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Abstract. We derive a general stability criterion for discrete eigenvalues of
Schrδdinger operators, such as A(κ] = p2 + V(x, κ\ using only strong continuity
of A(κ) and A*(κ) in the perturbation parameter K. The theory is developed for
non-selfadjoint operators and illustrated with examples like the anharmonic
oscillator, the Stark and the Zeeman effect. The principal tools are WeyFs
criterion for the essential spectrum and a construction due to Enss [5]. They
are also used to extend the classical invariance theorems for the essential
spectrum to certain singular perturbations, including some local perturbations
of the Laplacian by differential operators of arbitrary high order.

1. Introduction

We introduce the stability problems treated in this paper with the following
familiar examples :

Example 1 (Anharmonic oscillator [11]).

A(κ) = p2 + x2 + κx4 (1.1)

on L2(R1}, with complex K in the sector

-π + ε^arg/c^π-ε (ε>0). (1.2)

Example 2 (Diatomic molecular ion [2]).

A(κ} = p2-\x\~1 -\x-K\~1 (1.3)

on L2(R3\ with κeR3.

Example 3 (Stark effect [6]).

l (1.4)
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on L2(R3), where θ is an auxiliary complex dilation parameter and K complex in
the sector

ε. (1.5)

Example 4 (Zeeman effect [3]).

A(κ) = (p-κΛx)2-\xΓ1 (1.6)

on L2(R\ with κeR3.
Common to all these examples is the failure of analytic perturbation theory at

κ0 = 0. For (1.1) and (1.3) it is known that the resolvent R(z9 K) = (z - A(κ)) ~ 1 is
worm-continuous :

κlim| |Λ(z 0,ϊc)-Λ(z 0,fc 0) | |=0 (1.7)

for some z0 in the resolvent set ρ(A(κ0)). By the resolvent identity

R(zθ9κ)-R(z9κ) = (z-z0)R(zQ9κ)R(z9κ). « (1.8)

(1.7) extends to all zερ(A(κ0)) [8], so that any discrete eigenvalue of A(κQ) (i.e. any
isolated eigenvalue of finite multiplicity) is stable in the following sense :

Definition [8]. A discrete eigenvalue λ of A(κ0) is stable with respect to the family
A(κ) if

(i) given any sufficiently small r>0,

for all K in some neighbourhood of KO, and

(ii) limί|P(K)-P(,c0)||=0, (1.9)
K ~* K

where

1 $dzR(z,κ) (1.10)

is the spectral projection of A(κ) corresponding to the part of the spectrum
enclosed in Γr.

Since (ii) implies dimP(κ ) = dimP(κ:0) for K close to KO, a stable eigenvalue is the
limit of a group of perturbed eigenvalues with the same total algebraic multiplicity
[8]. Discrete eigenvalues of A(κQ) may still be stable when (1.7) fails: this situation
is met in Examples 3 and 4, where the resolvent is strongly (but not norm-)
continuous at τc0 = 0:

K ~^ KO

for all z in some open set A C ρ(A(κ0)). In general this is not sufficient for stability
for the following reasons:

First, (1.11) does not extend automatically to all zερ(A(κ0)\ i.e. a given discrete
eigenvalue of A(κ0) need not be embedded in A. Secondly, if Γr is a circle contained
in A, it follows from (1.10) that

s-limP(κ;) = P(κ;0). (1.12)
K->KO υ
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This only implies that dimP(κ;)^dimP(κ;0) for K close to KO, so that A(κ) may have
more eigenvalues than A(κQ) in the circle Γr An example is

A(κ)=p2 + V(x-κ) (1.13)

on L2^1) with KεR1. Let V be a real C0-function such that A(G) has a simple
eigenvalue λ<ΰ with eigenfunction u(x)9 \\u\\ = 1. Since A(κ) is unitarily equivalent
to A(0) by a translation, it follows that ||jR(z, κ)|| - \\R(z, 0)|| for all zeρ(v4(0)). As we
will see below (Lemma 1.2), this implies

for all zeρ(A(0)). Therefore, if Γr is a sufficiently small circle around λ9 (1.12) reads

s-limP(κ;) = 0,
7C-»CO V '

since ^[(oo) = p2 has spectrum [0, oo). This is also evident from the explicit form

P(κ):ψ-+(u(κ),ψ)u(κ)9

where u(x9 K) = u(x — K) is the translated eigenfunction.
In Examples 3 and 4 it is possible, however, to derive norm-continuity of the

relevant part of the resolvent from (1.11) and a compactness argument [3,6].
Briefly, let

A(κ) = A0(κ)+V,

where V is the term involving the Coulomb potential \x\~ l in (1.4) or (1.6). R0(z9 K)
= (z— AQ(K))~ 1 is strongly (not norm-) continuous at KO = 0 for all z in some open
set ΔQ. However, VR0(z, K) is compact and norm-continuous at τc0. Applying the
Fredholm theory to the equation

R(z, K) = R0(z, K) + R(z, K) VR0(z, K) , (1.14)

it then follows that R(z, κ} — RQ(z, K) is norm-continuous as κ->κ;0 whenever zeA0

is not an eigenvalue of A(κ0). This proves stability for any discrete eigenvalue
λEAQ of A(KQ), since the subtraction R0(z,κ) does not contribute to P(κ) in (1.10).
The argument can be extended to JV-particle systems by using a "connected"
resolvent equation instead of (1.14) [4, 7].

To complete our summary of existing stability proofs for Schrodinger eigenval-
ue problems, we should mention variational methods. Although restricted to
selfadjoint families, they have the great advantage to work with A(κ) directly
rather than with the resolvent, so that strong continuity of A(κ) on a suitable
domain suffices to prove stability. The limit τc-> oo in Example 2 (and more general
"cluster" limits of molecular spectra) have been treated in this way [9].

In this paper we develop a general stability theory for discrete eigenvalues of
Schrodinger-type operators, which allows us to treat all these examples from a
common point of view. It is not restricted to selfadjoint families, but like the
variational method it works with A(κ) directly and requires only strong continuity
in the following sense :
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Hypothesis i. Let G be a first countable topological space and κ^ A(κ) a function
on G taking values in the closed operators on a Hubert space $f. For a given /c0e G
we assume :

(i) HmA(κ)u = A(κ0)u (1.15)
K ~*KO

for all u in some core D of A(κ0)9 and

(ii) \imA*(κ)u = A*(κ0)u (1.16)
""̂

for all u in some core D* of
Implicit are the domain conditions DCD(A(κ)) and D* CD(v4*(κ;)) for /c close to

κ;0. In the examples given above it is known that C^(RV) is a core of A(κ) and A*(κ;)5

so that Hypothesis 1 is satisfied. This alone is of course not sufficient for stability,
but it is the only continuity-condition we will use. The nature of the other
conditions is illustrated by the following class of results :

Example 5 (Schrδdinger operators with core C^). We consider the formal operator

A(V) = p2 + V(x] (1.17)

on L2(RV), where the potential V plays the role of the perturbation parameter. V is
restricted to a subset G of Lfoc(Rv), which is determined by positive numbers ξ, η, ε
via the following conditions :

(i) Let A0(V) be the operator (1.17) restricted to the domain C$(RV). Then

+ smy(V)Im(u,A0(V)u) + η(u,u)} (1.18)

for some y(V) in the range \y\ ^π/2 — ε and all ueC^(Rv). In particular, A0(V) has
numerical range in some halfplane contained in

g = {zeC|-π + ε^arg(z + ̂ /sinε)^π-ε} . (1.19)

(ii) Ran(z — AQ(V)) is dense for some zφQ. Therefore A0(V) has a closure A(V)
with spectrum in some halfplane contained in Q.

The topology on G is the L^-topology, i.e. the functions V-*Vιp are
continuous from G to L2(RV) for any ψe C^(JRV). Hypothesis 1 is then satisfied with
D = D* = C%(RV).

Theorem 1.1. Let A(V) be the family of operators given in Example 5, and

En(V) = {(u,A(V)u)\ueC%(Rvl | | M | | = l,φ) = 0 for \x\<n}.

Let Ω be an open complex set and GΩ a subspace of potentials Fe G such that

) = 0 (1.20)

for some fixed (arbitrarily large) n. Then for each F0e GΩ, the spectrum of A(VQ) in
Ω is purely discrete and each eigenvalue λeΩ of A(V0) is stable with respect to the
family {A(V)[VeGΩ}.

Remarks. In the language of quantum mechanics: A(V) has purely discrete
spectrum in any complex energy region Ω where tunneling to infinity is forbidden
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by energy conservation. As long as this barrier exists, the eigenvalues in Ω are
stable when V changes continuously in a L2

OC sense.
Explicit sufficient conditions for Fe G are given in Sect. 6 : Examples 1-3 are

subfamilies of the form A(κ} = A(V(κ}) - except for a trivial numerical factor in
(1.4). To apply Theorem 1.1 to these cases it therefore suffices to check the
numerical range En(κ) of A(κ) for states ueC™(Rv) with support in {|x|>n} :

Example i. En(κ) is contained in the shaded region of Fig. 1 :

Q Γ Q 9€

- R Fig. 1
n^

so that (1.20) is satisfied for any bounded set Ω if n is sufficiently large. Therefore
A(κ0) has purely discrete spectrum for any KO in the sector (1.2), and all eigenvalues
of A(κ0) are stable with respect to the family A(κ).

The same arguments apply to more general cases like

on L2(RV) with real V1;2eL2

oc(Rv) which are bounded below and grow to + oo as
\x\-+ oo. Analytic perturbation theory works for KQ in the interior of the sector (1.2)
but not at /c0 = 0. Whether or not asymptotic perturbation theory applies in this
case depends on the growth rate of V2(x).

Example 2. For given κ0eR3, we restrict K to some finite ball around KO. Then
(1.20) holds for some n if Ω has distance >0 from the positive real axis. Hence
A(κ0) has purely discrete spectrum in the complement of [0, oo) and each
eigenvalue in this region is stable with respect to A(κ). The same argument works
for

k=l

on L2(R3), κ = (κ1 ...κN}εR3N, for complex VkeL2

oc(R3) if FΛ(x)-*0 as |x|->oo. We
note, however, that the "cluster" limits κ-+ao (in certain directions of R3N) cannot
be obtained in this way.

Example 3. Theorem 1.1 applies to A(κ9 θ)exp(2θ) for (κ,θ) satisfying (1.5). For
states u with support in {|x|>w}, (u, A(κ, θ)u) has distance < e~θn~1\ from the
shaded halfplane S in Fig. 2 :

2 I m θ

e-2θ[0,oo) Fig. 2
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Therefore A(κ, θ) has purely discrete spectrum in the complement of S, and these
eigenvalues are stable with respect to variations of (K, θ). (In fact, it is known that
A(κ, θ) has discrete spectrum in the whole plane if K φ 0, but the eigenvalues in S are
possibly unstable [6].)

Herbst's description of the Stark effect is as follows [6] : For real K φ 0 the
Stark Hamiltonian A(κ, 0) has spectrum (—00, +00) without eigenvalues. The
Stark effect becomes visible in the spectrum after a complex dilation x-»Λc, which
transforms A(κ, 0) into A(κ, θ). For fixed K, A(κ, θ) is analytic in θ in the region (1.5),
with discrete eigenvalues independent of θ by the standard argument of dilation
analyticity [1]. For κ = Q and — π/2 < Im 0 < π/2 the spectrum is shown in Fig. 2:
its discrete part is the same as for Θ = Q (hydrogen eigenvalues), while the
continuum exp( — 2Θ) [0, oo) is rotated by an angle — 2lmθ. Each eigenvalue E is
stable with respect to A(κ,θ) as long as EφS, i.e. for

0<ε^Imθ + argκ^π-ε (1.21)

intersected with (1.5). Taking the union of these regions in the /oplane over |Imθ|
<π/2, we find that the perturbed eigenvalues are defined in a sector — π/2 + ε
^argκ:^3π/2 — ε, |κ;|<(5, where they converge to E as τc-»0. For real K these are
the Stark resonances corresponding to E. We must refer to [6, 7] for further
details.

After these introductory examples we give an outline of the problems which
will occur in our discussion of stability. First, we remark that Hypothesis 1 implies
strong continuity of the resolvent. Let

A = {ZE C\R(z, K) exists and is uniformly bounded for K close to KQ} .

We note that A is open. Given any compact Γ C A there exists a neighbourhood U
of κ0 such that R(z9κ) exists and is uniformly bounded for (z, τc)eΓx U. This
follows from (1.8) and a covering argument.

Lemma 1.2. Suppose that A(κ) satisfies Hypothesis /. Then

\im R(z,κ)u = R(z,κ0)u, (1.22)

and

κ)u = R*(z,κ0)u (1.23)

for any ueJ^ if and only if zeΔ. In both cases the convergence is locally uniform in
zεA.

Proof. Fix zeA. Since R(z, K) is uniformly bounded for K close to KO it suffices to
prove (1.22) for the dense set of vectors u = (z — A(κ0))v, veD. Then by
Hypothesis 1,

\\R(z,κ)u-R(z,κ0)u\\ = \\R(z,κ)(^^^^

as τc-»κ;0. Local uniformity in zeA follows from (1.8). The proof of (1.23) is
analogous. Π
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In proving stability of a given discrete eigenvalue λ of A(κ0) we will proceed in
three steps :

(i) First, we need to know that for K close to /c0,

dist {λ, σess(A(κ))} ^ ε > 0 . (1.24)

(ii) Next, we want to show that for some ε > 0,

{z\Q<\z-λ\<ε}CA. (1.25)

It then follows from Lemma 1.2 that

s-lmP(κ) = P(κ;0), (1.26)

and

s-^mP*(κ) = P*(κQ). (1.27)

(iii) Finally, we will have to prove

) (1.28)

for K close to TCO, since this together with (1.26) implies (1.9) by a result of Kato [8,
Chap VIII].

(i) calls for an effective method to control the essential spectrum. We will use
WeyPs criterion (Sect. 2) and a construction of Enss [5], extended to non-
selfadjoint operators (Sect. 3). This is applied in Sect. 4 to prove invariance
properties of the essential spectrum under certain additive perturbations, includ-
ing some local perturbations of the Laplacian by differential operators of arbitrary
high order. After this digression we return to the stability of discrete eigenvalues in
Sect. 5, showing that the problems (ii) and (iii) are in fact closely related to (i) and
can be handled by similar methods. This leads to some general stability criteria
(Theorems 5.4 and 5.8) which are our main results. Examples play a dominant role
throughout this work, since our general framework (Hypothesis 2 and 3) is
abstracted from concrete problems.

2. WeyPs Criterion

Let A be a closed operator on a Hubert space 3^. We define its essential spectrum
by

(A)9 (2.1)

where σ(A) is the spectrum and σp(A) the set of all isolated eigenvalues of finite
multiplicity (discrete spectrum). Let

W(A) = {λeC\\\(λ — A)un\\-+Q for some sequence

uneD(A)9 \\un\\-/»Q9un-rfQ (weak convergence)}. (2.2)

Following Weyl [13], {un} is called a "characteristic sequence oίλ — A". Sometimes
it is convenient to normalize \\un\\ = 1.
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Theorem 2.1 (WeyΓs criterion). Let A be a closed operator on a Hίlbert space 2tf.
Then

(i) W(A) is closed,
(ϋ) W(A)Cσw(A),

(iii) boundary of σ&ss(A) C W(A).

Proof. First, let A be a closed operator on a Banach space X. We quote from [8,
Chap. IV, Sect 5]:

Definition (Sect. 5, Subsect. 6).

This is Kato's definition of the essential spectrum, which differs from (2.1).

Theorem 5.9. nul'(λ — A) is the greatest number m^ oo with the following property:
for any ε>0 there exists an m-dimensional closed subspace NεCD(A) such that
\\(λ-A)u\\^ε\\u\\ for all ueNε.

Theorem 5.11. nul'(λ — A)=co if and only if there exists a sequence uneD(A] with
\\un\\ =1 and \\(λ — ,4)wJ|->0 which contains no convergent subsequence.

Problem 5.37. If λ is a boundary point of ρ(A) then λeΣe(A) unless λ is an isolated
point of σ(A).

Theorem 5.28. // λ is an isolated point of σ(A) and P the corresponding spectral
projection then dimP< oo if and only if n\λl'(λ — A)< oo.

With these results we first show that Theorem 2. 1 holds if we redefine

) = {λeC\nuY(λ-A)=oo}. (2.3)

Proof, (i) follows from Theorem 5.9. (ii) Let λe W(A). Then λeσ(A) is evident and
λφσp(A) follows from Theorem 5.28. (iii) Let λ be a boundary point of σess(A).
Then λ is a boundary point of ρ(^4) and λφσp(A). It then follows from Problem 5.37
and Theorem 5.28 that nul'(λ-A)=ao.

It remains to show that the definitions (2.2) and (2.3) coincide if X is a Hubert
space. More generally we have :

Lemma 2.2. Let X be the dual of a Banach space Y and A a closed operator on X.
Then mιl'(λ — A)=ao if and only if there exists a sequence vneD(A) such that

and vn(y)-+Q for all ye Y.

Proof. If such a sequence exists, it contains no convergent subsequence, hence
nul'(λ — A)=oQ by Theorem 5. 11. Conversely, if nu\'(λ — A)=ao, let un be a
sequence as described in Theorem 5.11. Since the unit ball mX is weak*-compact,
we may assume (by passing to a subsequence) that un(y)-+u(y) for some uεX and
all yeY. Since {un} contains no norm-convergent subsequence, there exists ε>0
such that \\un — um(n}\\ >ε for each n and some m(n)>n. Therefore vn = un — um(n} has
the properties claimed in Lemma 2.2. This concludes the proof of
Theorem 2.1. Π
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Remarks. The proof shows that Theorem 2.1 holds in reflexive Banach spaces. We
will use it mostly in the form of

Corollary2.3. Let Ω be an open, connected complex set with ΩπW(A) = 0 and
Ωnρ(A)ή=0. Then Ωr\σess(A) = 0, i.e. A has purely discrete spectrum in Ω.

Proof. If Ωnσess(X)φ0, then Ω contains a boundary point of σess(A). By
Theorem 2.1(iii) this is in contradiction to the hypothesis Ωr\W(A) = β. Π

We remark in particular that σess(/l) = W(A) if and only if each connected
component of C\W(A) contains a point of ρ(^). The classical example is A = A*
[13].

Finally we mention a spectral mapping property which will be used in Sect. 4:

Lemma 2.4. Let A be a closed operator on a Hilbert space 2tf with ρ(A) φ 0. Then the
following are equivalent:

(i) λeW(A\
(ii) OΦ(z — λ)~1eW((z — A)'1) for some (and therefore all) zeρ(A).

Also equivalent are :
(iii) A is unbounded,
(iv) QeW((z — A)~l) for some (and therefore all) zeρ(A).

Proof. Any characteristic sequence of λ — A is a characteristic sequence of (z — λ) ~1

— (z — A)~v if zeρ(A). Conversely, if {vn} is a characteristic sequence of
μ — (z — A) ~1, μ φ 0, then un = (z — A) ~1 vn is a characteristic sequence of z — μ "1 — A.
This proves (i)<->(ii). (iv)->(iii) is evident, (iii)->(iv): Since A is unbounded,
\\Aun\\-+co for some sequence unεD(A) with ||ι/J = l. Setting
vn = (z — A)un\\(z — A)un\\~1 for some zερ(A\ we see that ||(z — A)~1vn\\-+Q and
(w,ι;n)-»0 for all weD(A*). Since ||t;J = l it follows that vn-^0, which proves

^i)-1). Π

3. The Construction of Enss

The fact that characteristic sequences are non-unique leaves room for con-
struction. For Schrodinger operators, in particular, the condition uπ-^»0 can be
replaced by stronger support conditions such as suppunC{\x\>n} [5]. This is
important since it shows that W(A) depends only on the behavior of the local
operator A as |x|-> oo. The following is an abstract and slightly generalized version
of Enss' construction :

Hypothesis 2. Let A be a closed operator on 3tf with ρ(A) Φ 0 and resolvent
R(z) = (z — A)~1. We assume that {MJ is a sequence of equibounded operators on
ffl with the following properties :

(i) If [um] is a characteristic sequence of λ — A then there exists a > 0 such that

JI >a for all n. (3.1)

(ii)

(3.2)
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for all ueD(A\ where Kn is compact and ||jBΠJR(z)||->0 as π-»co for some (and
therefore all) zeρ(A).

Lemma 3.1. Suppose that A satisfies Hypothesis 2. Then, if {un} is a characteristic
sequence of λ — A, so is vn = Mnum(n} provided that m(n) is chosen sufficiently large for
each n.

Proof. We normalize \\un\\ = 1 and let zeρ(A). Since (z — A)um^0 it follows from

P-^M^JI £ IIMJI \\(λ-A)um\\ + \\BnR(z)(z-A)uJ

+ \\KnR(z)(z-A)uJ

and from Hypothesis 2 that we can choose m(n) so large that
(i) \\(λ-A)MnuJ<\λ-z\\\BnR(z)\\+n-\

(ii) \\Mnum\\>a/2, and
(iii) \(ei,Mnum)\<n~l for i = l . . . n ,

where {et} is some fixed basis in the (separable) space N spanned by the vectors
Mpuq (p,q = l,2,3 ...). Since the sequence vn = Mnum(n} is bounded, it follows from
(iii) that (f,vn)^>Q for all /eJV, while (/>„) = () for /IN. Therefore t^O, which
together with (i) and (ii) proves that vn is a characteristic sequence of λ — A. Π

Example 5. For the operators A(V) defined in Example 5 the construction of Enss

Mn=l-χn(x) (3.3)

on L2(RV\ where χn(x) = χ(x/n) with χεC%(Rv\ O^χ^l and χ(x) = l for \x <1.
Then Mn(x) has support in {|x| >n} and Hypothesis 2 holds in the following form:

Lemma 3.2. Let Mn be given by (3.3). Then the operators A(V) = p2 + V(x) defined in
Example 5 satisfy:

(i) // ||v4ι/m|| is bounded for a sequence of unit vectors umeD(A) and t/m-^>0, then

Jim ||MπMm|| = 1 for all n. (3.4)

(ii) For all ueD(A)

\\lMn,A\u\\^cn-\\\Au\\ + \\u\\) (3.5)

with a constant c independent of Ve G.

Proof, (i) χn(l+p2)~1/2 is compact. Since the sequence Aum is bounded, the
sequence (l+p2)1/2um is bounded by (1.18) and thus weakly convergent to zero.
Hence

\\χnum\\ = \\χn(l+p2Γ1/2(l+P2)1/2uJ^ as m-*oo.

(ii) ίMn,Al = tp2,χn]=2in-1(Fχ(x/n)).p-n-2Aχ(x/n). By (1.18) ||p fcM | |
^const(||^4w|| + \\u\\) with a constant independent of FeG. Π

Remark. For any λeW(A(V}} there exists a characteristic sequence {un} with
une CQ(RV) and un(x) = 0 for x\ < n. This follows from Lemma 3.2 and the fact that
CJ(# v)isacoreof,4(F).
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Theorem 3.3. Suppose that A satisfies Hypothesis 2 and let

dn(λ) = inf \\(λ-A)Mnu\\. (3.6)
ueD(A), \\MnU\\ = 1

// Ω is an open, connected complex set with Ωπρ(A)ή=0 and lim inf dn(λ) > 0 for all
λeΩ, then Ωπσess(A) = 0.

Proof. By Corollary 2.3 we need only show that Ωr\W(A} = &. Since λεW(A)
implies limdπ(λ) = 0 by Lemma 3.1, this follows from lim inf dn(λ) > 0. Π

Remark. A useful lower bound for dn(λ) is

where (3.7)

En= {(Mnu, AMnu)\ueD(A), \\Mnu\\ = 1} .

As an example we prove the first part of Theorem 1.1 which asserts that

Proof of Theorem ί.l (first part). By (3.3) Mn(x) has support in {|x|>n}. Since
Em(V)CEn(V) for m>n we have

for all λeΩ and all m>n by (1.20). Next we note that En(V) + rCEn(V) for any r>0.
This follows from

(u(a\ Au(a)) = (u, An) + 2a - (u,

where u(a) = uQxp(ia x\ aeRv. Without loss of generality we can therefore assume
that Ω — rCΩ for any r > 0. Then Ω intersects ρ(A) in the complement of the sector
(1.19). Hence Ωπσes8(^4(F0)) = 0 follows from Theorem 3.3. Π

4. Invariance of the Essential Spectrum

Here we apply Enss' construction to prove invariance theorems for W(A) under
additive perturbations. These results are not used in the following sections.

Theorem 4.1. Let A and B be closed operators on a Hubert space ffl ana suppose
that A satisfies Hypothesis 2. Then W(A) C W(B) if one of the following conditions is
satisfied:

(i) (A — B}Mnu — K'nu + B'nu for all u in a core of A, where K'n is compact and
\\B'n\\-+Q as π-»oo.

(ii) \_(z-AΓl-(z-BΓlWn = κ'n+Bn far some zeρ(A)nρ(B), where K'n is
compact and H^H-^O as rc—>oo.

Remark. If B also satisfies Hypothesis 2 with the same sequence {MJ then (i) or (ii)
implies W(A)=W(B).

Proof, (i) Let {un} be a characteristic sequence of λ — A. By Lemma 3.1 we may
choose a new characteristic sequence vn = Mnum(n} with m(ri) so large that
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\\K'num\\<n~l. Then \\(A-B)υn\\ < \\B'n\\ +n~1-^0 as rc^oo, so that vn is also a
characteristic sequence of λ — B.

(ii) By the same argument we can choose m(n) so large that
\\((z — A)~ 1 — (z — B)~ ^z J ->0. Since UM is also a characteristic sequence of (z — λ)~ 1

-(z-A)~l it follows that (z-λ)"^ W(z-B)~ί). By Lemma 2.4 this implies
λe W(B). q

We first illustrate Theorem 4.1 with some known results for a pair of closed
operators A, B on Jtf :

Example 6. (i) If K is compact and (A-B)u = Ku for all we D(4) = £)(£), then
W(A)=W(B).

(ii) If (z->l)~1-(z-B)"1 is compact for some zeρ(v4)nρ(B), then W(A)
= W(B).

(iii) Let ρ(A)Φ0 and D(Am)CD(B) for some integer m>0. If ,4-5 is
,4m-compact, then W(A)CW(B).

(iv) Let DU)DD(β), D(A2)CD(B) and ρ(ΛL)nρCB)Φ0. If ̂ -5 is v42-compact,
then W(A)=W(B).

Proof, (i) and (ii) are evident from Theorem 4.1 with Mn = l. (iii) Let
Mn = (z-AΓm for all n and apply condition (i) of Theorem 4.1. (iv) W(A)C W(B]
follows from (iii). For the converse, note that

compact bounded

for some zeρ(A)nρ(B). Now use condition (ii) of Theorem 4.1 with
Mn = (z-BY\ Π

On this abstract level the possibilities for constructing useful sequences {MJ
are rather limited. We can do better in concrete situations :

Example 7. On L2(RV) we consider the formal operator

We assume :
(i) The <2 are polynomials on Rv,

(ii) VεL}OG(Rv), and the form t defined on ^(Rv) by

is sectorial and closable. A is defined by the closure t of ί via the representation
theorem [8, Chap. VI]

(iii) (uj(p}u)^a\t(u,u)\ + b(u,u) (4.1)

for all ue^(Rv\ where / is a real measurable function on Rv with /(x)-»oo as
|x|-> oo.

(iv) Let mi be the smallest integer such that 2mi ̂  degree of Qf. V(x) and its
derivatives up to order max(2m1, 2m2) are continuous on R ̂  |x| < oo and vanish as
bc|-»oo.
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Theorem 4.2. Under the conditions (i)-(iv) given above, W(A) — W(QQ).

Remarks. W(Q0) = σess(Q0) is the range of the function x^Q0(x) on R\ lfC\W(Q0)
is connected, it follows from Corollary 2.3 that σess(A) = W(A) = σess(Q0).

More general operators of this type are constructed and discussed by Schechter
[12]. Our invariance result is considerably stronger than this Theorem 10.2 in the
sense that we impose no restrictions on the degrees of Q1 and Q2.

Proof. We choose
Mn = M = (l-χ(x))(l+p2Γr(l-χ(x))

for all w, with r>0 and real χeC^CRv) to be adjusted in the course of the proof.
First we verify Hypothesis 2. Since M — (1 +p2}~r is compact, un-^0 implies

lim\\Mun-(l+p2Γrun\\=V. (4.2)

On the other hand it follows from \\un\\ = 1 and (un,f(p)un)<c that

\k\>d

-c inf
\k\>*

>α>0

for sufficiently large d depending only on c, where ύ is the Fourier transform of u. It
follows from this and (4.2) that (3.1) is satisfied. To prove (3.2) we first choose
2r^ degree of Q0. Then

and

for all ue£f(Rv) with K1 and K2 compact. Now we choose χ such that χ(x) = 1 for
|x| < R and we set Vχ = V(l — χ). Observing that Q2 is a local operator we then find
for all ue

Choosing now r>mί +m2, all four factors in square brackets are bounded and the
second one is compact, hence K3 is compact. Similarly, Q;2V*Q*Mu = K^u for all
u<=<9*(Rv) with K4 compact. Therefore

t(u, Mv) - t(Mu, v) = (u, Kv) (4.3)

for all u,vE6?(Rv) with K = K1-K2 + K3-K4 compact, and

Therefore M is a bounded operator from ^(Rv) into the form domain D(t)
(equipped with ί-norm), and as a consequence (4.3) extends by continuity to all
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ueD(t). It follows from the representation theorem that MveD(A) and
\_A, M] υ = Kv. Therefore Hypothesis 2 is satisfied with Bn = 0 and Kn = K. To
apply Theorem 4.1 we remark that

(A-Q0)Mu = K,u (4.4)

for all ueD(A\ which proves W(A) C W(Q0). To show the converse we note that
^(Rv) is a core of Q0 and that [QQ9MT]u = (Kί-K2)u for all ue^(Rv}. Since (4.4)
also holds for we«9%Rv), it follows that FF(20K M^) D

5. Stability of Discrete Eigenvalues

We now continue the discussion of stability as outlined in the introduction.

Lemma 5.1. Suppose that A(κ) satisfies Hypothesis 1 and that zφσess(A(κ)) for K
close to κ0. If zφσp(A(κQ)), then zeΔ unless there exist sequences κnεG and unE^
such that

IC""'Co' (5.1)

n-rfQ and \\(z-A(κJ)un\\^Q.

Proof. Suppose that ||(z — A(κ))u\\ ^ε| |w| |, ε>0, for K close to KO and all ueD(A(κ)).
Since zφσess(A(κ)), this implies zeρ(^4(κ:)) and \\R(z, κ;)|| ^ε~1, i.e. zeΔ. Therefore, if
zφΔ, there exist sequences κn^>κ0, uneD(A(κn)\ ||iίj = l such that
||(z — A(κn))un\\-+Q. By passing to a subsequence we may assume un-^u. It then
follows from Hypothesis 1 that

V=linι(υ,(z-A(κn))un)

= lim((z-A(κn))*v,Un)

= ((z-A(κ0))*υ,u)

for all veD*. Since D* is a core of A*(κ0)9 it follows that ueD(A(κ0)) and
(z—A(κΌ))u = Q. Hence u = 0 since zφσp(A(κQ}) by hypothesis. Π

To prove (1.25) we want to exclude (5.1) for z close to λ. This is done by
applying Enss' construction to sequences of type (5.1), using the following
analogue of Hypothesis 2:

Hypothesis 3. Suppose that A(κ) satisfies Hypothesis 1 and that Δ ή= 0. Let {Mn(κ}}
be a sequence of families of operators on G with the following properties:

(i) Mn(κ) is bounded uniformly in n and K.
(ii) If {κm}cG and {um}C^ are sequences satisfying

umeD(A(κJ)9\\um\\-^09um ^0 and (5.2)

\\A(κm)um||^const for all m,
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then limsup||Mπ(κ; )wj| >α>0 for all n.
m

(iii) Mn(κ) maps D(A(κ}) into itself and

\_Mn(κ\A(κ)\ u = Bn(κ)u + Kn(κ) u

for all ueD(A(κ)). For some zeA,

lim Ka(κ)R(z, K) = Ka(κ0)R(z, KO)
K ~^KQ

exists in norm and is compact, and

\im\\Bn(κ)R(z,κ)\\=0

uniformly in K.

Lemma 5.2. // Hypothesis 3 holds for some z0ezl, it holds for all zeA. Given any
compact ΓcA we have

lmio\\Kn(K)R(Z,κ)-Kn(κ0)R(z,κ0)\\ = 0 (5.3)

uniformly in zeΓ, and

lάm\\Bn(κ)R(z9κ)\\=0 (5.4)

uniformly in (z, κ)eΓx U, where U is some neighbourhood of KO.

Proof. Consider the identity

Kn(κ)R(z, K) = Kn(κ)R(z0, κ) + (z- z0)Kn(κ)R(z0, κ)R(z, K) . (5.5)

For K-+KQ we have Kn(κ)R(z0, κ)^Kn(κ0)R(z0, KO) in norm, and K*(z, κ)->jR*(z, KO)
strongly by Lemma 1.2. Since Kn(κ0)R(z0, KO) is compact, it follows that the last
term in (5.5) converges in norm to its value at KO. Local uniformity in z follows
from (1.8). To prove (5.4) let U be a neighbourhood of KO such that

uniformly in KEU and \\R(z, κ)\\ ^M< oo for all (z,κ)εΓx U. Using (5.5) with
Bn(κ) in place of Kn(κ) we find for the last term

\\Bn(κ)R(zQ9 κ)R(z9 κ)\\ ^M\\Bn(κ)R(z^ κ}\\ ^0

uniformly in (z, κ)eΓxU. Π
By following the proof of Lemma 3.1 it is straightforward to obtain the

analogous

Lemma 5.3. Let A(κ) satisfy Hypothesis 3. If {κn, un} are sequences satisfying (5.1),
then so are {κm, vn = Mn(κm)um} provided that m = m(n) is chosen sufficiently large for
each n.

Theorem 5.4. Suppose that A(κ) satisfies Hypothesis 3 and let

dn(λ,κ)= inf \\(λ-A(κ))Mn(κ)u\\ . (5.6)
uεD(A(κ))

\\Mn(κ)u\\ = ί
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Let λeC be such that for some n0 and some

dist{λ,σess(A(κ))}>δ (5.7)

and

dn(λ,κ)>δ (5.8)

for all n>n0 and all K in some neighbourhood of KO. Then the following alternative
holds :

(i) Ifλφσp(A(κΌ)),thenλeΔ.
(ii) // λEσp(A(κ0)), then λ is a stable eigenvalue with respect to the family A(κ).

Combining this result with Theorem 3.3 we obtain:

Theorem 5.5. Suppose that A(κ) satisfies Hypothesis 3 for each κ0eG. Let Ω be an
open, connected complex set such that Ωnρ(A(κ)) Φ 0 and dn(λ, κ)^δ>0 for all KG G,
λeΩ, and n>n0. Then A(κ) has purely discrete spectrum in Ω and each eigenvalue
λeΩ of A(κ) is stable with respect to variations of K.

For a first illustration we return to Example 5 :

Proof of Theorem 1.1 (conclusion). Let Mn be given by (3.3) for all values of the
perturbation parameter V. Inspecting the proof of Lemma 3.2 we see that A(V)
satisfies Hypothesis 3 for any F0eG. The other conditions of Theorem 5.5 have
already been verified in the first part of the proof (Sect. 3). Π

Proof of Theorem 5.4. (i) Let λφσp(A(κ0)). If λφΔ, there exist sequences {κn, un}
satisfying (5.1). It then follows from Lemma 5.3 that dn(λ,κm(n))->0 as n ̂ co in
contradiction to (5.8). Hence λεΔ.

(ii) Let λ£σp(A(κ0)). If \z — λ\>0 is sufficiently small, then zφσp(A(κ0)\
zφσess(A(κ)) and dn(z, κ)^δ/2 for all n>n0 and all K in some neighbourhood of KO.
By part (i) of the proof it follows that zeΔ. This proves (1.25)-(1.27). Suppose now
that (1.28) does not hold. Then there exist sequences κm-+κQ and ume3tf, \\um\\ = 1,
such that

P(κjum = um and P(κ0)um = 0. (5.9)

By passing to a subsequence we may assume that um-^u. Using (1.27) we find as
weak limits of (5.9) :

P(κ0)u = u and P(KO)M = O,

which shows that um^0. In (1.10) we now fix the radius r of the circle Γr in the
interval 0<r<δ/2. Then by (5.8)

dn(ZίκJ^dn(λ,κJ-r^δ/2 (5.10)

for all zeΓr and sufficiently large n, m. Let vm(z) = R(z,κm)um. Then by (5.10) and
Hypothesis 3

(δ/2)\\Mn(κJυn\\ ^ \\(z-A(κm))Mn(κm)vJ

^ \\Mn(κJuJ + \\Kn(κJR(z, KjuJ + \\BH(κJR(z, κm)uj
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for all zeΓr and sufficiently large w, m. Operating with (δ/2)Mn(κm) on

um = P(κJ um = (2πO " 1 $dz υm(z) ,

we thus find the estimate

(δ/2)\\Mn(κJum\\^r\\Mn(κJum\\

,κm)um+ (2πΓ1§\dZ\\\Bn(κJR(z
Γr

Since wm-^»0, it follows from (5.3) that the first integral vanishes for each n as
m— »oo, while the second one vanishes uniformly in m as n-»oo by (5.4). Since
r < δ/2 this implies

Jim limmsup||MΛ(κm)wJI =0. (5.11)

On the other hand, the sequence A(κm)um = A(κm)P(κm)um is bounded since
A(κ)P(κ) is bounded uniformly for K close to KO by part (i) of the proof. Therefore
(5.11) is in contradiction to Hypothesis 3 (ii). Π

Example 8 (Magnetic fields).

A(a) = (p-a(x))2 + V(x) (5.12)

on L2(RV). We consider a fixed potential V satisfying the hypothesis of
Theorem 6.1, and we restrict the perturbation parameter a to the space C1 of real
C1 -vector fields on Rv with the topology given by the seminorms

I I r= sup [\ai(x)\ +
\x\*r

i , f c = l . . .

dxk

A(a) is then constructed as the closure of (5.12), defined on C^(RV) (Theorem 6.2).
It satisfies Hypothesis 1 for any c^eC1. The analogue to Theorem 1.1 is

Theorem 5.6. Let A(d) be the family defined in Example 8, and

Rvl\\u\\ = l and u(x) = 0 for \x\^n} .

Let Ω be an open, connected complex set and GΩ a subset of vector fields aeC1 such
that ΩπEn(a) = 0 for some fixed n and all ae GΩ. Then for each aQeGΩ, the spectrum
of A(a0) in Ω is purely discrete and each eigenvalue λεΩ of A(a0) is stable with
respect to the family {A(a)\aeGΩ}.

Example 4. Let A(κ) be given by (1.6). If uεC£(R3\ \\u\\ = 1 and φ) = 0 for |x| gn,
then (u, A(κ)u) has distance less than 1/n from σ((p — κ Λ x)2) = [|/c|, oo). Hence A(κ)
has purely discrete spectrum in the complement of [|κ|, oo) and each one of these
eigenvalues is stable with respect to variations of κeR3.

Proof of Theorem 5.6. Defining Mn by (3.3) and using the bound (6.9) on (u, π2u)
the commutator estimate (3.5) is seen to hold uniformly in αeC1. It remains to
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establish Hypothesis 3 (ii). Suppose that aneCl and unEC£(Rv) are sequences
satisfying an-+a0, un-^0 and \\A(an)un\\< const for all n. We have to show that
||χwj->0 for any χeC^(Rv). By (6.9) \\nkun\\ is bounded uniformly in n for each
k=l . . .v . The same follows successively for ||χπkwj, | |πΛχMn | |, and \\pkχun\\
since an-^a0 uniformly in x. Let AE€Q(RV) such that Λχ = χ. Then \\χun\\
= ||/1(1 +p2)~1 / 2(l+p2)1 / 2χwj|->0 as rc->oo since ^(l+p2)"^2 is compact and
(1 4-p2)1/2wM-^»(). As a result, A(a) satisfies Hypothesis 3 for each aQECl.
Theorem 5.6 now follows from Theorem 5.5. Π

Concluding Remarks. For simplicity we have chosen our examples from the class
of "one-body" problems, in which the unperturbed potential F(x) has a simple
behavior for |x|— >oo [e.g. F(x)->0 or F(x)->oo]. Actually the construction of Enss
[5] was devised to deal with JV-body systems, i.e. with potentials whose behavior
depends strongly on the direction in which x-> oo in Rv. An abstract version of it is
given by the following extension of Theorem 3.3 :

Theorem 5.7. Suppose that Hypothesis 2 holds for A and

Mn= ΣM« (p<oo),
α = l

where the operators Ma

n are bounded uniformly in n, α and satisfy (3.2) for each α. Let

dl(λ}= jnf } \\(λ-A)M*nu\\.

| |Λf8ιι|| = l

// Ω is an open, connected complex set with Ωnρ(A) = 0 and lim mΐd*(λ) > 0 for all α
n

and all λeΩ, then £2nσess(/l) = 0.

Proof. Suppose that

for some sequence {um} and all n. Then

^O (5.15)

for each n and some α = α(w). By passing to an infinite subsequence of {Mn} we may
therefore assume that (5.15) holds for some fixed α and all n. With this remark the
proofs of Lemma 3.1 and Theorem 3.3 are immediately extended to
Theorem 5.7. Π

By the same argument Theorem 5.4 extends to

Theorem 5.8. Suppose that Hypothesis 3 holds for A(κ) and

Mn(κ}= ΣM«(/c) (p<oo),
α = l

where the operators M*(κ) are bounded uniformly in n, α, K and satisfy the com-
mutator condition (iii) of Hypothesis 3 for each α. Then Theorem 5.4 holds if (5.8) is
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replaced by the condition

d*n(λ,κ)= inf \\(λ-A(κ))M"n(κ)u\\>δ>0 (5.16)
ueD(A(κ))

\\M%(κ)u\\ = ί

for all α, all n>n0 and all K in some neighbourhood of KO.

Typically, M*(κ) is constructed to have a range on which A(κ) reduces to a
simpler operator Aa(κ) [up to an error of order o(n)]. Then the crucial estimate
(5.16) reduces to the corresponding estimate for A\κ], which may be obtained
from the numerical range of Aa(κ) or from an upper bound on \\(λ — A\κ))~l\\.
Examples where stability can be proved in this way are the Stark and Zeeman
effect for N-electron atoms [7,4]. A similar but formally different case is the
cluster limit \κ ->oo in Example 2 (or in more general systems [9]), where A(κ)
reduces to p2 — \x\~l or p2— x — κ\~l in complementary regions of R3 with an
error of order \κ\~l.

As a general conclusion we may say that discrete eigenvalues of Schrodinger
operators on L2(RV) are stable under large classes of perturbations (Hypothesis 1)
as long as they remain isolated from the essential spectrum, which in turn is
governed by the behavior of the operator near infinity in Rv. WeyPs criterion and
the construction of Enss provide a relatively simple, direct method to deal with the
qualitative question of stability. It is clear, however, that resolvent equations and
resolvent estimates are still needed for the quantitative and computational aspects
of perturbation theory.

6. Auxiliary Results

In Example 5 we have implicitly defined a space G of potentials Fe L?OC(RV). The
following theorem gives explicit sufficient conditions for Fe G :

Theorem 6.1. Let α, β, γ be real with \y\<π/2 and 0^α<cosy. Suppose that

V==yι + y2 in L2

OC(RV) such that

(i) cosyReFjM + s inylmFjM^O (a.e.) and
(ii) \\V2u\\^\\P

2u\\+β\\u\\ for all ueC%(Rv).
On L2(RV) we consider the operator A0=p2 + V with domain CQ(RV). Then there

exist constants ξ, η depending only on α, jS, γ such that

(u, p2u) ^ £{cos y Re(ι/, A0u) + sin y Im(w, A0u) + η(u, u)} (6. 1)

for alluεC%(Rv).
(iii) Suppose further that for any χεC^(Rv) Fxχ has arbitrarily small relative

bound with respect to p2.
Then Ran(z + τ40) is dense in L2(RV) for sufficiently large real z.

Remark. Apart from hypothesis (iii) this is a natural extension of Theorem X.29 in
[10] to the non-selfadjoint case. We suspect that it holds without the extra
assumption (iii) as it does in the case v^3, where (iii) follows from 71eL^c(,Rv).

Proof. We first prove (6.1). For the quadratic forms on C^(RV) we have
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Inserting this into hypothesis (i) we obtain

cosy Re/I0 + siny lmA0 ^ cosyp2 + cosy Re V2 + siny Im V2

^cosyp2-|F2 |. (6.2)

Choosing δ in α<(5<cosy we have

\\V2u\\£aδ-l\\δp2u\\+β\\u\\.

Since ocδ ~ 1 < 1 this implies

Inserting this into (6.2) we find the desired estimate

p2 ̂  (cosy — δ)~ l {cosy Re,40 + siny lmA0 + βδ(δ — α)~ 1 } .

As a consequence of (6.1) A0 has numerical range in the halfplane

which implies

||(z-^0)M[|^||ιι||dist(z,S). (6.3)

We now fix zφS and prove that Ran(z — A0) is dense. Given any feC^(Rv) and
ε>0 we construct 0eC"CRv) such that

\\(z-AQ)g-f\\<ε. (6.4)

For any χeC%(Rv) with O^χ^l we define Aχ = p2 + Vχ, Vχ=V1χ+V2. Since Vrf
also satisfies hypothesis (i) it follows that (6.1) and (6.2) hold for Aχ with constants
ξ, η independent of χ. By hypothesis (iii) Vχ has relative bound less than 1 with
respect to p2. Therefore Aχ has a nonempty resolvent set containing some left
halfplane, so that (6.3) implies

IKz-^^II^Cdis^S)]-1 (6.5)

for all zφS and all χ. Since CQ(RV) is a core of p2 and thus of Aχ we can find
hχeC%(Rv) such that

\\(z-AJhx-f\\<e/2, (6.6)

which by (6.5) implies

IIM ^(11/11 +ε/2)[dist(z,5)]-1.

Using (6.1) we then obtain a uniform estimate

(hχ,(l+P

2)hχ)^c2

with c independent of the choice of χ and hχ. Now let ΛE€Q(RV\
that Af -/and

(6.7)

^A^ 1, such

(6.8)
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Adjusting χ such that χA = Λ it follows from (6.6) that

^\\(z-A0)Λhχ-f\\-\\[p2,Λ](ί+p2Γll2\\\\(l+P2)ll2hx\\.

From (6.7) and (6.8) we conclude that g = Ahχ satisfies (6.4). Π
Using Kato's inequality it is straightforward to extend Theorem 6.1 to the case

of real magnetic fields :

Theorem 6.2. Suppose that V satisfies hypothesis (i) and (ii) of Theorem 6.i. Let a(x)
be a real C1 -vector field on Rv. Then nk = pk-\~ak(x) (k — 1 ...v) and AQ — n2-\-V are
defined on CQ(RV), and there exist constants ξ,η depending only on α, /?,y such that

(u, π2u) rg ξ{cosγ Re(w, A0u) + siny Im(w, A0ύ) + η(u9 u)} (6.9)

for all U£CQ(RV). If Vl also satisfies hypothesis (iii) of Theorem 6. ί then

0) is dense for sufficiently large real z.

Proof. The proof of Theorem 6.1 extends immediately to this case due to the
following result [3, Theorem 2.4] : if a multiplication operator has relative bound
< α with respect to p2 it also has relative bound < α with respect to π2, uniformly
inαeC 1 . Π

Analytic families. In the discussion of Examples 1 and 3 we have mentioned that
analytic perturbation theory applies for K in the interior of the relevant sector. In
this connection the following criterion is useful :

Lemma 6.3. Let A(κ) be a family of closed operators on a Hilbert space ffl, defined
for K in some open complex set G. Suppose that D is a common core of A(κ) for all
KeG. Then A(κ) is an analytic family in the sense of Kato [8, Chap. VII] if there
exists a sequence of analytic families An(κ) on G such that

(i) lim An(κ)u = A(κ)u for all ueD and all κ;eG, and

(ii) for some zeC, Rn(z,κ) = (z — An(κ))~l and R(z,κ) = (z — A(κ))~ί exist and are
bounded uniformly in n and K.

Proof. Let u, υetff. By Lemma 1.2 the functions fn(κ) = (u,Rn(z,κ)v) converge to
f(κ) = (u,R(z,κ)υ) for all KEG. Since they are analytic in /ceG and uniformly
bounded, it follows from Vitali's theorem that f(κ) is analytic in G. Since u, υ are
arbitrary, R(z, K) is analytic in κ:eG. Π

Typically, An(κ) is obtained by putting a cut-off on some singular part of A(κ\

in the case of Example 1. Then (i) is obvious for ue C£(Rl) and (ii) follows for real
z < 0 by inspecting the numerical ranges of An(κ) and A(κ).
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