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Abstract. Let v = dGtren(l+Kg) be the renormalized Matthews-Salam de-
terminant of (QED)2, where Kg = ieS^g, S = Q] yμdμ + m) ~~ ί is euclidean fermion
propagator of one of the following boundary conditions: (1) free, (2) periodic at
dΛ9Λ = l- L/2 L/2]2, (3) anti-periodic at dΛ, and 4g(x) = (JΓ yμAμ(x))g(x). Here
g(x)=l if xeΛ Q = \_ — r/2,r/2]2C A and 0 otherwise. Then we show

(i) veLp(dμ(A)), p>0. Further we prove a new determinant inequality
which holds for the QED, QCD-type models containing fermions. This enables
us to prove :

(ii) Z(A0) = ̂ dμ(A)^QXp[_c\A0\']. Similar volume dependence is shown for
the Schwinger functions.

1. Introduction

Several years ago, the author tried to construct (QED)2 taking a basis on a
Hamiltonian formalism of QED, where an indefinite metric is explicitly used to
ensure the renormalizability. Because of the indefinite matric, however, there are
difficulties: for example it is difficult to prove the existence of the vacuum vector

[2].
Recently Weingarten [10] proved the integrability of the renormalized

Matthews-Salam determinant ^ = detren(l +KΛ), where KΛ = ίeS4,
S^CCyA + m)"1 tne euclidean fermion propagator which satisfies anti-periodic
boundary conditions at dA, /L = [ —L/2,L/2]2, 4W = Σ V^μM an(^ (Aμ(x)} are
the euclidean vector fields which satisfy the periodic boundary conditions at dA.
The anti-periodic boundary condition of S comes from the use of the transfer
matrix to prove the diamagnetic inequality. In this work we show the integrability
of v for any one of the following boundary conditions of S and Aμ:

S free, periodic, anti-periodic boundary conditions,
Aμ free, periodic, anti-periodic, boundary conditions.
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Moreover we obtain a new determinant inequality by applying Holder's
inequality to the transfer matrices, which clarifies the volume dependence of the
Schwinger functions.

Let dμ(A) be a Gaussian probability measure with mean zero and covariance

j Aμ(x)Av(y)dμ(A) = Cμv(x - y) = f - eip(x ~ y} (δμv + gauge + term) -Ί Γ-T .

(1.1)

Here μ>0 denotes the mass and the gauge term takes a form —c(k2)kμkv with
M^constl/eT1. Let A = [ - L/2, L/2] 2 and let Λ0 = [-r/2,r/2]2 with r^L.
Further let

where g(x) ^ 0 and supp^f(x) C A0 are assumed. We take g = χΛo or as ge C^(A0) for
convenience. Let

L
a = — : lattice width .

2JV

and let

άfN=\f(xlxeANι\\f\\2^a2 X \f(x)\2\.
I xeΛpf J

Any /E 2? = L2(A:d2x) can be mapped into J^N by the β-identification [1] :

fa(x) = (Qf)(x) = a-2 "J °Sf(x + η)d2η, xeAN. (1.2)
-α/2 α/2

Further J can be embedded in jf via β* :

Let

J^xX^2x, keΛ,
A

fa(k) = a2
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Then

where

Now we define

A

and let [9,11]

where x, yεΛN,

a(k) = η(ak)f(k),

*
== Π

e0 = (a,Q), ^=(0,0),

(x,j;) = 1/2(1

0 otherwise,

^ ι0 otherwise,

and {y* = yμ}μ = oίι are two dimensional euclidean Dirac matrices:

{yμ,yv}=2δμvί2.

Thus one formally finds :

539

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

for suitable f(x)e^f®2 as JV— »oo or as β->0. We may apply the same approxima-
tion for

where

Let

and let

P]V>0, t/+ =

= PNUNΓNPN. (1.10)
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As usual we are to consider :

SN(/I, ,/m 0ι, , gn hv . . .,hn)

= Zΰ i f dμ Π ΛCQ det;t

x "[(0,[βw + Γw] - 'AJ] detren(l + Xw) , (1.11)

ZN = ZN(g) = J detren(l + KN)dμ(A) , (1.12)

detren(l + Kw) = det(4)(l + KiV)exp[- :7f :], (1.13)

where

X ^—

T? = Tr[ - KN

and

2. Convergences of KN and det

Let
, (2.1)

where S = P2U, P>0, U* = U 1, and S = (φ-\-m) 1 is the euclidean fermion
Green's function which satisfies periodic or anti-periodic boundary conditions at
dA and or free boundary conditions. Our BN and ΓN in Sect. 1 correspond to the
periodic boundary conditions at dA since we identify the points {α( — N.n^)} with
the points {a(N,nί)} and the points {a(nQ, — N)} with the points {a(nQ,N)},
respectively. The anti-periodic BN and ΓN are obtained from periodic BN and ΓN by
a slight modification which does not change our estimates at all. Thus we will not
discuss anti-periodic cases (see Sect. 4).

In the case of periodic S, we sometimes assume that the width of the rectangle

A, namely L, depends on N so that A/R2 and a— ^rri^O sufficiently rapidly as

TV—xx). One possible choice is

T — T —T j y τ l / 2 (9 2Ϊi^i — j^i ft J-^o v v^Ά/

Then a = aN = L0/2N1/2. Then it is necessary to clarify the L-dependence in our
estimates. (We choose L^l or TV is sufficiently large so that
supp# C [-LN/2, LN/T\2.}

Theorem I. Let SΛ be the euclidean fermion propagator which satisfies periodic or
anti-periodic boundary conditions at dA. Then

a.e. with respect to dμ(A), where K = Kg,

KΛ = iePΛ UΛ4gPΛ 5 (2 4)
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Lemma 1-1. Let A' = [-Z//2, Z//2]2, Lf ^ L. Then there exists a polynomial Q of A^g

of order 4 such that

where d and £>0 are independent of L(^l).

Lemma 1-2 (Hypercontractive Inequality [8, 9]). Let Q be a polynomial of (Aμ(x) }
of order p and let l\Q\2dμ^σ2. Then

Lemma 1-3 [9]. Let {QN^Q} be a sequence of polynomials of{Aμ} of order p and let
$QNdμ(A)^dN~ε (d,ε>0 independent o f N ) . Then

μ{Aμ;limQN(Aμ)*V}=0.

Then Theorem 1 obviously follows from Lemma 1-1 :

Proof of Lemma /-/. Let

and

be the Green's functions which satisfy free boundary conditions. Then the periodic
Green's functions are given by

?A(x-y)= Σ P(χ
neZ2

neZ2

where Ln = (n0,nl)L, and the anti-periodic ones are obtained by replacing Σ ^Y
n

£(— l)n° + nι. Then if yeA0 = suppg and A is large enough so that

'(X, y} ~ XΛ(X)PΛ(*> 3>)l ̂  ̂ o exP E ~ mo^ ~ ™\* ~

where the positive constants m0, m, fe0, K, and ε are independent of L, L', x, and j;.
This follows from the exponential decay property of P. The same upper bound
again holds for PU:

K ̂ ΛOM-;̂

where i,j=l,2 (spinor indices). These also hold for the anti-periodic ones.
Then using the fact that suppgCAQA',
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where

β i = II (XΛ PΛ VΛ - x A uA)4gPA' vA.\\l

are polynomials of {Aμ} of order 4. Here

are dominated by KL~εV™ | x~y |(K,ε,
Then

)^ const L~2ε. Π

K^ or Kg

We may assume that the size of box A depends on N :

L = LN = L()N^ 0^e<l. (2.6)

The key point is that the lattice spacing a = L/2N tends to zero like N~δ(δ>0) as
N-^oo.

Theorem II. Let A be chosen as
(1) [- L/2,L/2]2, L fixed, or as
(2) l-LΉ/2,LN/ϊ\\L = LN = L,Nll\

and let suppg = /l0C A Then there exists a polynomial Q of Aμ of order 8 such that

where positive constants d and ε may depend on g but not on N(^ 1) and L(^ 1).

If L = L0N
ί/2, since

with Lf = L0M
1/2^L = L0N

112, one has:

Theorem IΓ. If L is fixed,

\imKN = K in C4 a.e. with respect to dμ.

IfL = L0N
1/2, then

limKN = Kg in C4 a.e. with respect to dμ.

Remarks (2). Theorem II was essentially proved in [9]. But the main different
points are :

(i) We must show the L-dependence explicitly, for example, as

7*2 Σ /(*)-
L keΛN

Then this is uniformly bounded in L(^ 1) if / is a bounded L1 function.
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(ii) Let

Cμv>a(k, k) = CμVtgta(k, k) = ί Aμtgta(k)AVίβta( - k)dμ

= η(ak)η(ak)Cμv(k,k), (2.7)

where

Cμv(k, k) = CμVfg(k, k) = j Aμtg(k)AV9β(-J<f)dμ , (2.8)

fc, fc'eJΪNJ and suppgCΛ is assumed. Since Cμv is not diagonalized, a slightly
complicated calculation may be required. The following bounds for Cμv>g are
sufficient for our estimates (see Appendix) :

Vιl(k, k'}\ ^K,J(kΰ, /cyj(/c l5 k\] , (2.9a)

y\)

(Z9b)

(2.9c)

where the constants K1 and K2 may depend on g ( = χΛo or eC^(y!0)) but are
independent of L or JV( ̂  1).

Let

(2.10a)

and let

(llOb)

, (2.10c)

where

(2.11)

and Γ^2)'r denotes the remaining term. It is convenient to consider the problem in
momentum space. Let

17 1 \ 2 1 ~ 1 / 4

PN(k)= ίm+ -(2

(2.12b)
L a α j

Then
p /£. If'\ = (π2\2 y ίkx-ik'yp / \ΓN(K, K ) — (a ) 2_u e *N\X> y)

= L2δkk,PN(k)l2, (2.13a)
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and similarly one has

(2.13b)

(2.13c)
μ

where

ΓN μ(K) — yμ cos -Kμ + i sin - Kμ, (2.13d)

4πN
fc, k' e AN and we have assumed Aμt g> a(p) = Aμ> ^ a(q) 'ύp = q mod . Further define

P^(fc) = [m2 + fc2]~1/4, (2.14a)

UΛ(k) = (m + iMm2 + k2)112, (2.14b)

f^feo^ieΣyA^-^)' (2 14c)
^

which correspond to the continuum limit. Let χN be the projection operator from
J^Λ = L2(/L J2x) onto ̂  = {f e Jf^ f (k) = 0, kφAN} which commutes with PΛ and
L/"^, and let:

Now:

where

Lemma II-l. There exist polynomials Q(χ\ Q^\ and Qffi of Aμ of order 4 such that

where

iQfldμZdtN-*, i=l,2,3,

and {d;,ε;>0} are independent o/L(^l) or Λ^Ξΐl).

Theorem II follows from this lemma. We sketch the proof, with our
Remarks (2) in mind. As for Q$\ since UΛ is unitary,

Λ - xNκAχN II ί = H4 II P^^^ - xΛ4/ A 11
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Except for the trivial constant, gjy } is proportional to :

77̂ 3 Σ ^α^ . Λ^WiΛΛ),
<Λ ) kteAN

i = l , 2 , 3

where & is a sum of Άμiιg(k1)x ... Xv4μ 4 >^(fe 4) with their coefficients ±2 or 0,

k4 = - Σ

Since P2(p)^const]V~α(p2 + m2)~^ with α>0, 0<β<l/2, whenever peΛ\ΛN9

Holder's inequality together with (/72 + m2)((p + /c)2 + m2)^m2(m2 + l/4/c2) shows:
βl3((k^^

where C, α, β are independent of L(^ 1) or N(^ 1). Therefore Eq. (2.9a), (2.9b) show

again by repeating usage of Holder's inequality.
Q(^ arises from the terms which contain at least one of {δPN, δUN, δΓ^1}}. Since

\δPN(k)\^C2P(k)f(ak),

\δU^(k)itJ\^C3f(ak)9

}(k, kf] = ίC4 X gμ(ak, ak')Aμί g(k - k)
μ

whenever k,kΈΛN, where (CJ are constants independent of L(^l) and N(^l),
one finds

$Q(N}dμ^ const N~α

again by the same method.
As for the Q(^\ use the following facts :

1 ί e\
|Γ(2),ιγ v Y.L. p\\< p2 A2 γ 4 - _ £ l
I ' JV V^5 X±^μJI ~~£ ^-μ 5 0 > α |Λ± I,

-(2),r p2 r-(2),r*
N rN1N

] 2 Γ1/4

Let RN be defined by R^k) = m2 + -̂  (2 - £ cos αkμ) . Then [9]

Λr(x, y) ̂  0 and || P^^ 1 1| ̂  g t (independent of L ̂  1 and N ̂  1). Thus

which shows
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2.2. Convergence of detren(l + KN)

We have just proved KN converges to KΛ or to Kg in C4 a.e. as JV-»oo.
After rewriting det(l + KN) as det(4)(l + KN) exp([ — ΓN], where
TJy — Tr{ — KN+ i/2Kχ— 1/3K^}, one therefore finds det(4)(l + KN) converges to
detail -fKJ or to detail+ K ) which are a.e. finite.(q ) \ si/ (q ) \ g/

Theorem III. Let TN be α5 above, and let CN = J TNdμ(A). Then TN-CN converges to
:T:eLp(dμ), p^l a.e. as JV-»oo and \CN\^c\n(2 + N), where c>0 is independent of
L( ̂  1) and N( ̂  1) and

_ e2 /2π\2 ~

2 π \ L / f c e^ ^v μ'^ v'9

Here

I I Is \ .
(2.15a)

T^l-^^^^Tanh"1^. Ί .J+£L(fe), (2-15b)

(2.15c)
for any p>0.

/2π\2 ̂
Remarks 3. (1) If LN = L depends on JV like L0N

ll , then E(fc)^0 and I —1 ^

should be replaced by J d2fc. (2) LN = L can depend on JV highly arbitrarily as far as
a = LN/2N tends to zero as N-+VO.

This is also essentially proved in [9]. We sketch the proof since it is much
simplified compared to [9].

Proof. (Step i). Let

KN = ι

as before, and let

^N = iN

corresponding to the expansion of ΓN in terms of aAμ g a. Thus

-3(J£(1))2

^••X̂ 'Ό2],
ΎrKN = TrSW

Note that y5ΓNy5 = Γ* and y5BNy5=B*, where Γ^-Γ^ or Γ/} and
y5=y* = y-ι=iyoyif Then Tr^1^ and TrSjyΓ^ are real. Since

(— ίe) = (— iγr^\ie) and there exists a complex conjugacy operator C such that
= yμ, one finds:
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As for other terms containing K(^}>r, use Holder's inequality and a trivial
inequality U A [ l p 5 Ξ \\A\\ pl (p^p'), to show each of them is dominated by a factor of
the form Qr

N where r = 1 or 1/2 and QN is a polynomial of Aμ such that

c>0.

Then these terms converge to zero a.e. with respect to dμ. For example :

where

^ keΛN

[C : independent of L(^r 1) and JV], and use Lemma II- 1 (see the proof to replace
|| || 4 by || || 2) to see that || Kffl' r\\ \ is dominated by a polynomial of Aμ> g of order 4
which converges to zero rather rapidly. Holder's and the hypercontractive
inequality mean

As for ΎΐSNΓ^'r, one explicitly finds:

V 1^ ( \ I 4

2\2 V1 A I cw \

where const is independent of L(^l) and ΛΓ(^l), and we have used

ίx / ^2 ieιx— 1 1 + zx—-— -x
2 6

<x4

and

IWyl^T2 Σ
^ keΛN

Since j-44

j9 α(x)^μ(^)^const(^α(x))4log2 2H , this converges to zero.

(Step 2). It remains to consider

v,gJ-k)fμv(k). (2.16)
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The gauge in variance requires [1,9]

which means

Then

τμv(k)=

. ak . akvsin —- sm —-
2 2

(2.17)

?μ ~ (2 ~ Σ COS flgμ) (Σ COS fl<U + flOT Σ COS flgμ

Σ

' 1 ~2 ts^n aclo sπl a(k + #)o ~~ SΠ1 α^ i SΠ1 a(k + #) 11

^| -cos2α /c+

2 r v .

•?EM

+ [m + 1 /α Σ (I ~ cos a(k + ί)«)] ~ CΣ s^n acί« s'n α( ̂ ^ + ί)ιjβ

+ [m + 1/fl Σ (1 - cos α<?μ)] ~ CΣ s'n a(k + ί)μ sin α(2^ + €U

+ 2[m + I/a Σ (1 - cosaq^ \m + I/a Σ (1 - cosa(k + q)^ [Σ cosα(2fc + g)J

. 1 ^ 4m2 (11:

V
'L2

qe%\a2Δ(q)

1 ί .

α4/)(9)zί(/c + g) I

s n 2 α \ k + ^ - } -sin2α

] sin2 α^ - (2 - Σ cos aqμ) (Σ cos α^)

Osma(k + q)0 — sinaq1 sinα(fc + g)
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- cosa(k + q)J] [£ sinaqa sin a(2k + g)

- cos fl#μ)] [£ sin α#μ sin a(2k + g)μ]

+ C, (2.19)

where |C)^const^mlog\2-\ uniformly in L^l as am—»0, and Δ(k) = PN(k)~~4'.
[ am\

The first term is written as:

m2 , ,~ 1

2π2

m2

2π2

m2

2π2

Γ4π2

L2-l
~4π2

77 λ

y _

4π

in this order. Obviously

2 '\EL(k)\ £ const log [2 + fc] (1 + k2)

uniformly in L^ 1, and EL(k)^ const L~p (p>0) uniformly in fe and
chosen arbitrarily large [9]. Further

^ 1. P can be

with some positive constants δ and ε, uniformly in L^l.

As for the second term, let xμ = aqμe \~nμ;nμ= —N9—N+l,...,N—l\ and

^ ~> ^ '
4 /

1 π

' 4π2\N
note that a2/L2=—-^ — . Thus this converges to a /c-independent constant

1
which can be calculated by a contour integral (see also [9]), and is equal to —.

2π
The remaining statements of the theorem are now rather trivial. Π

3. Transfer Matrix and Determinant Inequalities

3.1. Transfer Matrix and Dίamagnetίc Inequality

Let
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where BP

N and Γ^ are given 'in (1.6) and "p" means periodic. Let
\ where

for all xeΛff. Thus R^/ = B^ + Γ^ with

^x,y-ma^ + a ^ a yx,y x,y , ^

where

Γ iπ

^ΪNV(x,y)= (3.2)

0 otherwise,

and we define

^ (3.3)

with P^O, (y^^L/^"1 as before. Though this changes the periodic boundary
conditions into the anti-periodic ones, this does not change our previous theorems
and lemmas at all. In fact P*(k) = P%(k-δ\ Γ^(k,kf) = fp

N(k-δ,kf-δ\ etc., with

<$=£(U) (3-4)

mean our Feynman diagram estimates do not change at all, and one can easily
confirm that the Furry theorem again holds for this boundary condition.

This choice of boundary condition is indispensible for the introduction of the
transfer matrix [4, 10] or for proving the OS positivity [1].

Theorem IV [4,10].

l7_^ . . .η v _ 1 ί7 J V _ 1 , (3.5)

where {TΛ U^} are operators on a 24N dimensional Hubert space spanned by
operating the fermion creation operators {a + (n),b + (n)}^^N on a cyclic vacuum
vector Ω, and satisfy :

(1) Ύf depends only on {Al^a\_a^,a(n^^}']}N

n~lN and T^>0 if eeR. Tf is
analytic in e in a neighbourhood of e = Q.

(2) 17* = 1/7 * if

I n=-N

See [4, 10] for the proof. It is sufficient to replace A0 by A1 and Aί by A0 to
introduce the transfer matrix for μ = 1 direction.
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Theorem V.

(1) 0<det[l + Kj}]gl. (3.6a)

(2) Let ra>0. Then

0<det[l + K£]^C, (3.6b)

uniformly in L(^l) and N(^l).

Proof. Since K^ (respectively KjJ) is unitarily equivalent to Kff (respectively K^*)
with the unitary γ5UN (respectively γ5U$)9 the determinants are real. Thus the
positivity of the determinants follows from (- oo,0]nspec(l^Λr)^0 [9]. Applying
the Holder inequality to (3.5) and the unitary of U^ one has:

namely all A0 are set at zero in the right hand side. Next apply the same discussion
for each TrCΓ,)2* after introducing the transfer matrix for the μ= 1 direction. This
means

/g] Sdet[R$Λμ = 0)] , (3.7)

and then (3.6a) follows.
Finally since R*(Aμ)

Then R ̂  1 by the definition and

i? FT fivR= 11 15 /i,

i _ )]2 JL
a μ J a2

The upperbound for R follows from next lemma. C

Lemma V-l. Let ζ = (ζQ9ζ1), |ζμ|g.— be given, and let

with L^l and JV^l . T^n

0<c 1^K^c 2<oo (3.10)

uniformly in L^l α?7<i AΓ^l .

Proo/. Note that

*= Π (1+
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where

and δf is the remaining term which is defined in the obvious way. Use

uniformly in keAN and α^O to show

Σ
keΛN

uniformly in L(^l) and JV(^l).
Next use &<-> — & symmetry of AN to see

k

where δf = δf( — k) and δf is defined in the obvious way. It is not difficult to see

Σ \δf\*C2
keAN

uniformly in L(Ξg 1) and N(^ 1) just by the same method.
As for g = 2f2 — f2, rewrite this as

where

1 2 . 2 2

zl2 α4

1 2 . , .
ύu = ~ —rSin2αςπsm2αCι sιn2αknsιn2αfc1 ,

A2 a4

and δg is the remaining term. It is easy to see
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uniformly in L(^l) and N(^l). As for g^g2ί use a symmetry (fc0, k±)-+( — fcl5fc0)
which changes the signs of ί̂ } .̂ Then letting δg' =

R4= Π (i+0ι+
= Π d-(0ι+02)2W),

fce^i^

where δgf(kQ,k1) = δg'( — k1,k0) and (50" is defined in the obvious way. Obviously

Σ I VΊ^CS,
keΛN

uniformly in L(^l) and Λ7(^l).
Finally use |J^[(l + z.)|^exp[^|zI.|]. As for the lower bound, remember

for all fce/ϊ^ and α^O, provided m>0. Then use exp[ — |logα/α|^|zt.|]^
if l+z^α>0, l^α. D

Corollary V-l. Let L = LN = L0N
δ (0^δ<ί) and let KN = K* or KP

N. Then

0<detren(l + KN)gexp[d1+d2logN], (3.11)

where {d^ are independent of N(^l) and L^l.

3.2. Determinant Inequalities

In order to study the volume dependence (A0 or ^-dependence) of the Schwinger
functions, we need a determinant inequality which decomposes the Matthews-
Salam determinant. For this purpose, for the moment, assume

L = 2n,n fixed positive integer,

N = 2nM, M positive integers ,

for simplicity. Thus a = L/2N = l/2M is the lattice width which tends to zero as
M = N/2n^oo. Now

<ίTrlT Γ7 T Tϊ | 2 ιn i/2«
= 1]~Ϊ\1-NU-N 1-N+2M-1U-N+2M-1\ *

/ T r l T TJ T TJ | 2 | l / 2 n
• • • i l r l 1N-2MUN-2M "1N-1UN- L\ /

_ 1 T_ J V + 2 M_ 1 ...U_NT_NT__NU_N...

Tΐ \1/2

1U-N + 2M-1Ϊ

* T Γ7* T T T TJ }ί/2

7 V _ 1 J^_ JL ... ^ N-2M1 N-2M1 N-2M '" λ N - 1 U N - I/
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by Holder's inequality and by a trivial inequality M||2n^ \\A\\ 2 (n^ 1). We repeat
the same discussion for each of the terms in the right hand side after introducing
the transfer matrix to the other direction to find

"

where i = (iQ, i^) and R2M(B(ί}) is the RN function defined by the region λ — [ — 1, I]2,

lattice width a= — = - and the lattice gauge fields {5|j>

)

Λ((αn0,αn1) + ^βAt);

(I)

)(α[no + i],αnJ = Ag>(α[n0 + a,^ιλ if 0^n0^2M-2,0^W l ^2M- 1 ,

0, if n0 = 2M-l,

)(αn0,α[π1 + ̂ ]) = A(

1

i)(αn0,α[n1 + ̂ ]), if 0^n0^2M-l,0^n1^2M-2,

0, if nί=2M-l,

(Π)

-±lanll if l^n 0^2M-l,0^W l^2M-l,

0, if rc0 = 0,

0, if n 1 =2M-l, (3.14)

and so on, where ^(x) = Aμ(x — i) and we have omitted the subscripts g and α.
Approximately

5ίί,)

fl(Xo^ι) = sgn(xft)4«α(|x0|, |xj). (3.14')

In fact one finds :

(k0,k1) = B(-k0,k1)e-a° = A1(-k0,k1)e-ίak°, etc.

Now let

*(π JV)=det"2[JW°)] (316)
"("'Λ') det[^(0)] 13 lb)

Then

detCl + X^n^Sίn ΛOΠdetd + ̂ Λίί^0)]1'4. (3 17)
i

where we have omitted A for simplicity.

Lemma VI- 1. There exist constants α t and α2 uniformly in M^ 1 αwd 77 such that

2]. (3.18)
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Proof. One can replace R2M and RN by the periodic ones by the proof of
Theorem V(2). Thus consider

Π Λ(α;/cr2

Π Δ(a\k) '
keΛN

f2π
where Δ(a;k) = PN(kΓ\ Now λ2M=\—{j0,jl);-2M^jμ^2M-\\. Thwn let

n+1
-1

Then |Ω| = n2, \ζμ\ ^ f if ζe Ω and

Thus the lemma follows from Lemma V-l. Π

Lemma VI-2. Let

CN = J Tr [ - Xwμ) + I KN(A)2 - i Kw(^)3

CS = ί f Tr [ - K2M(Bί) + i K2M(B')2 - i K

There exists a constant C uniformly in M 5: 1 such that

Proof. It is sufficient to consider

CN = J Tr [ - SNΓ$

dμ(A) .

21 dμ(A) ,

First consider the contributions from Γ } and

(3.19)

where zl = [0, 1)2 and the forms of VN and v2M are essentially given in the proof of
Theorem III. [The first term in (2.18) with q replaced by q + δJ] Thus

2M

dμ(A)

CΩ log 2 -\ 4- boundary term1 aμ)
(3.20)
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uniformly as α-»0. Since |VN —v2M |^constαε, ε>0, as N = 4nM-*oo, this difference
uniformly tends to zero as α->0. [Boundary term ^const(2n)2a ε.~]

In order to consider the other terms, let yμ(±} = y^(±) = ̂ (yμ±l)exp ± -—L

and let

#*v(x, y) = Tr [yμ( +) SN(x + βμ? y) y v( +) SN(y + βv, x)

• + yμ( -) Sjvfe y) y v(+) Sj^y+ev9 x+<g
+ ?μ( +) SN(x + eμ,y + ev) yv( -) S^, x)

+ yμ(-)SN(x9y + ev)γv(-)SNly,x + eJ}. (3.21)

Then

-eW Σ Σ UμJx+ e-*\AVtβly+
μ,v xeΛN ( \ Z / \

Σ

Σ ί. }, (3-22)
I=FJ μv xe^,yeΔ^

where Δ(ί} = [r'0, ι'0 +1)®[i1? i1 +1). One also has

Σ
,yeA

Σ C ]}, (3.23)

where j,k = (- 1, - 1), (- 1,0), (0, - 1), (0,0).
Let Sa(x) be the euclidean free fermion propagator on αZ2. Then one finds

-m0(|x0| + K|)] (3.24)0
a-\- |x0l + l^i

with positive constants K0, m0 uniformly in α^l. Since

SN(*)= Σ (-l)αo+αι^(x + 27Vα α), (3.24a)
αeZ2

S2MW= Σ (-l)αo+αι^ + 4Mα α) (3.24b)

(note that 2Na = L = 2n, 4Ma = 2\ the contributions from the second terms in
Eqs. (3.22) and (3.23) are dominated by const(2π)2 uniformly in M^l after
integrating by dμ(A).
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Thus we consider

Σ ί jyΣΣ Σ BfJx+^BγJy+^Π^yάdμiA). (3.25)
i I H μ,v j x,yeA$ \ ^ I \ λ I )

Since Πμv is translationally invariant, set Πμ™(x — y) = Π™(x, y). As is easily seen
by the proof of Theorem III, one approximately has [like Eq. (3.14')]

Πμμ(xθ9xl) = Πμμ(-xθ9 -xί)= Πμμ(-x0,x1) = Πμμ(x0, -Xi),

^μvV^O'^l)" ~~ * 'μv\ ^O' X' l/ ~*lμv(X0) ~ X l) = ** μv( ~ XQ> "~^l) i

if μ φ v (this also holds for anti-periodic conditions). In fact analysis due to Fourier
transform shows that (3.25) equals

ί{«4ΣΣ Σ A(X+^}A
( ί μ,v x,yeΔ$ \ Z /

where |C(α)|rgconst(2n)2. Then it suffices to estimate

ί KΣΣ Σ A l χ + ^ \ A l X + ^ \LΠN

μv(x,y)-Π™(X,y)-] \dμ(A).
I i μv x,yeΔ& \ *Ί \ L I )

(3.26)
Since \yμ(±)~ y2

μ

M(±)\ ^ const a and because of the bound (3.24) and expressions
(3.24a) and (3.24b), one finds :

with constant K uniformly in α^l, whenever xeαZ2, |xj^2. This completes the
proof. Π

Therefore

Theorem VI.

(̂ » (3.27)

with some constant K uniformly in a^l.

Remark 4. In this theorem, we have assumed the length of box L is fixed. However
it may be possible to extend this for L = LN = L0N

ί/2, provided that suppAμ = Λ0 is
bounded, rectangular.

3.3. Volume Dependence of the Schwinger Functions

Theorem VII (Weingarten [10]).
(1) Let KN(A) = K$(A) or KP

N(A\ and let L = LN = L0N
δ with 0^<5<1. Then VN

= dQtreΐί(l + KN(A)) converges to ^U) = detren(l + KU)) in Lp(dμ\ p>0. ^>0 a.e.
with respect to dμ(A).

(2) Let KN(B) = K$(B\ L be fixed, and let Bμ be defined as before. Then
converges to w(B) = detren(l + X(B)) in Lp(dμ\ p>0.
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Theorem VII (1) is proved by showing prob \_v ̂  x] ^ exp [ — αxε] with α,£>0.
Since

prob [v ^ x] = prob [log((v/^)^) ̂  logx]

^ prob [log(ι>/V]v) ̂  logx - c log (AT + 1)] ,

with AT arbitrary, by Corollary V-l, it suffices to show that there exists a
polynomial QN of Aμ of order p < oo such that

, ε>0.

See [10] for the detail. Our previous estimations are now used to prove this with
rather trivial modifications. The part (2) is also similar. [Convergence of KN(B) to
K(B), etc. are almost trivial though the covariance of {Bμ} is slightly singular
compared to that of {Aμ}^\

Now let

ZN(Λ0)=$vN(A)dμ(A) (3.28)

and let Z(A0) = lim ZN(A0). By applying the checkerboard estimate (Theorem III-
N-+00

2 of [8]) for Theorem VI, one finds :

μo| Π if ̂

(3.29)

where β= 2(1 -e~μ)~\ and

(3.30)

Theorem VIII. There exists constant K such that

zμo)^exp[KM0|]. (3.31)

This theorem can be extended to the Schwinger functions. Let

/fe ^f_ 1 , supp f i C A " for some αe Z2 ,

and let gphje3?®C2. Let

Γ m 1

) Π ^μi(/i) detjt[^ tf + m + ίe/β] - ̂ ^ detren(l + Xβ) . (3.32)
L i = l J

Theorem IX. There exist constants Cl and C2 such that

Π (".01/2 Π U / j l l - i Π ll^l l l l^ll , (3-33)
αeZ2 i = l j=l

where n^= φ {ϊ;suρp/ l Czlα}.
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The proof is essentially equal to that in [5] except || | |_ 1 / 2 is replaced by || ||
here. The reason is that we have used a rather trivial inequality [9]

"1!!^--m

As is investigated in [5-7], it may be possible to replace || || by || || _ 1 / 2 ? but this
may be possible only when we succeed in the study of the kernal Kg.

One may be able to obtain a lower bound for Z(/L0). But the discussion in [5]
cannot be applied directly since an indefinite metric appears when one considers
the Hamiltonian and its counterterms [2]. This problem together with the
problem of the thermodynamic limit will be considered in a forthcoming paper.

Appendix

Proof of the Bounds (2.9b), (2.9c). First we show the bound for g — χΛo. It suffices to
show the bound for

Since |sinx/x| ̂  2(1 + |x|)~ l and (p2 + 1)~ 1 g Kί x π(l + \pπ\)~ l with some constant
Kl7 one finds:

with some constant K2, where

An easy estimation after the direct integral shows (2.7b).
When k = kf, note (l + |x|)"2^(l + x2)"1. Then

Let R0 = {p ' \p- k\ <Ξ |fc|/2}, and let J^ =R2\R0. Without loss of generality, assume
fco^fc^O. If pe^0 then [(p-fc)2 + l]"1g[ifc2 + l]"1

ί and if pe^i then

• τhen (19c) is Proved If ^eC?' then

- since Et^ Since

' + p) C(p)

the bounds are obvious for geC^. Π

Proof of the Bound (3.24). Remember

i
Cαm + 2- Σ
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where (x0 = αn l 5 x1=an2)eaZ2 and assume n1 ? n2 ̂  1. Since it suffices to consider

the term which is proportional to -sin0 l 9 let
a

where

This is also written as

Λ 1 i

Contour integrals give

π 1
a A

1 Γ"1
1/2

1 +

^ —exp[ — Klamnl~

ί-2AcoSθ
θ

2π 2A Y*

l-44 2 \l+2]/C(l-0/

2|/2π

1/5'

exp[ — K1amn2 — K2\θ1\n2

with positive constants X1 and K2? where we have used 2A<1, ζ<2 and a bound

which holds whenever \θ\ ^π, αm^ 1. Since | sin θ/ ]/ζ | ̂  const, B>2, one finally has

j + α

2
. D
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Note added in proof. Another method to obtain approximative equations below Eq. (3.25) is to
operate }y../'/J~ [ (β = 0, 1 or 5) to the inside of the trace in Eq. (3.21). For example ]v/y/fΓ l = ~~ 7β (β = ®
or 1). Then y5SN(x)y^ l —SN( — x) (for periodic and anti-periodic boundary conditions), ysy/i)?^ 1

= — yβ( + ) (for periodic ones) and y5yβ( + )y$ l = — yβ( + )* (for anti-periodic ones). Therefore (remarking
that Πμv is real) one finds:

for the both boundary conditions. The other relations are obtained in the same way. Especially it is
easy to find: /7jv(x0, x 1 ) = Π?v(|x0|, |x,|) if μ = v.






