Construction of Euclidean (QED) ${ }_{2}$ via Lattice Gauge Theory

Boundary Conditions and Volume Dependence*

K. R. Ito
Department of Mathematics, Bedford College, University of London, Regent's Park, London NW1 4NS, England

Abstract

Let $v=\operatorname{det}_{\text {ren }}\left(1+K_{g}\right)$ be the renormalized Matthews-Salam determinant of $(\mathrm{QED})_{2}$, where $K_{g}=i e S A_{g}, S=\left(\sum \gamma_{\mu} \partial_{\mu}+m\right)^{-1}$ is euclidean fermion propagator of one of the following boundary conditions : (1) free, (2) periodic at $\partial \Lambda, \Lambda=[-L / 2 ; L / 2]^{2}$, (3) anti-periodic at $\partial \Lambda$, and $A_{g}(x)=\left(\sum \gamma_{\mu} A_{\mu}(x)\right) g(x)$. Here $g(x)=1$ if $x \in \Lambda_{0}=[-r / 2, r / 2]^{2} \subset \Lambda$ and 0 otherwise. Then we show (i) $v \in L^{p}(d \mu(A)), p>0$. Further we prove a new determinant inequality which holds for the QED, QCD-type models containing fermions. This enables us to prove: (ii) $Z\left(\Lambda_{0}\right)=\int v d \mu(A) \leqq \exp \left[c\left|\Lambda_{0}\right|\right]$. Similar volume dependence is shown for the Schwinger functions.

1. Introduction

Several years ago, the author tried to construct (QED) 2_{2} taking a basis on a Hamiltonian formalism of QED, where an indefinite metric is explicitly used to ensure the renormalizability. Because of the indefinite matric, however, there are difficulties : for example it is difficult to prove the existence of the vacuum vector [2].

Recently Weingarten [10] proved the integrability of the renormalized Matthews-Salam determinant $\quad v=\operatorname{det}_{\text {ren }}\left(1+K_{A}\right)$, where $\quad K_{A}=i e S A$, $S=\left(\sum \gamma_{\mu} \partial_{\mu}+m\right)^{-1}$ the euclidean fermion propagator which satisfies anti-periodic boundary conditions at $\partial \Lambda, \Lambda=[-L / 2, L / 2]^{2}, A(x)=\sum \gamma_{\mu} A_{\mu}(x)$ and $\left\{A_{\mu}(x)\right\}$ are the euclidean vector fields which satisfy the periodic boundary conditions at $\partial \Lambda$. The anti-periodic boundary condition of S comes from the use of the transfer matrix to prove the diamagnetic inequality. In this work we show the integrability of v for any one of the following boundary conditions of S and A_{μ} :
S; free, periodic, anti-periodic boundary conditions,
A_{μ}; free, periodic, anti-periodic, boundary conditions.

[^0]Moreover we obtain a new determinant inequality by applying Hölder's inequality to the transfer matrices, which clarifies the volume dependence of the Schwinger functions.

Let $d \mu(A)$ be a Gaussian probability measure with mean zero and covariance $C_{\mu v}(x, y)$:

$$
\begin{equation*}
\int A_{\mu}(x) A_{\nu}(y) d \mu(A)=C_{\mu \nu}(x-y)=\int \frac{d^{2} p}{(2 \pi)^{2}} e^{i p(x-y)}\left(\delta_{\mu \nu}+\text { gauge }+ \text { term }\right) \frac{1}{p^{2}+\mu^{2}} \tag{1.1}
\end{equation*}
$$

Here $\mu>0$ denotes the mass and the gauge term takes a form $-c\left(k^{2}\right) k_{\mu} k_{v}$ with $|c| \leqq$ const $\left|k^{2}\right|^{-1}$. Let $\Lambda=[-L / 2, L / 2]^{2}$ and let $\Lambda_{0}=[-r / 2, r / 2]^{2}$ with $r \leqq L$. Further let

$$
A_{\mu, g}(x) \equiv A_{\mu}(x) g(x),
$$

where $g(x) \geqq 0$ and $\operatorname{supp} g(x) \subset \Lambda_{0}$ are assumed. We take $g=\chi_{\Lambda_{0}}$ or as $g \in C_{0}^{\infty}\left(\Lambda_{0}\right)$ for convenience. Let

$$
\begin{aligned}
\Lambda_{N} & =\left\{a\left(n_{0}, n_{1}\right) ; n_{\mu}=-N,-N+1, \ldots, N-1\right\}, \\
a & =\frac{L}{2 N}: \text { lattice width }, \\
\tilde{\Lambda} & =\frac{2 \pi}{L} Z^{2}, \\
\tilde{\Lambda}_{N} & =\left\{\delta\left(n_{0}, n_{1}\right) ; \delta=\frac{2 \pi}{L}, n_{\mu}=-N,-N+1, \ldots, N-1\right\},
\end{aligned}
$$

and let

$$
\mathscr{H}_{N}=\left\{f(x), x \in \Lambda_{N} ;\|f\|_{\mathscr{H}_{N}}^{2} \equiv a^{2} \sum_{x \in \Lambda_{N}}|f(x)|^{2}\right\} .
$$

Any $f \in \mathscr{H}=L^{2}\left(\Lambda: d^{2} x\right)$ can be mapped into \mathscr{H}_{N} by the Q-identification [1]:

$$
\begin{equation*}
f_{a}(x) \equiv(Q f)(x)=a^{-2} \int_{-a / 2}^{a / 2} \int_{a / 2}^{a / 2} f(x+\eta) d^{2} \eta, \quad x \in \Lambda_{N} . \tag{1.2}
\end{equation*}
$$

Further \mathscr{H}_{N} can be embedded in \mathscr{H} via Q^{*} :

$$
\begin{equation*}
\left(Q^{*} f_{a}\right)(y)=f_{a}(x), \quad y \in\left[x_{0}-\frac{a}{2}, x_{0}+\frac{a}{2}\right) \otimes\left[x_{1}-\frac{a}{2}, x_{1}+\frac{a}{2}\right) . \tag{1.3}
\end{equation*}
$$

Let

$$
\begin{aligned}
& \tilde{f}(k)=\int_{\Lambda} f(x) e^{i k x} d^{2} x, \quad k \in \tilde{\Lambda} \\
& \tilde{f}_{a}(k)=a^{2} \sum_{x \in \Lambda_{N}} e^{i k x} f_{a}(x), \quad k \in \tilde{\Lambda}_{N}
\end{aligned}
$$

Then

$$
\begin{equation*}
\tilde{f}_{a}(k)=\eta(a k) \tilde{f}(k) \tag{1.4}
\end{equation*}
$$

where

$$
\eta(x)=\prod_{\mu=0}^{1} \frac{\sin 1 / 2 x_{\mu}}{1 / 2 x_{\mu}}
$$

Now we define

$$
\begin{gather*}
A_{\mu, g, a}(x) \equiv\left(Q A_{\mu, g}\right)(x), \quad x \in \Lambda_{N}^{\mu} \equiv \Lambda_{N}+1 / 2 e_{\mu} \tag{1.5}\\
e_{0}=(a, 0), \quad e_{1}=(0, a)
\end{gather*}
$$

and let $[9,11]$

$$
\begin{align*}
B_{N}(x, y) & =\left(2 a^{-3}+m a^{-2}\right) \delta_{x, y}-a^{-3} \gamma(x, y) \tag{1.6}\\
\Gamma_{N}(x, y) & =-a^{-3}[U(x, y)-1] \gamma(x, y)
\end{align*}
$$

where $x, y \in \Lambda_{N}$,

$$
\begin{array}{cl}
\gamma(x, y)=1 / 2\left(1 \mp \gamma_{\mu}\right) & y=x \pm e_{\mu} \\
0 & \text { otherwise } \\
U(x, y)=\exp \left[\pm i e a A_{\mu, g, a}\left(x \pm 1 / 2 e_{\mu}\right)\right] & y=x \pm e_{\mu} \tag{1.8}\\
0 & \text { otherwise }
\end{array}
$$

and $\left\{\gamma_{\mu}^{*}=\gamma_{\mu}\right\}_{\mu=0,1}$ are two dimensional euclidean Dirac matrices :

$$
\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu} 1_{2}
$$

Thus one formally finds:

$$
\begin{aligned}
& \left(B_{N} f\right)(x) \equiv a^{2} \sum_{y \in \Lambda_{N}} B_{N}(x, y) f(y) \rightarrow(\not \partial+m) f(x) \\
& \left(\Gamma_{N} f\right)(x) \equiv a^{2} \sum_{y \in \Lambda_{N}} \Gamma_{N}(x, y) f(y) \rightarrow i e A_{g}(x) f(x)
\end{aligned}
$$

for suitable $f(x) \in \mathscr{H}_{N}^{\otimes 2}$ as $N \rightarrow \infty$ or as $a \rightarrow 0$. We may apply the same approximation for

$$
\left(g,\left[\not \partial+m+i e \not A_{g}\right]^{-1} h\right)
$$

where

$$
g, h \in \mathscr{H}_{-1 / 2}\left(R^{2}, d^{2} x\right) \otimes C^{2}
$$

Let

$$
\begin{gather*}
S_{N}=\left(B_{N}\right)^{-1}=P_{N}^{2} U_{N} \\
P_{N}>0, \quad U_{N}^{+}=U_{N}^{-1} \tag{1.9}
\end{gather*}
$$

and let

$$
\begin{equation*}
K_{N}=P_{N} U_{N} \Gamma_{N} P_{N} \tag{1.10}
\end{equation*}
$$

As usual we are to consider:

$$
\begin{align*}
& S_{N}\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n} ; h_{1}, \ldots, h_{n}\right) \\
& =Z_{N}^{-1} \int d \mu \prod A\left(f_{i}\right) \cdot \operatorname{det}_{j k}^{n \times n}\left[\left(g_{j}\left[B_{N}+\Gamma_{N}\right]^{-1} h_{k}\right)\right] \cdot \operatorname{det}_{\mathrm{ren}}\left(1+K_{N}\right), \tag{1.11}\\
& Z_{N}=Z_{N}(g)=\int \operatorname{det}_{\mathrm{ren}}\left(1+K_{N}\right) d \mu(A), \tag{1.12}\\
& \operatorname{det}_{\mathrm{ren}}\left(1+K_{N}\right)=\operatorname{det}_{(4)}\left(1+K_{N}\right) \exp \left[-: T_{2}^{N}:\right], \tag{1.13}
\end{align*}
$$

where

$$
\begin{aligned}
\operatorname{det}_{(1+p)}(1+K) & =\operatorname{det}\left[(1+K) \exp \left[\sum_{n=1}^{p} \frac{(-K)^{n}}{n}\right]\right] \\
T_{2}^{N} & =\operatorname{Tr}\left[-K_{N}+\frac{1}{2}\left(K_{N}\right)^{2}-\frac{1}{3}\left(K_{N}\right)^{3}\right]
\end{aligned}
$$

and

$$
: T_{2}^{N}:=T_{2}^{N}-\int T_{2}^{N} d \mu(A)
$$

2. Convergences of K_{N} and $\operatorname{det}_{\text {ren }}\left(1+K_{N}\right)$

Let

$$
\begin{equation*}
K_{g}=i e P U \not A_{g} P, \tag{2.1}
\end{equation*}
$$

where $S=P^{2} U, P>0, U^{*}=U^{-1}$, and $S=(\phi+m)^{-1}$ is the euclidean fermion Green's function which satisfies periodic or anti-periodic boundary conditions at $\partial \Lambda$ and or free boundary conditions. Our B_{N} and Γ_{N} in Sect. 1 correspond to the periodic boundary conditions at $\partial \Lambda$ since we identify the points $\left\{a\left(-N, n_{1}\right)\right\}$ with the points $\left\{a\left(N, n_{1}\right)\right\}$ and the points $\left\{a\left(n_{0},-N\right)\right\}$ with the points $\left\{a\left(n_{0}, N\right)\right\}$, respectively. The anti-periodic B_{N} and Γ_{N} are obtained from periodic B_{N} and Γ_{N} by a slight modification which does not change our estimates at all. Thus we will not discuss anti-periodic cases (see Sect. 4).

In the case of periodic S, we sometimes assume that the width of the rectangle Λ, namely L, depends on N so that $\Lambda \nearrow R^{2}$ and $a=\frac{L}{2 N} \searrow 0$ sufficiently rapidly as $N \rightarrow \infty$. One possible choice is

$$
\begin{equation*}
L=L_{N}=L_{0} N^{1 / 2} \tag{2.2}
\end{equation*}
$$

Then $a=a_{N}=L_{0} / 2 N^{1 / 2}$. Then it is necessary to clarify the L-dependence in our estimates. (We choose $L \geqq 1$ or N is sufficiently large so that $\operatorname{supp} g \subset\left[-L_{N} / 2, L_{N} / 2\right]^{2}$.)

Theorem I. Let S_{A} be the euclidean fermion propagator which satisfies periodic or anti-periodic boundary conditions at $\partial \Lambda$. Then

$$
\begin{equation*}
\lim _{\Lambda \uparrow R^{2}} K_{\Lambda}=K \text { in } C_{4} \tag{2.3}
\end{equation*}
$$

a.e. with respect to $d \mu(A)$, where $K=K_{g}$,

$$
\begin{gather*}
K_{\Lambda}=i e P_{\Lambda} U_{\Lambda} A_{g} P_{A} \tag{2.4}\\
C_{p}=\left\{x \in \mathscr{B}(\mathscr{H}):\|x\|_{p}=\left(\operatorname{Tr}|x|^{p}\right)^{1 / p}<\infty\right\} . \tag{2.5}
\end{gather*}
$$

Lemma I-1. Let $\Lambda^{\prime}=\left[-L^{\prime} / 2, L^{\prime} / 2\right]^{2}, L^{\prime} \geqq L$. Then there exists a polynomial Q of $A_{\mu, g}$ of order 4 such that

$$
\left\|K_{A}-K_{A^{\prime}}\right\|_{4}^{4} \leqq Q, \quad \int Q d \mu(A) \leqq d L^{-\varepsilon}
$$

where d and $\varepsilon>0$ are independent of $L(\geqq 1)$.
Lemma I-2 (Hypercontractive Inequality [8, 9]). Let Q be a polynomial of $\left\{A_{\mu}(x)\right\}$ of order p and let $\int|Q|^{2} d \mu \leqq \sigma^{2}$. Then

$$
\int|Q|^{2 n} d \mu \leqq(2 n-1)^{n p} \sigma^{2 n} .
$$

Lemma I-3 [9]. Let $\left\{Q_{N} \geqq 0\right\}$ be a sequence of polynomials of $\left\{A_{\mu}\right\}$ of order p and let $\int Q_{N} d \mu(A) \leqq d N^{-\varepsilon}(d, \varepsilon>0$ independent of $N)$. Then

$$
\mu\left\{A_{\mu} ; \lim Q_{N}\left(A_{\mu}\right) \neq 0\right\}=0 .
$$

Then Theorem 1 obviously follows from Lemma I-1:
Proof of Lemma I-1. Let

$$
P(x, y)=P(x-y)=\left(-\partial_{\mu}^{2}+m^{2}\right)^{-1 / 4}(x, y)
$$

and

$$
(P U)(x, y)=(P U)(x-y)=\left(-\not \emptyset_{x}+m\right)\left(-\partial_{\mu}^{2}+m^{2}\right)^{-3 / 4}(x, y)
$$

be the Green's functions which satisfy free boundary conditions. Then the periodic Green's functions are given by

$$
\begin{gathered}
P_{A}(x-y)=\sum_{n \in \mathbb{Z}^{2}} P\left(x-y+L_{n}\right), \\
\left(P_{A} U_{A}\right)(x-y)=\sum_{n \in \mathcal{Z}^{2}}(P U)\left(x-y+L_{n}\right),
\end{gathered}
$$

where $L_{n}=\left(n_{0}, n_{1}\right) L$, and the anti-periodic ones are obtained by replacing \sum_{n} by $\sum_{n}(-1)^{n_{0}+n_{1}}$. Then if $y \in \Lambda_{0}=\operatorname{suppg}$ and Λ is large enough so that $\operatorname{dist}\left(\Lambda_{0}, \partial \Lambda\right) \geqq c L(c>0)$,

$$
\begin{aligned}
\left|\chi_{A^{\prime}}(x) P_{A^{\prime}}(x, y)-\chi_{A}(x) P_{A}(x, y)\right| & \leqq K_{0} \exp \left[-m_{0} L-\tilde{m}|x-y|\right] \\
& \leqq K L^{-\varepsilon} e^{-\tilde{m}|x-y|},
\end{aligned}
$$

where the positive constants $m_{0}, \tilde{m}, k_{0}, K$, and ε are independent of L, L^{\prime}, x, and y. This follows from the exponential decay property of P. The same upper bound again holds for $P U$:

$$
\left|\left\{\chi_{A^{\prime}}\left(P_{A^{\prime}} U_{A^{\prime}}\right)(x, y)-\chi_{A^{\prime}}\left(P_{A} U_{A}\right)(x, y)\right\}_{i j}\right| \leqq K L^{-\varepsilon} e^{-\tilde{m}|x-y|}
$$

where $i, j=1,2$ (spinor indices). These also hold for the anti-periodic ones.
Then using the fact that suppg $\subset \Lambda \subseteq \Lambda^{\prime}$,

$$
\begin{aligned}
&\left\|K_{A^{\prime}}-K_{A}\right\|_{4} \leqq|e| \|\left(\chi_{A^{\prime}} P_{A^{\prime}} U_{A^{\prime}}-\chi_{A} P_{A} U_{A}\right) A_{g} P_{A^{\prime}} \chi_{A^{\prime}} \\
&+\chi_{A} P_{A} U_{A} A_{g}\left(\chi_{A^{\prime}} P_{A^{\prime}} \chi_{A^{\prime}}-\chi_{A} P_{A_{A}} \chi_{A}\right) \|_{4} \\
& \leqq|e|\left(Q_{1}^{1 / 4}+Q_{2}^{1 / 4}\right) \leqq 2|e|\left(Q_{1}+Q_{2}\right)^{1 / 4}
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{1} & =\left\|\left(\chi_{A^{\prime}} P_{A^{\prime}} U_{A^{\prime}}-\chi_{A} P_{A} U_{A}\right) A_{g} P_{A^{\prime}} U_{A^{\prime}}\right\|_{4}^{4} \\
& =\left\|P_{A^{\prime}} A_{g} F_{1} A_{g} P_{A^{\prime}}\right\|_{2}^{2}, \\
Q_{2} & =\left\|\chi_{A} P_{A} U_{A} A_{g}\left(\chi_{A^{\prime}} P_{A^{\prime}} \chi_{A^{\prime}}-\chi_{A} P_{A} \chi_{A}\right)\right\|_{4}^{4}, \\
& =\left\|P_{A} A_{g} F_{2} A_{g} P_{A}\right\|_{2}^{2},
\end{aligned}
$$

are polynomials of $\left\{A_{\mu}\right\}$ of order 4. Here

$$
\begin{aligned}
& \left(F_{1}\right)_{i j}=\left\{\left|\chi_{A^{\prime}} P_{A^{\prime}} U_{A^{\prime}}^{*} \chi_{A^{\prime}}-\chi_{A} P_{A} U_{A}^{*} \chi_{A}\right|^{2}\right\}_{i j}, \\
& \left(F_{2}\right)_{i j}=\left\{\left|\chi_{A^{\prime}} P_{A^{\prime}} \chi_{A^{\prime}}-\chi_{A} P_{A} \chi_{A}\right|^{2}\right\}_{i j}
\end{aligned}
$$

are dominated by $\tilde{K} L^{-\tilde{\varepsilon}} e^{-\tilde{m}|x-y|}(\tilde{K}, \tilde{\varepsilon}, \tilde{m}>0)$.
Then

$$
\int Q_{i} d \mu(A) \leqq \operatorname{const} L^{-2 \varepsilon} .
$$

2.1. $\lim K_{N}=K_{A}$ or K_{g}

We may assume that the size of box Λ depends on N :

$$
\begin{equation*}
L=L_{N}=L_{0} N^{\varepsilon}, \quad 0 \leqq \varepsilon<1 . \tag{2.6}
\end{equation*}
$$

The key point is that the lattice spacing $a=L / 2 N$ tends to zero like $N^{-\delta}(\delta>0)$ as $N \rightarrow \infty$.

Theorem II. Let Λ be chosen as
(1) $[-L / 2, L / 2]^{2}, L$ fixed, or as
(2) $\left[-L_{N} / 2, L_{N} / 2\right]^{2}, L=L_{N}=\dot{L}_{0} N^{1 / 2}$,
and let $\operatorname{supp} g=\Lambda_{0} \subset \Lambda$. Then there exists a polynomial Q of A_{μ} of order 8 such that

$$
\left\|K_{A}-K_{N}\right\|_{4}^{4} \leqq Q, \quad \int Q d \mu \leqq d N^{-\varepsilon},
$$

where positive constants d and ε may depend on g but not on $N(\geqq 1)$ and $L(\geqq 1)$.
If $L=L_{0} N^{1 / 2}$, since

$$
\left\|K_{M}-K_{N}\right\|_{4} \leqq\left\|K_{A^{\prime}}-K_{\Lambda}\right\|_{4}+\left\|K_{\Lambda^{\prime}}-K_{M}\right\|_{4}+\left\|K_{\Lambda}-K_{N}\right\|_{4}
$$

with $L^{\prime}=L_{0} M^{1 / 2} \geqq L=L_{0} N^{1 / 2}$, one has:
Theorem II'. If L is fixed,

$$
\lim K_{N}=K \text { in } C_{4} \text { a.e. with respect to } d \mu
$$

If $L=L_{0} N^{1 / 2}$, then

$$
\lim K_{N}=K_{g} \text { in } C_{4} \text { a.e. with respect to } d \mu .
$$

Remarks (2). Theorem II was essentially proved in [9]. But the main different points are:
(i) We must show the L-dependence explicitly, for example, as

$$
\frac{1}{L^{2}} \sum_{k \in \tilde{\Lambda}_{N}} \tilde{f}(k) .
$$

Then this is uniformly bounded in $L(\geqq 1)$ if \tilde{f} is a bounded L^{1} function.
(ii) Let

$$
\begin{align*}
\tilde{C}_{\mu v, a}\left(k, k^{\prime}\right) & =\tilde{C}_{\mu v, g, a}\left(k, k^{\prime}\right)=\int \tilde{A}_{\mu, g, a}(k) \tilde{A}_{v, g, a}\left(-k^{\prime}\right) d \mu \\
& =\eta(a k) \eta\left(a k^{\prime}\right) \tilde{C}_{\mu \nu}\left(k, k^{\prime}\right), \tag{2.7}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{C}_{\mu v}\left(k, k^{\prime}\right)=\tilde{C}_{\mu v, g}\left(k, k^{\prime}\right)=\int \tilde{A}_{\mu, g}(k) \tilde{A}_{v, g}\left(-k^{\prime}\right) d \mu, \tag{2.8}
\end{equation*}
$$

$k, k^{\prime} \in \tilde{\Lambda}_{N}$, and $\operatorname{suppg} \subset \Lambda$ is assumed. Since $\tilde{C}_{\mu \nu}$ is not diagonalized, a slightly complicated calculation may be required. The following bounds for $\tilde{C}_{\mu \nu, g}$ are sufficient for our estimates (see Appendix):

$$
\begin{gather*}
\left|\tilde{C}_{\mu v, g}\left(k, k^{\prime}\right)\right| \leqq K_{1} J\left(k_{0}, k_{0}^{\prime}\right) J\left(k_{1}, k_{1}^{\prime}\right), \tag{2.9a}\\
J(x, y)=\ln (2+|x|) \ln (2+|y|) \ln (2+|x-y|) \\
\cdot \frac{1}{1+|x-y|}\left(\frac{1}{1+|x|}+\frac{1}{1+|y|}\right), \tag{2.9b}\\
\left|\tilde{C}_{\mu v, g}(k, k)\right| \leqq K_{2} \frac{1}{1+k^{2}}, \tag{2.9c}
\end{gather*}
$$

where the constants K_{1} and K_{2} may depend on $g\left(=\chi_{\Lambda_{0}}\right.$ or $\left.\in C_{0}^{\infty}\left(\Lambda_{0}\right)\right)$ but are independent of L or $N(\geqq 1)$.

Let

$$
\begin{equation*}
\Gamma_{N}=\Gamma_{N}^{(1)}+\Gamma_{N}^{(2), r}, \tag{2.10a}
\end{equation*}
$$

and let

$$
\begin{align*}
K_{N}^{(1)} & =P_{N} U_{N} \Gamma_{N}^{(1)} P_{N} \tag{2.10b}\\
K_{N}^{(2), r} & =P_{N} U_{N} \Gamma_{N}^{(2), r} P_{N}, \tag{2.10c}
\end{align*}
$$

where

$$
\begin{align*}
\Gamma_{N}^{(1)}(x, y)= & -\frac{i e}{a^{2}} \sum_{\mu}\left\{A_{\mu, g, a}\left(x+1 / 2 e_{\mu}\right) \frac{1-\gamma_{\mu}}{2} \delta_{y, x+e_{\mu}}\right. \\
& \left.-A_{\mu, g, a}\left(x-1 / 2 e_{\mu}\right) \frac{1+\gamma_{\mu}}{2} \delta_{y, x-e_{\mu}}\right\}, \tag{2.11}
\end{align*}
$$

and $\Gamma_{N}^{(2), r}$ denotes the remaining term. It is convenient to consider the problem in momentum space. Let

$$
\begin{align*}
& \tilde{P}_{N}(k)=\left[\left(m+\frac{1}{a}\left(2-\sum \cos a k_{\mu}\right)\right)^{2}+\frac{1}{a^{2}} \sum \sin ^{2} a k_{\mu}\right]^{-1 / 4}, \tag{2.12a}\\
& \tilde{U}_{N}(k)=\left\{m+\frac{1}{a}\left(2-\sum \cos a k_{\mu}\right)+\frac{i}{a} \sum \gamma_{\mu} \sin a k_{\mu}\right\} \tilde{P}_{N}^{2}(k) . \tag{2.12b}
\end{align*}
$$

Then

$$
\begin{align*}
\tilde{P}_{N}\left(k, k^{\prime}\right) & \equiv\left(a^{2}\right)^{2} \sum_{x, y \in A_{N}} e^{i k x-i k^{\prime} y} P_{N}(x, y) \\
& =L^{2} \delta_{k, k^{\prime}} \tilde{P}_{N}(k) 1_{2}, \tag{2.13a}
\end{align*}
$$

and similarly one has

$$
\begin{align*}
\tilde{U}_{N}\left(k, k^{\prime}\right) & =L^{2} \delta_{k, k^{\prime}} \tilde{U}_{N}(k) \tag{2.13b}\\
\tilde{\Gamma}_{N}^{(1)}\left(k, k^{\prime}\right) & =i e \sum_{\mu} \tilde{A}_{\mu, g, a}\left(k-k^{\prime}\right) \tilde{\Gamma}_{N, \mu}\left(k+k^{\prime}\right) \tag{2.13c}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{\Gamma}_{N, \mu}(K)=\gamma_{\mu} \cos \frac{a}{2} K_{\mu}+i \sin \frac{a}{2} K_{\mu} \tag{2.13d}
\end{equation*}
$$

$k, k^{\prime} \in \tilde{\Lambda}_{N}$ and we have assumed $\tilde{A}_{\mu, g, a}(p)=\tilde{A}_{\mu, g, a}(q)$ if $p=q \bmod \frac{4 \pi N}{L}$. Further define

$$
\begin{align*}
\tilde{P}_{\Lambda}(k) & =\left[m^{2}+k^{2}\right]^{-1 / 4} \tag{2.14a}\\
\tilde{U}_{A}(k) & =(m+i k) /\left(m^{2}+k^{2}\right)^{1 / 2}, \tag{2.14b}\\
\tilde{\Gamma}_{A}\left(k, k^{\prime}\right) & =i e \sum_{\mu} \gamma_{\mu} \tilde{A}_{\mu, g}\left(k-k^{\prime}\right), \tag{2.14c}
\end{align*}
$$

which correspond to the continuum limit. Let χ_{N} be the projection operator from $\mathscr{H}_{\Lambda}=L^{2}\left(\Lambda ; d^{2} x\right)$ onto $\mathscr{H}_{N}=\left\{\mathrm{f} \in \mathscr{H}_{\Lambda} ; \tilde{\mathrm{f}}(\mathrm{k})=0, \mathrm{k} \notin \tilde{\Lambda}_{N}\right\}$ which commutes with P_{Λ} and U_{A}, and let:

$$
\begin{gathered}
P_{N}=\chi_{N} P_{A} \chi_{N}+\delta P_{N}, \quad U_{N}=\chi_{N} U_{A} \chi_{N}+\delta U_{N} \\
\Gamma_{N}^{(1)}=i e \chi_{N} \not A_{g} \chi_{N}+\delta \Gamma_{N}^{(1)}
\end{gathered}
$$

Now:

$$
\begin{aligned}
\left\|K_{A}-K_{N}\right\|_{4} & \leqq\left\|K_{A}-K_{N}^{(1)}\right\|_{4}+\left\|K_{N}^{(2), r}\right\|_{4} \\
& \leqq\left\|K_{A}-i e \chi_{N} P_{A} U_{A} A_{g} P_{A} \chi_{N}\right\|_{4}+\left\|\delta K_{N}^{(1)}\right\|_{4}+\left\|K_{N}^{(2), r}\right\|_{4}
\end{aligned}
$$

where

$$
\delta K_{N}^{(1)}=K_{N}^{(1)}-i e \chi_{N} P_{\Lambda} U_{A} \not_{g} P_{A} \chi_{N}
$$

Lemma II-1. There exist polynomials $Q_{N}^{(1)}, Q_{N}^{(2)}$, and $Q_{N}^{(3)}$ of A_{μ} of order 4 such that

$$
\begin{gathered}
\left\|K_{\Lambda}-i e \chi_{N} P_{A} U_{A} A_{g} P_{A} \chi_{N}\right\|_{4}^{4} \leqq Q_{N}^{(1)} \\
\left\|\delta K_{N}^{(1)}\right\|_{4}^{4} \leqq Q_{N}^{(2)}, \quad\left\|K_{N}^{(2), r}\right\|_{4}^{2} \leqq Q_{N}^{(3)}
\end{gathered}
$$

where

$$
\int Q_{N}^{(i)} d \mu \leqq d_{i} N^{-\varepsilon_{i}}, \quad i=1,2,3
$$

and $\left\{d_{i}, \varepsilon_{i}>0\right\}$ are independent of $L(\geqq 1)$ or $N(\geqq 1)$.
Theorem II follows from this lemma. We sketch the proof, with our Remarks (2) in mind. As for $Q_{N}^{(1)}$, since U_{A} is unitary,

$$
\begin{aligned}
\left\|K_{A}-\chi_{N} K_{A} \chi_{N}\right\|_{4}^{4} & =|e|^{4}\left\|P_{A} A_{g} P_{A}-\chi_{N} P_{A} A_{g} P_{A} \chi_{N}\right\|_{4}^{4} \\
& \leqq 3^{4}|e|^{4}\left\|\left(1-\chi_{N}\right) P_{A} A_{g} P_{A}\right\|_{4}^{4} \equiv Q_{N}^{(1)}
\end{aligned}
$$

Except for the trivial constant, $Q_{N}^{(1)}$ is proportional to:

$$
\frac{1}{\left(L^{2}\right)^{3}} \sum_{\substack{k_{k} \in \tilde{A}_{N} \\ i=1,2,3}} \mathscr{P}\left(\tilde{A}_{g}\left(k_{1}\right), \ldots, \tilde{A}_{g}\left(k_{4}\right)\right) T_{N}\left(k_{1}, k_{2}, k_{3}\right)
$$

where \mathscr{P} is a sum of $\tilde{A}_{\mu_{1}, g}\left(k_{1}\right) \times \ldots \times \tilde{A}_{\mu_{4}, g}\left(k_{4}\right)$ with their coefficients ± 2 or 0 , $k_{4}=-\sum_{1}^{3} k_{i}$ and

$$
T_{N}=\frac{1}{L^{2}} \sum_{\substack{p \in \tilde{\lambda}, \tilde{\lambda}_{N} \\ p-k_{1}-k_{2} \in \tilde{\lambda} \backslash \tilde{A}_{N}}} \tilde{P}^{2}(p) \tilde{P}^{2}\left(p-k_{1}\right) \tilde{P}^{2}\left(p-k_{1}-k_{2}\right) \tilde{P}^{2}\left(p-k_{1}-k_{2}-k_{3}\right) .
$$

Since $\tilde{P}^{2}(p) \leqq \operatorname{const} N^{-\alpha}\left(p^{2}+m^{2}\right)^{-\beta}$ with $\alpha>0,0<\beta<1 / 2$, whenever $p \in \tilde{\Lambda} \backslash \tilde{\Lambda}_{N}$, Hölder's inequality together with $\left(p^{2}+m^{2}\right)\left((p+k)^{2}+m^{2}\right) \geqq m^{2}\left(m^{2}+1 / 4 k^{2}\right)$ shows :

$$
T_{N} \leqq C N^{-\alpha}\left(k_{1}^{2}+m^{2}\right)^{-\beta / 3}\left(\left(k_{1}+k_{2}\right)^{2}+m^{2}\right)^{-\beta / 3}\left(\left(k_{1}+k_{2}+k_{3}\right)^{2}+m^{2}\right)^{-\beta / 3}
$$

where C, α, β are independent of $L(\geqq 1)$ or $N(\geqq 1)$. Therefore Eq. (2.9a), (2.9b) show

$$
\int Q_{N}^{(1)} d \mu \leqq \operatorname{const} N^{-\alpha}
$$

again by repeating usage of Hölder's inequality.
$Q_{N}^{(2)}$ arises from the terms which contain at least one of $\left\{\delta P_{N}, \delta U_{N}, \delta \Gamma_{N}^{(1)}\right\}$. Since

$$
\begin{gathered}
\delta \tilde{P}_{N}(k) \leqq C_{1} \tilde{P}(k), \\
\left|\delta \tilde{P}_{N}(k)\right| \leqq C_{2} \tilde{P}(k) f(a k), \quad f(x) \leqq|x|, \\
\left|\delta \hat{U}_{N}(k)_{i, j}\right| \leqq C_{3} f(a k), \quad f(x) \leqq|x|, \\
\delta \tilde{\Gamma}_{N}^{(1)}\left(k, k^{\prime}\right)= \\
i C_{4} \sum_{\mu} g_{\mu}\left(a k, a k^{\prime}\right) \tilde{A}_{\mu, g}\left(k-k^{\prime}\right) \\
\cdot\left|g_{\mu}(x, y)\right| \leqq|x+y|
\end{gathered}
$$

whenever $k, k^{\prime} \in \tilde{\Lambda}_{N}$, where $\left\{C_{i}\right\}$ are constants independent of $L(\geqq 1)$ and $N(\geqq 1)$, one finds

$$
\int Q_{N}^{(2)} d \mu \leqq \operatorname{const} N^{-\alpha}
$$

again by the same method.
As for the $Q_{N}^{(3)}$, use the following facts:

$$
\begin{gathered}
\left|\Gamma_{N}^{(2), r}\left(x, x \pm e_{\mu}\right)\right| \leqq \frac{1}{a} e^{2} A_{\mu, g, a}^{2}\left(x \pm \frac{e_{\mu}}{2}\right) \\
Q_{N}^{(3)}=\left\|K_{N}^{(2), r}\right\|_{4}^{2} \leqq\left\|K_{N}^{(2), r}\right\|_{2}^{2} \leqq \operatorname{Tr} P_{N}^{2} \Gamma_{N}^{(2), r} P_{N}^{2} \Gamma_{N}^{(2), r^{*}}
\end{gathered}
$$

Let R_{N} be defined by $\tilde{R}_{N}(k)=\left[m^{2}+\frac{2}{a^{2}}\left(2-\sum \cos a k_{\mu}\right)\right]^{-1 / 4}$. Then [9] $R_{N}(x, y) \geqq 0$ and $\left\|P_{N} R_{N}^{-1}\right\|_{\infty} \leqq t$ (independent of $L \geqq 1$ and $N \geqq 1$). Thus

$$
Q_{N}^{(3)} \leqq t^{4} a^{-2} e^{4} \operatorname{Tr} R_{N}^{2} A_{g, a}^{2} R_{N}^{2} A_{g, a}^{2}
$$

which shows

$$
\int Q_{N}^{(3)} d \mu \leqq \operatorname{const} N^{-\alpha}
$$

2.2. Convergence of $\operatorname{det}_{\mathrm{ren}}\left(1+K_{N}\right)$

We have just proved K_{N} converges to K_{Λ} or to K_{g} in C_{4} a.e. as $N \rightarrow \infty$. After rewriting $\operatorname{det}\left(1+K_{N}\right)$ as $\operatorname{det}_{(4)}\left(1+K_{N}\right) \exp \left(\left[-T_{N}\right]\right.$, where $T_{N}=\operatorname{Tr}\left\{-K_{N}+1 / 2 K_{N}^{2}-1 / 3 K_{N}^{3}\right\}$, one therefore finds $\operatorname{det}_{(4)}\left(1+K_{N}\right)$ converges to $\operatorname{det}_{(4)}\left(1+K_{\Lambda}\right)$ or to $\operatorname{det}_{(4)}\left(1+K_{g}\right)$ which are a.e. finite.

Theorem III. Let T_{N} be as above, and let $C_{N} \equiv \int T_{N} d \mu(A)$. Then $T_{N}-C_{N}$ converges to $: T: \in L^{p}(d \mu), p \geqq 1$ a.e. as $N \rightarrow \infty$ and $\left|C_{N}\right| \leqq c \ln (2+N)$, where $c>0$ is independent of $L(\geqq 1)$ and $N(\geqq 1)$ and

$$
T=\frac{e^{2}}{2 \pi}\left(\frac{2 \pi}{L}\right)^{2} \sum_{k \in \tilde{A}} \tilde{T}_{\mu v}(k) \tilde{A}_{\mu, g}(k) \tilde{A}_{v, g}(-k) .
$$

Here

$$
\begin{gather*}
\tilde{T}_{\mu \nu}=\left(\delta_{\mu \nu}-\frac{k_{\mu} k_{v}}{k^{2}}\right) \tilde{T}(k) \tag{2.15a}\\
\tilde{T}=1-\frac{4 m^{2}}{k \sqrt{4 m^{2}+k^{2}}} \operatorname{Tanh}^{-1}\left(\frac{k}{\sqrt{4 m^{2}+k^{2}}}\right)+E_{L}(k), \tag{2.15b}\\
\left|E_{L}(k)\right| \leqq \operatorname{const}\left(1+k^{2}\right)^{-1} \log \left(2+k^{2}\right) \\
\left|E_{L}(k)\right| \leqq C(p) L^{-p}, \quad \text { for any } p>0 \tag{2.15c}
\end{gather*}
$$

Remarks 3. (1) If $L_{N}=L$ depends on N like $L_{0} N^{1 / 2}$, then $E(k) \equiv 0$ and $\left(\frac{2 \pi}{L}\right)^{2} \sum_{k \in \tilde{\Lambda}}$ should be replaced by $\int d^{2} k$. (2) $L_{N}=L$ can depend on N highly arbitrarily as far as $a=L_{N} / 2 N$ tends to zero as $N \rightarrow \infty$.

This is also essentially proved in [9]. We sketch the proof since it is much simplified compared to [9].

Proof. (Step 1). Let

$$
K_{N}=K_{N}^{(1)}+K_{N}^{(2), r}
$$

as before, and let

$$
\Gamma_{N}=\Gamma_{N}^{(1)}+\Gamma_{N}^{(2)}+\Gamma_{N}^{(3)}+\Gamma_{N}^{(4), r},
$$

corresponding to the expansion of Γ_{N} in terms of $a A_{\mu, g, a}$. Thus

$$
\begin{aligned}
\operatorname{Tr}\left(K_{N}\right)^{3} & =\operatorname{Tr}\left(K_{N}^{(1)}\right)^{3}+\operatorname{Tr}\left[3 K_{N}^{(1)}\left(K_{N}^{(2), r}\right)^{2}+3\left(K_{N}^{(1)}\right)^{2} K_{N}^{(2), r}+\left(K_{N}^{(2), r}\right)^{3}\right], \\
\operatorname{Tr}\left(K_{N}\right)^{2} & =\operatorname{Tr}\left(K_{N}^{(1)}\right)^{2}+\operatorname{Tr}\left[2 K_{N}^{(1)} K_{N}^{(2), r}+\left(K_{N}^{(2), r}\right)^{2}\right], \\
\operatorname{Tr} K_{N} & =\operatorname{Tr} S_{N}\left[\Gamma_{N}^{(1)}+\Gamma_{N}^{(2)}+\Gamma_{N}^{(3)}+\Gamma_{N}^{(4), r}\right] .
\end{aligned}
$$

Note that $\gamma_{5} \Gamma_{N} \gamma_{5}=\Gamma_{N}^{*}$ and $\gamma_{5} B_{N} \gamma_{5}=B_{N}^{*}$, where $\Gamma_{N}=\Gamma_{N}$ or $\Gamma_{N}^{(\ell)}$ and $\gamma_{5}=\gamma_{5}^{*}=\gamma_{5}^{-1}=i \gamma_{0} \gamma_{1}$. Then $\operatorname{Tr}\left(K_{N}^{(1)}\right)^{n}$ and $\operatorname{Tr} S_{N} \Gamma_{N}^{(t)}$ are real. Since $\Gamma_{N}^{(t)}(-i e)=(-1)^{\ell} \Gamma_{N}^{(t)}(i e)$ and there exists a complex conjugacy operator C such that $C \gamma_{\mu} C=\gamma_{\mu}$, one finds:

$$
\operatorname{Tr}\left(K_{N}^{(1)}\right)^{3}=\operatorname{Tr} S_{N} \Gamma_{N}^{(1)}=\operatorname{Tr} S_{N} \Gamma_{N}^{(3)}=0 .
$$

As for other terms containing $K_{N}^{(2), r}$, use Hölder's inequality and a trivial inequality $\|A\|_{p} \leqq\|A\|_{p^{\prime}}\left(p \geqq p^{\prime}\right)$, to show each of them is dominated by a factor of the form Q_{N}^{r} where $r=1$ or $1 / 2$ and Q_{N} is a polynomial of A_{μ} such that

$$
\int Q_{N} d \mu \leqq c N^{-\alpha}, \quad c>0
$$

Then these terms converge to zero a.e. with respect to $d \mu$. For example:

$$
\begin{aligned}
\tilde{Q}_{N} & \equiv\left|\operatorname{Tr}\left(K_{N}^{(1)}\right)^{2} K_{N}^{(2), r}\right| \leqq\left\|K_{N}^{(1)}\right\|_{4}^{2}\left\|K_{N}^{(2), r}\right\|_{2} \\
& \leqq\left\|K_{N}^{(1)}\right\|_{2}^{2}\left\|K_{N}^{(2), r}\right\|_{2}
\end{aligned}
$$

where

$$
\left\|K_{N}^{(1)}\right\|_{2}^{2} \leqq C \log \left(1+\frac{1}{a m}\right) \frac{1}{L^{2}} \sum_{k \in \tilde{\Lambda}_{N}}\left|\tilde{A}_{\mu, g, a}(k)\right|^{2}
$$

[C: independent of $L(\geqq 1)$ and N], and use Lemma II-1 (see the proof to replace $\left\|\|_{4}\right.$ by $\| \|_{2}$) to see that $\left\|K_{N}^{(2), r}\right\|_{2}^{2}$ is dominated by a polynomial of $A_{\mu, g}$ of order 4 which converges to zero rather rapidly. Hölder's and the hypercontractive inequality mean

$$
\begin{aligned}
\int \tilde{Q}_{N}^{2} d \mu & \leqq \int\left\|K_{N}^{(1)}\right\|_{2}^{4}\left\|K_{N}^{(2), r}\right\|_{2}^{2} d \mu \\
& \leqq\left\{\int\left\|K_{N}^{(1)}\right\|_{2}^{8} d \mu\right\}^{1 / 2}\left\{\int\left\|K_{N}^{(2), r}\right\|_{2}^{4} d \mu\right\}^{1 / 2} \\
& \leqq c N^{-\alpha} .
\end{aligned}
$$

As for $\operatorname{Tr} S_{N} \Gamma_{N}^{(4), r}$, one explicitly finds:

$$
\begin{aligned}
\left|\operatorname{Tr} S_{N} \Gamma_{N}^{(4), r}\right| & \leqq\left(a^{2}\right)^{2} \sum_{i j} \sum_{x, y \in \Lambda_{N}}\left|S_{N}(x-y)_{i j} \|\left|\Gamma_{N}^{(4), r}(y, x)_{j i}\right|\right. \\
& \leqq\left(a^{2}\right)^{2} \sum_{i j, \mu} \sum_{x \in \Lambda_{N}}\left|S_{N}\left(e_{\mu}\right)_{i j}\right| e^{4} \frac{1}{a^{3}}\left(a A_{\mu, g, a}\left(x+\frac{e_{\mu}}{2}\right)\right)^{4} \\
& \leqq \operatorname{const} e^{4}\left(a^{2}\right)^{2} \sum_{x \in \Lambda_{N}} A_{\mu, g, a}\left(x+\frac{e_{\mu}}{2}\right)^{4}
\end{aligned}
$$

where const is independent of $L(\geqq 1)$ and $N(\geqq 1)$, and we have used

$$
\left|e^{i x}-\left(1+i x-\frac{x^{2}}{2}-\frac{i}{6} x^{3}\right)\right| \leqq x^{4}
$$

and

$$
\left|S_{N}\left(e_{\mu}\right)_{i j}\right| \leqq \frac{1}{L^{2}} \sum_{k \in \tilde{\Lambda}_{N}} \tilde{P}_{N}^{2}(k) \leqq \text { const } \frac{1}{a} .
$$

Since $\int A_{\mu, g, a}^{4}(x) d \mu(A) \leqq \operatorname{const}\left(g_{a}(x)\right)^{4} \log ^{2}\left(2+\frac{1}{a \mu}\right)$, this converges to zero.
(Step 2). It remains to consider

$$
\begin{equation*}
\operatorname{Tr}\left[-S_{N} \Gamma_{N}^{(2)}+1 / 2\left(K_{N}^{(1)}\right)^{2}\right]=e^{2} \frac{1}{L^{2}} \sum_{k \in \tilde{A}_{N}} \tilde{A}_{\mu, g, a}(k) \tilde{A}_{v, g, a}(-k) \tilde{T}_{\mu v}(k) . \tag{2.16}
\end{equation*}
$$

The gauge invariance requires $[1,9]$

$$
\sum_{\mu} \sin \frac{a k_{\mu}}{2} \tilde{T}_{\mu v}(k)=\sum_{v} \sin \frac{a k_{v}}{2} \tilde{T}_{\mu v}(k)=0
$$

which means

$$
\begin{equation*}
\tilde{T}_{\mu v}(k)=\left[\delta_{\mu \nu}-\frac{\sin \frac{a k_{\mu}}{2} \sin \frac{a k_{v}}{2}}{\sum \sin ^{2} \frac{a k_{\mu}}{2}}\right] \tilde{T}(k) \tag{2.17}
\end{equation*}
$$

Then

$$
\begin{align*}
& \tilde{T}(k)=\sum_{\mu} \tilde{T}_{\mu \mu}(k) \\
& =1 / 2 \frac{a^{2}}{L^{2}} \sum_{q \in \tilde{\Lambda}_{N}} \frac{\sum \sin ^{2} a q_{\mu}-\left(2-\sum \cos a q_{\mu}\right)\left(\sum \cos a q_{\mu}\right)+a m \sum \cos a q_{\mu}}{a^{2} \Delta(q)} \\
& -1 / 2 \frac{1}{L^{2}} \sum_{q \in \tilde{\Lambda}_{N}} \frac{1}{\Delta(k+q) \Delta(q)} \\
& \cdot\left\{\frac{2}{a^{2}}\left[\sin a q_{0} \sin a(k+q)_{0}-\sin a q_{1} \sin a(k+q)_{1}\right]\right. \\
& \cdot\left[\cos ^{2} a\left(k+\frac{q}{2}\right)_{0}-\cos ^{2} a\left(k+\frac{q}{2}\right){ }_{1}\right] \\
& +\frac{2}{a^{2}}\left[\sum_{\mu} \sin a q_{\mu} \sin a(k+q)_{\mu}\right]\left[\sum \sin ^{2} a\left(k+\frac{q}{2}\right)_{\mu}\right] \\
& +\left[m+1 / a \sum\left(1-\cos a(k+q)_{\mu}\right)\right] \frac{2}{a}\left[\sum \sin a q_{\mu} \sin a(2 k+q)_{\mu}\right] \\
& +\left[m+1 / a \sum\left(1-\cos a q_{\mu}\right)\right] \frac{2}{a}\left[\sum \sin a(k+q)_{\mu} \sin a(2 k+q)_{\mu}\right] \\
& \left.+2\left[m+1 / a \sum\left(1-\cos a q_{\mu}\right)\right]\left[m+1 / a \sum\left(1-\cos a(k+q)_{\mu}\right)\right]\left[\sum \cos a(2 k+q)_{\mu}\right]\right\} \\
& =-1 / 2 \frac{1}{L^{2}} \sum_{q \in \tilde{\Lambda}_{N}} \frac{4 m^{2}}{\Delta(k+q) \Delta(q)} \tag{2.18}\\
& -1 / 2 \frac{a^{2}}{L^{2}} \sum_{q \in \tilde{\Lambda}_{N}}\left\{\frac{1}{a^{2} \Delta(q)}\left[\sum \sin ^{2} a q_{\mu}-\left(2-\sum \cos a q_{\mu}\right)\left(\sum \cos a q_{\mu}\right)\right]\right. \\
& +\frac{1}{a^{4} \Delta(q) \Delta(k+q)}\left\{2\left[\sin a q_{0} \sin a(k+q)_{0}-\sin a q_{1} \sin a(k+q)_{1}\right]\right. \\
& \cdot\left[\sin ^{2} a\left(k+\frac{q}{2}\right)_{0}-\sin ^{2} a\left(k+\frac{q}{2}\right)_{1}\right] \\
& +2\left[\sum \sin a q_{\mu} \sin a(k+q)_{\mu}\right]\left[\sum \sin ^{2} a\left(k+\frac{q}{2}\right)_{\mu}\right]
\end{align*}
$$

$$
\begin{align*}
& +2\left[\sum\left(1-\cos a(k+q)_{\alpha}\right)\right]\left[\sum \sin a q_{\alpha} \sin a(2 k+q)_{\alpha}\right] \\
& +2\left[\sum\left(1-\cos a q_{\mu}\right)\right]\left[\sum \sin a q_{\mu} \cdot \sin a(2 k+q)_{\mu}\right] \\
& \left.\left.+2\left[\sum\left(1-\cos a q_{\mu}\right)\right]\left[\sum\left(1-\cos a(k+q)_{\mu}\right)\right]\left[\sum \cos a(2 k+q)_{\mu}\right]\right\}\right\} \\
& +C \tag{2.19}
\end{align*}
$$

where $|C| \leqq$ const $a m \log \left[2+\frac{1}{a m}\right]$ uniformly in $L \geqq 1$ as $a m \rightarrow 0$, and $\Delta(k)=\tilde{P}_{N}(k)^{-4}$. The first term is written as:

$$
\begin{aligned}
& -\frac{m^{2}}{2 \pi^{2}} \int d^{2} q \frac{1}{\left[(k+q)^{2}+m^{2}\right]\left[q^{2}+m^{2}\right]} \\
& \quad+\frac{m^{2}}{2 \pi^{2}}\left[\frac{4 \pi^{2}}{L^{2}} \sum_{q \in \frac{2 \pi}{L} Z^{2}}-\int d^{2} q\right] \frac{1}{\left[(k+q)^{2}+m^{2}\right]\left[q^{2}+m^{2}\right]} \\
& \quad+\frac{m^{2}}{2 \pi^{2}}\left[\frac{4 \pi^{2}}{L^{2}} \sum_{q \in \tilde{\Lambda}_{N}} \frac{1}{\Delta(k+q) \Delta(q)}\right. \\
& \left.\quad-\frac{4 \pi^{2}}{L^{2}} \sum_{q \in \frac{2 \pi}{L} Z^{2}} \frac{1}{\left[(k+q)^{2}+m^{2}\right]\left[q^{2}+m^{2}\right]}\right] \\
& \equiv \\
& \quad-\frac{1}{2 \pi} \frac{4 m^{2}}{k \sqrt{4 m^{2}+k^{2}}} \operatorname{Tanh}^{-1}\left(\frac{k}{\sqrt{4 m^{2}+k^{2}}}\right) \\
& \quad+E_{L}(k)+C_{N}(k)
\end{aligned}
$$

in this order. Obviously

$$
\left|E_{L}(k)\right| \leqq \text { const } \log [2+k]\left(1+k^{2}\right)^{-1}
$$

uniformly in $L \geqq 1$, and $E_{L}(k) \leqq \operatorname{const} L^{-p}(p>0)$ uniformly in k and $L \geqq 1 . P$ can be chosen arbitrarily large [9]. Further

$$
\left|C_{N}(k)\right| \leqq \operatorname{const} a^{\delta}\left(1+k^{2}\right)^{-\varepsilon}
$$

with some positive constants δ and ε, uniformly in $L \geqq 1$.
As for the second term, let $x_{\mu}=a q_{\mu} \in\left\{\frac{\pi}{N} n_{\mu} ; n_{\mu}=-N,-N+1, \ldots, N-1\right\}$ and note that $a^{2} / L^{2}=\frac{1}{4 \pi^{2}}\left(\frac{\pi}{N}\right)^{2}$. Thus this converges to a k-independent constant which can be calculated by a contour integral (see also [9]), and is equal to $\frac{1}{2 \pi}$.

The remaining statements of the theorem are now rather trivial.

3. Transfer Matrix and Determinant Inequalities

3.1. Transfer Matrix and Diamagnetic Inequality

Let

$$
R_{N}^{p}\left(A_{\mu}\right)=B_{N}^{p}+\Gamma_{N}^{p},
$$

where B_{N}^{p} and Γ_{N}^{p} are given •in (1.6) and " p " means periodic. Let $R_{N}^{A}\left(A_{\mu}\right) \equiv R_{N}^{p}\left(A_{\mu}+\delta A_{\mu}\right)$, where

$$
\delta A_{\mu}(x)=\frac{\pi}{e L}
$$

for all $x \in \Lambda_{N}^{\mu}$. Thus $R_{N}^{A}=B_{N}^{A}+\Gamma_{N}^{A}$ with

$$
\begin{align*}
& B_{N}^{A}(x, y)=\left(m a^{-2}+2 a^{-3}\right) \delta_{x, y}-a^{-3} \gamma(x, y) V(x, y), \tag{3.1}\\
& \Gamma_{N}^{A}(x, y)=-a^{-3}[U(x, y)-1] \gamma(x, y) V(x, y)
\end{align*}
$$

where

$$
V(x, y)=\begin{array}{cl}
\exp \left[\pm \frac{i \pi}{2 N}\right] & y=x \pm e_{\mu} \\
0 & \text { otherwise } \tag{3.2}
\end{array}
$$

and we define

$$
\begin{equation*}
S_{N}^{A}=\left(B_{N}^{A}\right)^{-1}=\left(P_{N}^{A}\right)^{2} U_{N}^{A}, K_{N}^{A}=U_{N}^{A} P_{N}^{A} \Gamma_{N}^{A} P_{N}^{A} \tag{3.3}
\end{equation*}
$$

with $P_{N}^{A} \geqq 0, U_{N}^{A^{*}}=U_{N}^{A-1}$ as before. Though this changes the periodic boundary conditions into the anti-periodic ones, this does not change our previous theorems and lemmas at all. In fact $\tilde{P}_{N}^{A}(k)=\tilde{P}_{N}^{p}(k-\delta), \tilde{\Gamma}_{N}^{A}\left(k, k^{\prime}\right)=\tilde{\Gamma}_{N}^{p}\left(k-\delta, k^{\prime}-\delta\right)$, etc., with

$$
\begin{equation*}
\delta=\frac{\pi}{L}(1,1) \tag{3.4}
\end{equation*}
$$

mean our Feynman diagram estimates do not change at all, and one can easily confirm that the Furry theorem again holds for this boundary condition.

This choice of boundary condition is indispensible for the introduction of the transfer matrix $[4,10]$ or for proving the OS positivity [1].

Theorem IV [4, 10].

$$
\begin{equation*}
\operatorname{det}\left[R_{N}^{A}\left(A_{N}\right)\right]=\operatorname{Tr} T_{-N} U_{-N} \ldots T_{N-1} U_{N-1} \tag{3.5}
\end{equation*}
$$

where $\left\{T_{\ell}, U_{\ell}\right\}$ are operators on a $2^{4 N}$ dimensional Hilbert space spanned by operating the fermion creation operators $\left\{a^{+}(n), b^{+}(n)\right\}_{n=-N}^{N-1}$ on a cyclic vacuum vector Ω, and satisfy:
(1) T_{ℓ} depends only on $\left\{A_{1, g, a}\left[a \ell, a\left(n+\frac{1}{2}\right)\right]\right\}_{n=-N}^{N-1}$ and $T_{\ell}>0$ if $e \in R . T_{\ell}$ is analytic in e in a neighbourhood of $e=0$.
(2) $U_{t}^{*}=U_{\ell}^{-1}$ if $e \in R$,

$$
U_{\ell}=\exp \left\{i a e \sum_{n=-N}^{N-1} A_{0, g, a}\left[a\left(n+\frac{1}{2}\right), a l\right]\left[a^{+}(n) a(n)-b^{+}(n) b(n)\right]\right\} .
$$

See $[4,10]$ for the proof. It is sufficient to replace A_{0} by A_{1} and A_{1} by A_{0} to introduce the transfer matrix for $\mu=1$ direction.

Theorem V.

$$
\begin{equation*}
0<\operatorname{det}\left[1+K_{N}^{A}\right] \leqq 1 . \tag{1}
\end{equation*}
$$

(2) Let $m>0$. Then

$$
\begin{equation*}
0<\operatorname{det}\left[1+K_{N}^{p}\right] \leqq C, \tag{3.6b}
\end{equation*}
$$

uniformly in $L(\geqq 1)$ and $N(\geqq 1)$.
Proof. Since K_{N}^{p} (respectively K_{N}^{A}) is unitarily equivalent to $K_{N}^{p *}$ (respectively $K_{N}^{A *}$) with the unitary $\gamma_{5} U_{N}$ (respectively $\gamma_{5} U_{N}^{A}$), the determinants are real. Thus the positivity of the determinants follows from $(-\infty, 0] \cap \operatorname{spec}\left(R_{N}\right)=\emptyset[9]$. Applying the Hölder inequality to (3.5) and the unitary of U_{ℓ}, one has:

$$
\operatorname{det}\left[R_{N}^{A}\left(A_{\mu}\right)\right] \leqq \prod_{\ell=-N}^{N-1}\left\{\operatorname{Tr}\left(T_{\ell}\right)^{2 N}\right\}^{1 / 2 N}
$$

namely all A_{0} are set at zero in the right hand side. Next apply the same discussion for each $\operatorname{Tr}\left(T_{\ell}\right)^{2 N}$ after introducing the transfer matrix for the $\mu=1$ direction. This means

$$
\begin{equation*}
\operatorname{det}\left[R_{N}^{A}\left(A_{\mu}\right)\right] \leqq \operatorname{det}\left[R_{N}^{A}\left(A_{\mu}=0\right)\right], \tag{3.7}
\end{equation*}
$$

and then (3.6a) follows.
Finally since $R_{N}^{A}\left(A_{\mu}\right)=R_{N}^{p}\left(A_{\mu}+\delta A_{\mu}\right)$,

$$
\begin{equation*}
\operatorname{det}\left(1+K_{N}^{p}\right)=\frac{\operatorname{det}\left[R_{N}^{p}\left(A_{\mu}\right)\right]}{\operatorname{det}\left[R_{N}^{p}\left(A_{\mu}=0\right)\right]} \leqq \frac{\operatorname{det}\left[R_{N}^{A}(0)\right]}{\operatorname{det}\left[R_{N}^{p}(0)\right]} \equiv R . \tag{3.8}
\end{equation*}
$$

Then $R \geqq 1$ by the definition and

$$
\begin{gathered}
R=\prod_{k \in \hat{\Lambda}_{N}} \frac{\hat{P}_{N}(k)^{4}}{\tilde{P}_{N}(k-\delta)^{4}}=\prod_{k \in \hat{\Lambda}_{N}} \frac{\Delta(a ; k+\delta)}{\Delta(a ; k)}, \\
\Delta(a ; k)=\left[m+\frac{1}{a} \sum\left(1-\cos a k_{\mu}\right)\right]^{2}+\frac{1}{a^{2}} \sum \sin ^{2} a k_{\mu} .
\end{gathered}
$$

The upperbound for R follows from next lemma.
Lemma V-1. Let $\zeta=\left(\zeta_{0}, \zeta_{1}\right),\left|\zeta_{\mu}\right| \leqq \frac{\pi}{L}$ be given, and let

$$
\begin{equation*}
R=\prod_{k \in \Lambda_{N}} \frac{\Delta(a ; k+\zeta)}{\Delta(a ; k)} \tag{3.9}
\end{equation*}
$$

with $L \geqq 1$ and $N \geqq 1$. Then

$$
\begin{equation*}
0<c_{1} \leqq R \leqq c_{2}<\infty \tag{3.10}
\end{equation*}
$$

uniformly in $L \geqq 1$ and $N \geqq 1$.
Proof. Note that

$$
R=\prod_{k \in \Lambda_{N}}\left(1+f_{1}+f_{2}+f_{3}+\delta f\right),
$$

where

$$
\begin{aligned}
& f_{1}=\frac{1}{\Delta}\left\{\frac{1}{a^{2}} \sum_{\mu} \sin a \zeta_{\mu} \sin 2 a k_{\mu}\right\} \\
& f_{2}=\frac{1}{\Delta}\left\{\frac{1}{a^{2}} \sum \sin ^{2} a \zeta_{\mu} \cos ^{2} a k_{\mu}\right\} \\
& f_{3}=\frac{1}{\Delta}\left(\frac{2}{a} \sum \sin a \zeta_{\mu} \cdot \sin a k_{\mu}\right)\left(m+\frac{1}{a} \sum\left(1-\cos a k_{\mu}\right)\right)
\end{aligned}
$$

and δf is the remaining term which is defined in the obvious way. Use

$$
\begin{aligned}
& \left|\sin a \zeta_{\mu}\right| \leqq\left|a \zeta_{\mu}\right| \leqq a \frac{\pi}{L} \\
& \left(k^{2}+m^{2}\right) / \Delta(a ; k) \leqq C
\end{aligned}
$$

uniformly in $k \in \tilde{\Lambda}_{N}$ and $a \geqq 0$ to show

$$
\sum_{k \in \tilde{\lambda}_{N}}|\delta f(k)| \leqq C_{1}
$$

uniformly in $L(\geqq 1)$ and $N(\geqq 1)$.
Next use $k \leftrightarrow-k$ symmetry of $\tilde{\Lambda}_{N}$ to see

$$
\begin{aligned}
R^{2} & =\prod_{k}\left(1+f_{1}+f_{2}+f_{3}+\delta f\right)\left(1-f_{1}+f_{2}-f_{3}+\delta \tilde{f}\right) \\
& =\prod_{k}\left(1+2 f_{2}-f_{1}^{2}+\delta f^{\prime}\right),
\end{aligned}
$$

where $\delta \tilde{f}=\delta f(-k)$ and δf^{\prime} is defined in the obvious way. It is not difficult to see

$$
\sum_{k \in A_{N}}\left|\delta f^{\prime}\right| \leqq C_{2}
$$

uniformly in $L(\geqq 1)$ and $N(\geqq 1)$ just by the same method.
As for $g \equiv 2 f_{2}-f_{1}^{2}$, rewrite this as

$$
g_{1}+g_{2}+\delta g
$$

where

$$
\begin{aligned}
& g_{1}=\frac{1}{\Delta^{2}} \frac{2}{a^{4}}\left(\sin ^{2} a k_{0}-\sin ^{2} a k_{1}\right)\left(\sin ^{2} a \zeta_{1}-\sin ^{2} a \zeta_{0}\right), \\
& g_{2}=-\frac{1}{\Delta^{2}} \frac{2}{a^{4}} \sin 2 a \zeta_{0} \sin 2 a \zeta_{1} \sin 2 a k_{0} \sin 2 a k_{1}
\end{aligned}
$$

and δg is the remaining term. It is easy to see

$$
\sum_{k}|\delta g| \leqq C_{3}
$$

uniformly in $L(\geqq 1)$ and $N(\geqq 1)$. As for g_{1}, g_{2}, use a symmetry $\left(k_{0}, k_{1}\right) \rightarrow\left(-k_{1}, k_{0}\right)$ which changes the signs of $\left\{g_{i}\right\}_{1,2}$. Then letting $\delta g^{\prime}=\delta g+\delta f^{\prime}$,

$$
\begin{aligned}
R^{4} & =\prod_{k \in \hat{\Lambda}_{N}}\left(1+g_{1}+g_{2}+\delta g^{\prime}\right)\left(1-g_{1}-g_{2}+\delta \tilde{g}^{\prime}\right) \\
& =\prod_{k \in \hat{\Lambda}_{N}}\left(1-\left(g_{1}+g_{2}\right)^{2}+\delta g^{\prime \prime}\right),
\end{aligned}
$$

where $\delta \tilde{g}^{\prime}\left(k_{0}, k_{1}\right)=\delta g^{\prime}\left(-k_{1}, k_{0}\right)$ and $\delta g^{\prime \prime}$ is defined in the obvious way. Obviously

$$
\begin{gathered}
\sum_{k \in \tilde{\Lambda}_{N}}\left(g_{1}+g_{2}\right)^{2} \leqq C_{4}, \\
\sum_{k \in \Lambda_{N}}\left|\delta g^{\prime \prime}\right| \leqq C_{5}
\end{gathered}
$$

uniformly in $L(\geqq 1)$ and $N(\geqq 1)$.
Finally use $\left|\prod\left(1+z_{i}\right)\right| \leqq \exp \left[\sum\left|z_{i}\right|\right]$. As for the lower bound, remember

$$
0<C_{6} \leqq \frac{\Delta(k+\zeta)}{\Delta(k)}
$$

for all $k \in \tilde{\Lambda}_{N}$ and $a \geqq 0$, provided $m>0$. Then use $\exp \left[-|\log \alpha / \alpha| \sum\left|z_{i}\right|\right] \leqq \prod\left(1+z_{i}\right)$ if $1+z_{i} \geqq \alpha>0,1 \geqq \alpha$.

Corollary V-1. Let $L=L_{N}=L_{0} N^{\delta}(0 \leqq \delta<1)$ and let $K_{N}=K_{N}^{A}$ or K_{N}^{p}. Then

$$
\begin{equation*}
0<\operatorname{det}_{\mathrm{ren}}\left(1+K_{N}\right) \leqq \exp \left[d_{1}+d_{2} \log N\right] \tag{3.11}
\end{equation*}
$$

where $\left\{d_{i}\right\}$ are independent of $N(\geqq 1)$ and $L \geqq 1$.

3.2. Determinant Inequalities

In order to study the volume dependence (Λ_{0} or g-dependence) of the Schwinger functions, we need a determinant inequality which decomposes the MatthewsSalam determinant. For this purpose, for the moment, assume

$$
\begin{aligned}
L & =2 n, n \text { fixed positive integer } \\
N & =2 n M, M \text { positive integers } \\
g & =\chi_{\Lambda}
\end{aligned}
$$

for simplicity. Thus $a=L / 2 N=1 / 2 M$ is the lattice width which tends to zero as $M=N / 2 n \rightarrow \infty$. Now

$$
\begin{align*}
& \operatorname{det}\left[R_{N}(A)\right]= \operatorname{Tr}\left\{T_{-N} U_{-N} \ldots T_{-N+2 M-1} U_{-N+2 M-1}\right\}\left\{T_{-N+2 M} U_{-N+2 M} \ldots\right\} \\
& \cdot \ldots \cdot\left\{T_{N-2 M} U_{N-2 M} \ldots T_{N-1} U_{N-1}\right\} \\
& \leqq\left\{\operatorname{Tr}\left|T_{-N} U_{-N} \ldots T_{-N+2 M-1} U_{-N+2 M-1}\right|^{2 n}\right\}^{1 / 2 n} \\
& \cdot \ldots \cdot\left\{\operatorname{Tr}\left|T_{N-2 M} U_{N-2 M} \ldots T_{N-1} U_{N-1}\right|^{2}\right\}^{1 / 2 n} \\
& \leqq\left\{\operatorname{Tr} U^{*}{ }_{-N+2 M-1} T_{-N+2 M-1} \ldots U_{-N}^{*} T_{-N} T_{-N} U_{-N} \ldots\right. \\
&\left.\cdot T_{-N+2 M-1} U_{-N+2 M-1}\right\}^{1 / 2} \\
& \cdot \ldots \cdot\left\{\operatorname{Tr} U_{N-1}^{*} T_{N-1} \ldots U_{N-2 M}^{*} T_{N-2 M} T_{N-2 M} \ldots T_{N-1} U_{N-1}\right\}^{1 / 2}, \tag{3.12}
\end{align*}
$$

by Hölder's inequality and by a trivial inequality $\|A\|_{2 n} \leqq\|A\|_{2}(n \geqq 1)$. We repeat the same discussion for each of the terms in the right hand side after introducing the transfer matrix to the other direction to find

$$
\operatorname{det}\left[R_{N}(A)\right] \leqq \prod_{i_{0}, i_{1}=-n}^{n-1} \operatorname{det}^{1 / 4}\left[R_{2 M}\left(B^{(i)}\right)\right]
$$

where $i=\left(i_{0}, i_{1}\right)$ and $R_{2 M}\left(B^{(i)}\right)$ is the R_{N} function defined by the region $\lambda=[-1,1]^{2}$, lattice width $a=\frac{L}{2 N}=\frac{2}{4 M}$ and the lattice gauge fields $\left\{B_{\mu, a}^{(i)}\left(\left(a n_{0}, a n_{1}\right)+\frac{1}{2} e_{\mu}\right)\right.$; $\left.-2 M \leqq n_{\mu} \leqq 2 M-1\right\}:$

$$
\begin{array}{rlll}
B_{0}^{(i)}\left(a\left[n_{0}+\frac{1}{2}\right], a n_{1}\right)=A_{0}^{(i)}\left(a\left[n_{0}+\frac{1}{2}\right], a n_{1}\right), & \text { if } & 0 \leqq n_{0} \leqq 2 M-2,0 \leqq n_{1} \leqq 2 M-1, \\
0, & \text { if } & n_{0}=2 M-1, \\
B_{1}^{(i)}\left(a n_{0}, a\left[n_{1}+\frac{1}{2}\right]\right)=A_{1}^{(i)}\left(a n_{0}, a\left[n_{1}+\frac{1}{2}\right]\right), & \text { if } & 0 \leqq n_{0} \leqq 2 M-1,0 \leqq n_{1} \leqq 2 M-2, \\
0, & \text { if } & n_{1}=2 M-1, \tag{II}
\end{array}
$$

$$
\begin{array}{rll}
B_{0}^{(i)}\left(a\left[-n_{0}-\frac{1}{2}\right], a n_{1}\right)=-A_{0}\left(a\left[n_{0}-\frac{1}{2}\right], a n_{1}\right), & \text { if } & 1 \leqq n_{0} \leqq 2 M-1,0 \leqq n_{1} \leqq 2 M-1, \\
0, & \text { if } & n_{0}=0,
\end{array}
$$

$$
B_{1}^{(i)}\left(-a n_{0}, a\left[n_{1}+\frac{1}{2}\right]\right)=A_{1}^{(i)}\left(a\left[n_{0}-1\right], a n_{1}+\frac{1}{2}\right), \quad \text { if } \quad 1 \leqq n_{0} \leqq 2 M, 0 \leqq n_{1} \leqq 2 M-1,
$$

$$
\begin{equation*}
0, \text { if } \quad n_{1}=2 M-1 \tag{3.14}
\end{equation*}
$$

and so on, where $A_{\mu}^{i}(x)=A_{\mu}(x-i)$ and we have omitted the subscripts g and a. Approximately

$$
\begin{equation*}
B_{\mu, a}^{(i)}\left(x_{0}, x_{1}\right)=\operatorname{sgn}\left(x_{\mu}\right) A_{\mu, a}^{(i)}\left(\left|x_{0}\right|,\left|x_{1}\right|\right) . \tag{3.14'}
\end{equation*}
$$

In fact one finds :

$$
\begin{align*}
& \tilde{B}_{0}^{(\mathrm{II})}\left(k_{0}, k_{1}\right)=-\tilde{B}_{0}^{(\mathrm{II})}\left(-k_{0}, k_{1}\right) e^{-i a k_{0}}=-\tilde{A}_{0}\left(-k_{0}, k_{1}\right) e^{-i a k_{0}}, \\
& \hat{B}_{1}^{(\mathrm{II})}\left(k_{0}, k_{1}\right)=\tilde{B}_{1}^{(\mathrm{II}}\left(-k_{0}, k_{1}\right) e^{-i a k_{0}}=\tilde{A}_{1}\left(-k_{0}, k_{1}\right) e^{-i a k_{0}}, \quad \text { etc. } \tag{3.15}
\end{align*}
$$

Now let

$$
\begin{equation*}
\Xi(n ; N)=\frac{\operatorname{det}^{n^{2}}\left[R_{2 M}(0)\right]}{\operatorname{det}\left[R_{N}(0)\right]} \tag{3.16}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{det}\left[1+K_{N}(A)\right] \leqq \Xi(n ; N) \prod_{i} \operatorname{det}\left[1+K_{2 M}\left(B^{(i)}\right)\right]^{1 / 4} \tag{3.17}
\end{equation*}
$$

where we have omitted A for simplicity.
Lemma VI-1. There exist constants α_{1} and α_{2} uniformly in $M \geqq 1$ and n such that

$$
\begin{equation*}
\exp \left[\alpha_{1} n^{2}\right] \leqq \Xi(n ; N) \leqq \exp \left[\alpha_{2} n^{2}\right] \tag{3.18}
\end{equation*}
$$

Proof. One can replace $R_{2 M}$ and R_{N} by the periodic ones by the proof of Theorem V(2). Thus consider

$$
\Xi=\frac{\prod_{k \in \bar{\lambda}_{2 M}} \Delta(a ; k)^{n^{2}}}{\prod_{k \in \bar{\Lambda}_{N}} \Delta(a ; k)}
$$

where $\Delta(a ; k)=\tilde{P}_{N}(k)^{-4}$. Now $\tilde{\lambda}_{2 M}=\left\{\frac{2 \pi}{2}\left(j_{0}, j_{1}\right) ;-2 M \leqq j_{\mu} \leqq 2 M-1\right\}$. Thwn let

$$
\Omega=\left\{\frac{2 \pi}{2 n}\left(j_{0}, j_{1}\right) ;-\left[\frac{n}{2}\right] \leqq j_{\mu} \leqq\left[\frac{n+1}{2}\right]-1\right\} .
$$

Then $|\Omega|=n^{2},\left|\zeta_{\mu}\right| \leqq \frac{\pi}{2}$ if $\zeta \in \Omega$ and

$$
\Xi^{-1}=\prod_{\zeta \in \Omega} \prod_{k \in \lambda_{2 M}} \frac{\Delta(a ; k+\zeta)}{\Delta(a ; k)}
$$

Thus the lemma follows from Lemma V-1.
Lemma VI-2. Let

$$
\begin{aligned}
C_{N} & =\int \operatorname{Tr}\left[-K_{N}(A)+\frac{1}{2} K_{N}(A)^{2}-\frac{1}{3} K_{N}(A)^{3}\right] d \mu(A) \\
C_{M}^{(i)} & =\frac{1}{4} \int \operatorname{Tr}\left[-K_{2 M}\left(B^{i}\right)+\frac{1}{2} K_{2 M}\left(B^{i}\right)^{2}-\frac{1}{3} K_{2 M}\left(B^{i}\right)^{3}\right] d \mu(A)
\end{aligned}
$$

There exists a constant C uniformly in $M \geqq 1$ such that

$$
\begin{equation*}
\left|C_{N}-\sum C_{M}^{(i)}\right| \leqq C(2 n)^{2}=C|\Lambda| . \tag{3.19}
\end{equation*}
$$

Proof. It is sufficient to consider

$$
\begin{aligned}
& \tilde{C}_{N}=\int \operatorname{Tr}\left[-S_{N} \Gamma_{N}^{(2)}(A)+\frac{1}{2}\left(S_{N} \Gamma_{N}^{(1)}(A)\right)^{2}\right] d \mu(A), \\
& \tilde{C}_{M}^{i}=\frac{1}{4} \int \operatorname{Tr}\left[-S_{2 M} \Gamma_{2 M}^{(2)}\left(B^{i}\right)+\frac{1}{2}\left(S_{2 M} \Gamma_{2 M}^{(1)}\left(B^{i}\right)\right)^{2}\right] d \mu(A)
\end{aligned}
$$

First consider the contributions from $\Gamma_{N}^{(2)}$ and $\Gamma_{2 M}^{(2)}$:

$$
\begin{aligned}
\operatorname{Tr} S_{N} \Gamma_{N}^{(2)}(A) & =v_{M}\left(a^{2} \sum_{\mu} \sum_{x \in \Lambda_{N}^{\mu}} A_{\mu, g, a}^{2}(x)\right), \\
\frac{1}{4} \operatorname{Tr} S_{2 M} \Gamma_{2 M}^{(2)}\left(B^{i}\right) & =\frac{1}{4} v_{2 M} a^{2} \sum_{\mu} \sum_{x \in \lambda_{2}^{\mu}} B_{\mu, g, a}^{i}(x)^{2} \\
& =v_{2 M}\left(a^{2} \sum_{\mu} \sum_{x \in \Lambda_{2 M}^{\mu}} A_{\mu, g, a}^{2}(x-(i))\right),
\end{aligned}
$$

where $\Delta=[0,1)^{2}$ and the forms of v_{N} and $v_{2 M}$ are essentially given in the proof of Theorem III. [The first term in (2.18) with q replaced by $q+\delta$.] Thus

$$
\begin{align*}
& \int\left|\operatorname{Tr} S_{N} \Gamma_{N}^{(2)}(A)-\frac{1}{4} \sum_{i} \operatorname{Tr} S_{2 M} \Gamma_{2 M}^{(2)}\left(B^{i}\right)\right| d \mu(A) \\
& \quad \leqq\left|v_{N}-v_{2 M}\right|(2 n)^{2} K_{0} \log \left(2+\frac{1}{a \mu}\right)+\text { boundary term } \tag{3.20}
\end{align*}
$$

uniformly as $a \rightarrow 0$. Since $\left|v_{N}-v_{2 M}\right| \leqq$ const $a^{\varepsilon}, \varepsilon>0$, as $N=4 n M \rightarrow \infty$, this difference uniformly tends to zero as $a \rightarrow 0$. [Boundary term $\leqq \operatorname{const}(2 n)^{2} a^{\varepsilon}$.]

In order to consider the other terms, let $\gamma_{\mu}(\pm)=\gamma_{\mu}^{N}(\pm)=\frac{1}{2}\left(\gamma_{\mu} \pm 1\right) \exp \left[\pm \frac{i \pi}{2 N}\right]$, and let

$$
\begin{align*}
\Pi_{\mu \nu}^{N}(x, y)= & \operatorname{Tr}\left\{\gamma_{\mu}(+) S_{N}\left(x+e_{\mu}, y\right) \gamma_{\nu}(+) S_{N}\left(y+e_{v}, x\right)\right. \\
& +\gamma_{\mu}(-) S_{N}(x, y) \gamma_{\nu}(+) S_{N}\left(y+e_{v}, x+e_{\mu}\right) \\
& +\gamma_{\mu}(+) S_{N}\left(x+e_{\mu}, y+e_{v}\right) \gamma_{v}(-) S_{N}(y, x) \\
& \left.+\gamma_{\mu}(-) S_{N}\left(x, y+e_{v}\right) \gamma_{\nu}(-) S_{N}\left(y, x+e_{\mu}\right)\right\} . \tag{3.21}
\end{align*}
$$

Then

$$
\begin{align*}
\operatorname{Tr} S_{N} \Gamma_{N}^{(1)}(A) S_{N} \Gamma_{N}^{(1)}(A)= & -e^{2} a^{4} \sum_{\mu, v} \sum_{\substack{x \in \Lambda_{N} \\
y \in \Lambda_{N}}}\left\{A_{\mu, g, a}\left(x+\frac{e_{\mu}}{2}\right) A_{v, g, a}\left(y+\frac{e_{v}}{2}\right) \times \Pi_{\mu \nu}^{N}(x, y)\right\} \\
= & -e^{2} a^{4} \sum_{i} \sum_{\mu v} \sum_{x, y \in \Lambda_{M}^{(i)}}\left\{A_{\mu, g, a}\left(x+\frac{e_{\mu}}{2}\right) A_{v, g, a}\left(y+\frac{e_{\mu}}{2}\right) \times \Pi_{\mu v}^{N}(x, y)\right\} \\
& -e^{2} a^{4} \sum_{i \neq j} \sum_{\mu v} \sum_{x \in \Lambda_{M}^{(i)}, y \in \Delta_{M}^{(N)}}\{ \}, \tag{3.22}
\end{align*}
$$

where $\Delta^{(i)}=\left[i_{0}, i_{0}+1\right) \otimes\left[i_{1}, i_{1}+1\right)$. One also has

$$
\begin{align*}
\frac{1}{4} \sum_{i} & \operatorname{Tr} S_{2 M} \Gamma_{2 M}^{(1)}\left(B^{(i)}\right) S_{2 M} \Gamma_{2 M}^{(1)}\left(B^{(i)}\right) \\
= & -\frac{1}{4} e^{2} a^{4} \sum_{i} \sum_{\mu, v}\left\{\sum_{j} \sum_{x, y \in \Lambda_{M}^{(j)}}\left[B_{\mu, g, a}^{(i)}\left(x+\frac{e_{\mu}}{2}\right) B_{v, g, a}^{(i)}\left(y+\frac{e_{v}}{2}\right) \Pi_{\mu v}^{2 M}(x, y)\right]\right\} \\
& -\frac{1}{4} e^{2} a^{4} \sum_{i} \sum_{\mu, v}\left\{\sum_{\substack{j, k}} \sum_{\substack{x \in \in,(j) \\
y \in \Lambda_{M M}^{\prime j}}}[\quad\},\right. \tag{3.23}
\end{align*}
$$

where $j, k=(-1,-1),(-1,0),(0,-1),(0,0)$.
Let $S_{a}(x)$ be the euclidean free fermion propagator on $a Z^{2}$. Then one finds

$$
\begin{equation*}
\left|S_{a}(x)\right| \leqq K_{0} \frac{1}{a+\left|x_{0}\right|+\left|x_{1}\right|} \exp \left[-m_{0}\left(\left|x_{0}\right|+\left|x_{1}\right|\right)\right] \tag{3.24}
\end{equation*}
$$

with positive constants K_{0}, m_{0} uniformly in $a \leqq 1$. Since

$$
\begin{align*}
S_{N}(x) & =\sum_{\alpha \in Z^{2}}(-1)^{\alpha_{0}+\alpha_{1}} S_{a}(x+2 N a \cdot \alpha), \tag{3.24a}\\
S_{2 M}(x) & =\sum_{\alpha \in Z^{2}}(-1)^{\alpha_{0}+\alpha_{1}} S_{a}(x+4 M a \cdot \alpha) \tag{3.24b}
\end{align*}
$$

(note that $2 N a=L=2 n, 4 M a=2$), the contributions from the second terms in Eqs. (3.22) and (3.23) are dominated by const($2 n)^{2}$ uniformly in $M \geqq 1$ after integrating by $d \mu(A)$.

Thus we consider

$$
\begin{equation*}
\sum_{i} \int\left\{\frac{a^{4}}{4} \sum_{\mu, v} \sum_{j} \sum_{x, y \in \Lambda_{M i}^{(j)}} B_{\mu, g, a}^{(i)}\left(x+\frac{e_{\mu}}{2}\right) B_{v, g, a}^{(i)}\left(y+\frac{e_{v}}{2}\right) \Pi_{\mu v}^{2 M}(x, y)\right\} d \mu(A) . \tag{3.25}
\end{equation*}
$$

Since $\Pi_{\mu \nu}$ is translationally invariant, set $\Pi_{\mu \nu}^{2 M}(x-y)=\Pi_{\mu \nu}^{2 M}(x, y)$. As is easily seen by the proof of Theorem III, one approximately has [like Eq. (3.14')]

$$
\begin{aligned}
& \Pi_{\mu \mu}\left(x_{0}, x_{1}\right)=\Pi_{\mu \mu}\left(-x_{0},-x_{1}\right)=\Pi_{\mu \mu}\left(-x_{0}, x_{1}\right)=\Pi_{\mu \mu}\left(x_{0},-x_{1}\right) \\
& \Pi_{\mu \nu}\left(x_{0}, x_{1}\right)=-\Pi_{\mu \nu}\left(-x_{0}, x_{1}\right)=-\Pi_{\mu \nu}\left(x_{0},-x_{1}\right)=\Pi_{\mu \nu}\left(-x_{0},-x_{1}\right)
\end{aligned}
$$

if $\mu \neq v$ (this also holds for anti-periodic conditions). In fact analysis due to Fourier transform shows that (3.25) equals

$$
\int\left\{a^{4} \sum_{i} \sum_{\mu, v} \sum_{x, y \in \Lambda_{M \lambda}^{(i)}} A_{\mu, g, a}\left(x+\frac{e_{\mu}}{2}\right) A_{v, g, a}\left(y+\frac{e_{v}}{2}\right) \Pi_{\mu \nu}^{2 M}(x, y)\right\} d \mu(A)+C(a),\left(3.25^{\prime}\right)
$$

where $|C(a)| \leqq \operatorname{const}(2 n)^{2}$. Then it suffices to estimate

$$
\begin{equation*}
\int\left\{a^{4} \sum_{i} \sum_{\mu v} \sum_{x, y \in \Delta_{M i}^{(v)}} A_{\mu, g, a}\left(x+\frac{e_{\mu}}{2}\right) A_{v, g, a}\left(x+\frac{e_{v}}{2}\right)\left[\Pi_{\mu \nu}^{N}(x, y)-\Pi_{\mu \nu}^{2 M}(x, y)\right]\right\} d \mu(A) . \tag{3.26}
\end{equation*}
$$

Since $\left|\gamma_{\mu}^{N}(\pm)-\gamma_{\mu}^{2 M}(\pm)\right| \leqq$ const a and because of the bound (3.24) and expressions (3.24a) and (3.24b), one finds:

$$
\left|\Pi_{\mu \nu}^{N}(x)-\Pi_{\mu \nu}^{2 M}(x)\right| \leqq K \sum_{\substack{\alpha \in \mathcal{Z}^{2} \\|\alpha| \leqq 2}} \frac{1}{|x+2 \alpha|+a}
$$

with constant K uniformly in $a \leqq 1$, whenever $x \in a Z^{2},\left|x_{\mu}\right| \leqq 2$. This completes the proof.

Therefore

Theorem VI.

$$
\begin{equation*}
\operatorname{det}_{\text {ren }}\left(1+K_{N}(A)\right) \leqq \exp \left[K\left|\Lambda_{0}\right|\right] \prod_{i} \operatorname{det}_{\text {ren }}^{1 / 4}\left(1+K_{2 M}\left(B^{(i)}\right)\right) \tag{3.27}
\end{equation*}
$$

with some constant K uniformly in $a \leqq 1$.
Remark 4. In this theorem, we have assumed the length of box L is fixed. However it may be possible to extend this for $L=L_{N}=L_{0} N^{1 / 2}$, provided that $\operatorname{supp} A_{\mu}=\Lambda_{0}$ is bounded, rectangular.

3.3. Volume Dependence of the Schwinger Functions

Theorem VII (Weingarten [10]).
(1) Let $K_{N}(A)=K_{N}^{A}(A)$ or $K_{N}^{p}(A)$, and let $L=L_{N}=L_{0} N^{\delta}$ with $0 \leqq \delta<1$. Then v_{N} $=\operatorname{det}_{\mathrm{ren}}\left(1+K_{N}(A)\right)$ converges to $v(A)=\operatorname{det}_{\mathrm{ren}}(1+K(A))$ in $L^{p}(d \mu), p>0 . v>0$ a.e. with respect to $d \mu(A)$.
(2) Let $K_{N}(B)=K_{N}^{A}(B), L$ be fixed, and let B_{μ} be defined as before. Then $w_{N}=\operatorname{det}_{\mathrm{ren}}\left(1+K_{N}(B)\right)$ converges to $w(B)=\operatorname{det}_{\mathrm{ren}}(1+K(B))$ in $L^{p}(d \mu), p>0$.

Theorem VII (1) is proved by showing prob $[v \geqq x] \leqq \exp \left[-\alpha x^{\varepsilon}\right]$ with $\alpha, \varepsilon>0$. Since

$$
\begin{aligned}
\operatorname{prob}[v \geqq x] & =\operatorname{prob}\left[\log \left(\left(v / v_{N}\right) v_{N}\right) \geqq \log x\right] \\
& \leqq \operatorname{prob}\left[\log \left(v / v_{N}\right) \geqq \log x-c \log (N+1)\right],
\end{aligned}
$$

with N arbitrary, by Corollary $\mathrm{V}-1$, it suffices to show that there exists a polynomial Q_{N} of A_{μ} of order $p<\infty$ such that

$$
\begin{aligned}
Q_{N} & \geqq \log \left(v / v_{N}\right), \\
\int\left|Q_{N}\right|^{2} d \mu & \leqq C N^{-\varepsilon}, \quad \varepsilon>0 .
\end{aligned}
$$

See [10] for the detail. Our previous estimations are now used to prove this with rather trivial modifications. The part (2) is also similar. [Convergence of $K_{N}(B)$ to $K(B)$, etc. are almost trivial though the covariance of $\left\{B_{\mu}\right\}$ is slightly singular compared to that of $\left\{A_{\mu}\right\}$.]

Now let

$$
\begin{equation*}
Z_{N}\left(\Lambda_{0}\right)=\int v_{N}(A) d \mu(A) \tag{3.28}
\end{equation*}
$$

and let $Z\left(\Lambda_{0}\right)=\lim _{N \rightarrow \infty} Z_{N}\left(\Lambda_{0}\right)$. By applying the checkerboard estimate (Theorem III2 of [8]) for Theorem VI, one finds:

$$
\begin{align*}
Z_{N}\left(\Lambda_{0}\right) & \leqq \exp K\left|\Lambda_{0}\right| \prod_{i}\left\{\int_{2 M}\left(B^{i}\right)^{\beta^{2} / 4} d \mu(A)\right\}^{1 / \beta^{2}} \\
& =\exp \left[\left(K+\frac{\kappa}{\beta^{2}}\right)\left|\Lambda_{0}\right|\right] \tag{3.29}
\end{align*}
$$

where $\beta=2\left(1-e^{-\mu}\right)^{-1}$, and

$$
\begin{equation*}
\exp \kappa=\int w_{2 M}\left(B^{i}\right)^{\beta^{2} / 4} d \mu(A) \tag{3.30}
\end{equation*}
$$

Theorem VIII. There exists constant K such that

$$
\begin{equation*}
Z\left(\Lambda_{0}\right) \leqq \exp \left[K\left|\Lambda_{0}\right|\right] \tag{3.31}
\end{equation*}
$$

This theorem can be extended to the Schwinger functions. Let

$$
f_{i} \in \mathscr{H}_{-1}, \quad \operatorname{supp} f_{i} \subset \Delta^{\alpha} \quad \text { for some } \quad \alpha \in Z^{2}
$$

and let $g_{j}, h_{j} \in \mathscr{H} \otimes C^{2}$. Let

$$
\begin{align*}
& \left(Z\left(\Lambda_{0}\right) S\right)\left(f_{1}, \ldots, f_{m} ; g_{1}, \ldots, g_{n} ; h_{1}, \ldots, h_{n}\right) \\
& \quad=\int d \mu(A)\left[\prod_{i=1}^{m} A_{\mu_{i}}\left(f_{i}\right)\right] \operatorname{det}_{j k}^{n}\left[\left(\bar{g}_{j},\left[\nmid+m+i e \not A_{g}\right]^{-1} h_{k}\right)\right] \operatorname{det}_{\mathrm{ren}}\left(1+K_{g}\right) . \tag{3.32}
\end{align*}
$$

Theorem IX. There exist constants C_{1} and C_{2} such that

$$
\begin{equation*}
|Z S| \leqq \exp \left[C_{1}|\Lambda|+(m+n) C_{2}\right] \prod_{\alpha \in Z^{2}}\left(n_{\alpha}!\right)^{1 / 2} \prod_{i=1}^{m}\left\|f_{i}\right\|_{-1} \prod_{j=1}^{n}\left\|g_{j}\right\|\left\|h_{j}\right\| \tag{3.33}
\end{equation*}
$$

where $n_{\alpha}=\#\left\{i ; \operatorname{supp} f_{i} \subset \Delta^{\alpha}\right\}$.

The proof is essentially equal to that in [5] except $\left\|\|_{-1 / 2}\right.$ is replaced by \| \| here. The reason is that we have used a rather trivial inequality [9]

$$
\left\|\left(\phi+m+i e A_{g}\right)^{-1}\right\| \leqq \frac{1}{m}
$$

As is investigated in [5-7], it may be possible to replace \|\| by \| \| $\|_{-1 / 2}$, but this may be possible only when we succeed in the study of the kernal K_{g}.

One may be able to obtain a lower bound for $Z\left(\Lambda_{0}\right)$. But the discussion in [5] cannot be applied directly since an indefinite metric appears when one considers the Hamiltonian and its counterterms [2]. This problem together with the problem of the thermodynamic limit will be considered in a forthcoming paper.

Appendix

Proof of the Bounds (2.9b), (2.9c). First we show the bound for $g=\chi_{\Lambda_{0}}$. It suffices to show the bound for

$$
\tilde{C}_{g}\left(k, k^{\prime}\right)=\int d^{2} p\left(\prod_{\mu} \frac{\sin r\left(p_{\mu}+k_{\mu}\right) \sin r\left(p_{\mu}+k_{\mu}^{\prime}\right)}{\left(p_{\mu}+k_{\mu}\right)\left(p_{\mu}+k_{\mu}^{\prime}\right)}\right) \frac{1}{p^{2}+1} .
$$

Since $|\sin x / x| \leqq 2(1+|x|)^{-1}$ and $\left(p^{2}+1\right)^{-1} \leqq K_{1} \times \pi\left(1+\left|p_{\pi}\right|\right)^{-1}$ with some constant K_{1}, one finds:

$$
\left|\tilde{C}_{g}\right| \leqq K_{2} J\left(k_{0}, k_{0}^{\prime}\right) J\left(k_{1}, k_{1}^{\prime}\right),
$$

with some constant K_{2}, where

$$
J\left(k, k^{\prime}\right)=\int d p \frac{1}{(1+|p+k|)\left(1+\left|p+k^{\prime}\right|\right)(1+|p|)}
$$

An easy estimation after the direct integral shows (2.7b).
When $k=k^{\prime}$, note $(1+|x|)^{-2} \leqq\left(1+x^{2}\right)^{-1}$. Then

$$
\left|\tilde{C}_{g}\right| \leqq \int d^{2} p \frac{1}{1+p_{0}^{2}} \frac{1}{1+p_{1}^{2}} \frac{1}{(p-k)^{2}+1}
$$

Let $R_{0}=\{p ;|p-k| \leqq|k| / 2\}$, and let $R_{1}=R^{2} \backslash R_{0}$. Without loss of generality, assume $k_{0} \geqq k_{1} \geqq 0$. If $p \in R_{0}$ then $\left[(p-k)^{2}+1\right]^{-1} \leqq\left[\frac{1}{4} k^{2}+1\right]^{-1}$, and if $p \in R_{1}$ then $\left(1+p_{0}\right)^{-2} \leqq\left[1+\left(\frac{\sqrt{2}-1}{2}\right)^{2} k^{2}\right]^{-1}$. Then $(2.9 \mathrm{c})$ is proved. If $g \in C_{0}^{\infty}$, then $|\tilde{g}(k)|$ $\leqq \frac{C}{1+\left|k^{2}\right|}$ since $\tilde{g} \in \mathscr{S}$. Since

$$
\tilde{C}_{g}\left(k, k^{\prime}\right)=\int d^{2} p \tilde{g}(k+p) \overline{\tilde{g}\left(k^{\prime}+p\right)} \tilde{C}(p)
$$

the bounds are obvious for $g \in C_{0}^{\infty}$.
Proof of the Bound (3.24). Remember

$$
S_{a}(x)=\frac{1}{\pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} d^{2} \theta \frac{m+\frac{1}{a} \sum\left(1-\cos \theta_{i}\right)+\frac{i}{a} \sum \gamma_{i} \sin \theta_{i}}{\left[a m+2-\sum \cos \theta_{i}\right]^{2}+\sum \sin ^{2} \theta_{i}} \exp \left[\operatorname{in}_{1} \theta_{1}+i n_{2} \theta_{2}\right],
$$

where $\left(x_{0}=a n_{1}, x_{1}=a n_{2}\right) \in a Z^{2}$ and assume $n_{1}, n_{2} \geqq 1$. Since it suffices to consider the term which is proportional to $\frac{i}{a} \sin \theta_{1}$, let

$$
S_{a}^{\prime}=\int \frac{1}{B\left(\theta_{2}\right)} e^{i n_{2} \theta_{2}} \int \frac{i}{a} \sin \theta_{1} \frac{e^{i n_{1} \theta_{1}}}{1-2 A\left(\theta_{2}\right) \cos \theta_{1}} d \theta_{1},
$$

where

$$
\begin{aligned}
B(\theta) & =2+(a m+2)^{2}-2(a m+2) \cos \theta>2, \\
A(\theta) & =\frac{1}{B(\theta)}(a m+2-\cos \theta)=\frac{1}{2}-\zeta(\theta)<\frac{1}{2}, \\
\zeta(\theta) & =\frac{1}{2 B(\theta)}\left[a^{2} m^{2}+2(1+a m)(1-\cos \theta)\right]>0 .
\end{aligned}
$$

This is also written as

$$
\int \frac{1}{B\left(\theta_{1}\right)} \frac{i}{a} \sin \theta_{1} e^{i n_{1} \theta_{1}} d \theta_{1} \int \frac{e^{i n_{2} \theta_{2}}}{1-2 A\left(\theta_{1}\right) \cos \theta_{2}} d \theta_{2} .
$$

Contour integrals give

$$
\begin{aligned}
\frac{1}{a}\left|\int \sin \theta_{1} \frac{e^{i n_{1} \theta_{1}}}{1-2 A \cos \theta_{1}} d \theta_{1}\right| & =\frac{\pi}{a} \frac{1}{A}\left(\frac{2 A}{1+2 \sqrt{\zeta(1-\zeta)}}\right)^{n_{1}} \\
& \leqq \frac{2 \pi}{a}\left[1+\frac{1}{\sqrt{2}} \zeta^{1 / 2}\right]^{-n_{1}} \\
& \leqq \frac{2 \pi}{a} \exp \left[-K_{1} a m n_{1}-K_{2}\left|\theta_{2}\right| n_{1}\right] \\
\left|\int \frac{e^{i n_{2} \theta_{2}}}{1-2 A \cos \theta_{2}} d \theta_{2}\right| & =\frac{2 \pi}{\sqrt{1-4 A^{2}}}\left(\frac{2 A}{1+2 \sqrt{\zeta(1-\zeta)}}\right)^{n_{2}} \\
& \leqq \frac{2 \sqrt{2} \pi}{\sqrt{\zeta}}\left[1+\frac{1}{\sqrt{2}} \zeta^{1 / 2}\right]^{-n_{2}} \\
& \leqq \frac{2 \sqrt{2} \pi}{\sqrt{\zeta}} \exp \left[-K_{1} a m n_{2}-K_{2}\left|\theta_{1}\right| n_{2}\right]
\end{aligned}
$$

with positive constants K_{1} and K_{2}, where we have used $2 A<1, \zeta<\frac{1}{2}$ and a bound

$$
K_{1}^{\prime} a m+K_{2}^{\prime}|\theta| \leqq \zeta^{1 / 2}(\theta), \quad K_{i}^{\prime}>0
$$

which holds whenever $|\theta| \leqq \pi$, $a m \leqq 1$. Since $|\sin \theta / \sqrt{\zeta}| \leqq$ const, $B>2$, one finally has

$$
\begin{aligned}
\left|S_{a}^{\prime}\right| & \leqq \min \left\{\frac{K}{a n_{i}+a} e^{-K_{1} a m n_{i}}\right\}_{i=1,2} \\
& \leqq K \frac{2}{\left|x_{0}\right|+\left|x_{1}\right|+2 a} \exp \left[-K_{1} \frac{1}{2}\left(\left|x_{0}\right|+\left|x_{1}\right|\right) m\right]
\end{aligned}
$$

Acknowledgements. The author would like to thank R. Streater and L. Landau for careful reading of the manuscript. This work started when he was in the University of Bielefeld, and was continued at the RIMS, Kyoto University after that. He also thanks Professors J. Fröhlich, J. Challifour, and D. Weingarten for sending their works prior to their publication.

References

1. Brydges, D.C., Fröhlich, J., Seiler, E. : Construction of gauge fields. I. Ann. Phys. 121, 227 (1979). II. Commun. Math. Phys. 71, 151 (1980); III. preprints (1980)
2. Ito, K.R. : Construction of (QED) ${ }_{2}$. J. Math. Phys. 21, 1473 (1980); Construction of (QED) based on a Hamiltonian formalism. Lett. Math. Phys. 2, 357 (1978)
3. Ito, K.R.: Absolute bound of the functional determinant in (QED) ${ }_{2}$. Phys. Lett. 91 B, 406 (1980)
4. Lüscher, M.: Construction of a selfadjoint, strictly positive transfer matrix for Euclidean lattice gauge theories. Commun. Math. Phys. 54, 283 (1975)
5. McBryan, O.A.: Volume dependence of Schwinger functions in the $(Y)_{2}$ QFT. Commun. Math. Phys. 45, 279 (1975)
6. Seiler, E.: Schwinger functions for the Yukawa model in two-dimensions with space-time cutoff. Commun. Math. Phys. 42, 163 (1975)
7. Seiler, E., Simon, B. : Bounds in the $(Y)_{2}$ QFT. Commun. Math. Phys. 45, 99 (1975)
8. Simon, B., Guerra, F., Rosen, L.: $P(\phi)_{2}$ Euclidean QFT. Ann. Math. 101, 111 (1975)
9. Weingarten, D., Challifour, J.L.: Continuum limit of $(\mathrm{QED})_{2}$ on a lattice. I. Ann. Phys. 123, 61 (1979)
10. Weingarten, D.: Continuum limit of (QED) ${ }_{2}$ on a lattice. Ann. Phys. 125, 120 (1980)
11. Wilson, K.G. : Confinement of quarks. Phys. Rev. D 10, 2445 (1974)

Communicated by K. Osterwalder

Received June 26, 1981; in revised form September 28, 1981

Note added in proof. Another method to obtain approximative equations below Eq. (3.25) is to operate $\gamma_{\beta} \cdots \gamma_{\beta}^{-1}(\beta=0,1$ or 5$)$ to the inside of the trace in Eq. (3.21). For example $\gamma_{5} \gamma_{\beta} \gamma_{5}^{-1}=-\gamma_{\beta}(\beta=0$ or 1). Then $\gamma_{5} S_{N}(x) \gamma_{5}^{-1}=S_{N}(-x)$ (for periodic and anti-periodic boundary conditions), $\gamma_{5} \gamma_{\beta}(\pm) \gamma_{5}^{-1}$ $=-\gamma_{\beta}(\mp)$ (for periodic ones) and $\gamma_{5} \gamma_{\beta}(\pm) \gamma_{5}^{-1}=-\gamma_{\beta}(\mp)^{*}$ (for anti-periodic ones). Therefore (remarking that $\Pi_{\mu \mathrm{v}}$ is real) one finds:

$$
\Pi_{\mu v}^{N}(x)=\Pi_{\mu v}^{N}\left(-x+e_{\mu}-e_{v}\right),
$$

for the both boundary conditions. The other relations are obtained in the same way. Especially it is easy to find: $\Pi_{\mu v}^{N}\left(x_{0}, x_{1}\right)=\Pi_{\mu v}^{N}\left(\left|x_{0}\right|,\left|x_{1}\right|\right)$ if $\mu=v$.

[^0]: * Supported by SRC

