), for some ya such that /(yα)c J^

^ k Ξ {(U)l ie/k and jel(ya), for some yα such that I(yΛ) a Γk},

Ch = {{iJ)\isIk and jel{γu), with

dist(/,/fc) ^ M φ ) 3 / 2 , for some yα such that I(γΛ) ZD Ik}. (4.4)

[The sets Ck deal with the events where I(ya) => /fc. Hence by (1.2) d(γa) ^
and dist(y α ,y)^Mφ) 3 / 2 . ]

We define

where χx is the characteristic function of the corresponding set defined above,

X = Ak,Bk>Ck.
Now, we claim that

XyiUMr (Uj) ^ xtAUj) + χ*r(/, 0 (4.5)

Clearly the left side of (4.5) vanishes if both i and j belong to Ik, for some k, since
then [f5i/] ny = U which is an even set. Similarly if both i and j are contained in
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the complement of I(y) the left side of (4.5) vanishes. Thus we may suppose that
ίelk, for some k, and jφlk. Now, suppose that the right side of (4.5) vanishes. Then the
conditions

iφl(γα), for all yα c Ik,
and

jφl(yα\ foral ly β cj<,

α = 2,3,..., and
dist(/Λ)<Md(y) 3 / 2 (4.6)

must all be fulfilled simultaneously. We now observe that if yα n [/j] φ 0 then
(4.6) and (1.2) imply yα c [ ί j ] . Thus we conclude that \Γf n [i j ] | is even, hence the
left side of (4.5) vanishes, and our claim is established.

In order to prove (4.3) it suffices therefore to show that

Σl^-iΊ^^J^constM-MnM ίEln^^-yi + l}, (4.7)
ί<j

for Xk = Ak,Bk, Ck and all k. For convenience suppose ik = 0, ik+ί =ί First, we
consider the case where Xk = Ck. We bound the sum over i on the left side of (4.7)
by d(y) times the maximum over ielk which is less than

Σ i

For the case Xk = Ak we define Ur to be the union of all intervals I(γα) such that

By (1.2) (Condition D,b)) such intervals are sparse:

dist[{0, t},I(yα)l^M23"2,

. d i s t [/ (y α ) ,/ ( v ) ]^M2 3 /2, (4.9)

for α φ α'. Using these inequalities, we can bound the left side of (4.7) by

2 Σ Σ |ί-;Γ2%(

S const M " 1 In/. (4.10)

The factor of 2 in the first line of (4.10) takes care of a similar sum ranging over

Finally, we consider the case where Xk = Bk. The left side of (4.7) is then bounded
by a sum of two terms, denoted by Σ1 and Σ2, where Σt is the sum over allje/fyj,
for all yα for which dist(/(yα),[0,/])^M/, and Σ2 is the sum over all je/(yα), for
all yα for which dist(J(yα), [0, /]) < Ml. Thus

^ 1 . (4.11)
0<ί</
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Next, we bound Σ2 Let U'r be the union of all intervals I(yα) such that

%*) <= C - Ml9 - M23r^ and 2r ^ d(ya) ^2r+\

where r ^ [fln2/]. Then £ 2 is bounded by

2Σ Σ |ί-jr2χ(0ΊJe^;})^constM-1ln(M0Σr+12-^2

r -MKj<O<ί<l r

S const M " 1 In M(ln/ + 1). (4.12)

The argument leading to this bound is very similar to the one used in (4.10).
Inequality (4.7) follows from (4.8), (4.10), (4.11) and (4.12). With (4.5) this

completes the proof of Theorem 4.1. •

Appendix

In this appendix, we sketch the construction of a partition of an arbitrary, even
configuration ί ς Z* of spin flips into primitive contours {yα}α= 1,2,3,... *n s u c n a

way that Condition D, Sect. 1, is satisfied. The construction proceeds inductively
over a sequence of length scales 2", n = 0,1,2,....

On scale 2° we first group adjacent spin flips (i.e., ones separated by a distance
of 2°) in pairs, in an arbitrary way. This yields a partition of Γ into subsets
{φ°μ}μ=ιt2,3,...> w n e r e e a c n φ°μ consists of a single spin flip or a nearest neighbor
pair of spin flips. Next, we regroup adjacent subsets, φ°,φ°/, (i.e., dist(φ°, φ°<) =
2°) in pairs, in an arbitrary way. For finite L, finitely many sweeps of pairing
operations suffice to provide us with a partition of Γ into subsets {y°}α= 1,2,3,...
with the property that dist (y°, γ°,) > 2°, for α ψ α'. For every γ° we define

We define

^ 0 0 = (7α \\7a I i δ e V e Π ' a i l d 7a ^7a' = ^ f θ Γ ^ 4

and inductively,

r / n-1 \

^ ° " = ^y^ly^l is even, yα°e Γ - (J ^ o z h α °ny α ° ( = 0,

Finally, we set

00

^ o Ξ ^ o = y °̂". (A.i)
« = o

It is easy to check that Condition D is satisfied for ^° and that dist (y, y') g: Md(y)312,
for all yG^°, y ' e Γ - ^ 0 .

We now suppose that on scale 2k, after fc induction steps, we have arrived at
a partition of Γ with the following properties:

r = 0>kv{yk

μ}μ= 1,2,3,..,
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where 0>k = {yα}α==ij2,3,... satisfies Condition D, and

for all γae0>k9 yk

μeΓ ~ 0>k. Moreover

for yk,yk in Γ~0>k,μφv.
In order to do the induction step, i.e., increase the distance scale from 2k to

2k+1, we regroup the subsets {yk

ι}μ=lf2,3,... i n t 0 P a i r s φk

σ = yk

μvyk

Λ in an arbitrary
way, but subject to the rule that

for two subsets forming a pair. For finite L, finitely many sweeps of such pairing
operations suffice to partition Γ ~έ?k into new, larger subsets {yk

μ

+1}μ=iί2,3,...>
with the property that

d i s t ^ + 1 , r ϊ + 1 ) > 2 k + 1 , ioiμφv. (A.2)

Let yk

μ

+1 = {j\dist(j,γk

μ

+1) < Md{yμ

+ίfl2}. We define

and inductively

1 = 0

n- 1

Then we define

OO

0>k+l Ξ I j 0>k+ 1,«

n = 0

(this union is finite for L < oo), and

By (A.2), Γ ~ ^ f c + 1 = 0 if fe is such that 2/c + 1 ^ L , i.e., the induction terminates
after finitely many steps when L < oo. It is straightforward to check that 0*^ = £Pk,
for k ̂  [ln2L] + 1) is a partition of Γ satisfying Condition D. For more details
concerning a closely related, but more difficult problem see Sect. 2 of [5].
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