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Abstract. We derive a general stability criterion for discrete eigenvalues of
Schrodinger operators, such as A(x) = p? + V(x, ), using only strong continuity
of A(x) and A*(x) in the perturbation parameter x. The theory is developed for
non-selfadjoint operators and illustrated with examples like the anharmonic
oscillator, the Stark and the Zeeman effect. The principal tools are Weyl’s
criterion for the essential spectrum and a construction due to Enss [5]. They
are also used to extend the classical invariance theorems for the essential
spectrum to certain singular perturbations, including some local perturbations
of the Laplacian by differential operators of arbitrary high order.

1. Introduction
We introduce the stability problems treated in this paper with the following
familiar examples:
Example { (Anharmonic oscillator [11]).

AK)=p* + x> +rx* (1.1)
on L*(R'), with complex x in the sector

—n+esargk<n—e¢ (¢>0). (1.2)

Example 2 (Diatomic molecular ion [2]).

A(k)=p> = x| —|x—x| ! (1.3)
on L*R?), with xeR>.
Example 3 (Stark effect [6]).

A)=e"2p? —e x| * +xe’x, (1.4)
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on L*(R3), where 0 is an auxiliary complex dilation parameter and x complex in
the sector
O0<ex<3ImO+argx=m—c¢. (1.5)

Example 4 (Zeeman effect [3]).
A(k)=(p—r A x)*—|x|"" (1.6)

on L*R3), with ke R3.

Common to all these examples is the failure of analytic perturbation theory at
Kk,=0. For (1.1) and (1.3) it is known that the resolvent R(z,k)=(z— A(x))~ ' is
norm-continuous :

Jim || R(z, )~ R(zo, )| =0 (1.7)

for some z, in the resolvent set g(A4(x,)). By the resolvent identity
R(z¢, k) — R(z,K)=(z—zo) R(z(, K) R(z, k). ‘ (1.8)

(1.7) extends to all ze o(A(x,)) [8], so that any discrete eigenvalue of A(x,) (i.e. any
isolated eigenvalue of finite multiplicity) is stable in the following sense:

Definition [8]. A discrete eigenvalue A of A(k,) is stable with respect to the family
A(xk) if

(i) given any sufficiently small »>0,
I={z|lz—Al=r} Co(4(x))

for all x in some neighbourhood of x,, and
(i) Jim [|P(x) — P(x,)l| =0, (1.9)

where
P(k)=(2ni)" ' § dz R(z, ) (1.10)

is the spectral projection of A(x) corresponding to the part of the spectrum
enclosed in T',.

Since (ii) implies dim P(x) = dim P(k,) for x close to x,, a stable eigenvalue is the
limit of a group of perturbed eigenvalues with the same total algebraic multiplicity
[8]. Discrete eigenvalues of A(x,) may still be stable when (1.7) fails: this situation
is met in Examples 3 and 4, where the resolvent is strongly (but not norm-)
continuous at x,=0:

sx-llg)l R(z,x)=R(z,%,) (1.11)

for all z in some open set 4 Co(A(x,)). In general this is not sufficient for stability
for the following reasons:

First, (1.11) does not extend automatically to all ze o(4(x,)), i.e. a given discrete
eigenvalue of A(x,) need not be embedded in 4. Secondly, if I, is a circle contained
in 4, it follows from (1.10) that

S}(—l}){g P(c)=P(x,). (1.12)
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This only implies that dim P(x) = dim P(i,) for x close to x,, so that A(x) may have
more eigenvalues than A(x,) in the circle I',. An example is

A()=p*+V(x—K) (1.13)

on L*(R') with xeR'. Let V be a real C,-function such that A(0) has a simple
eigenvalue A <0 with eigenfunction u(x), ||u|| =1. Since A(x) is unitarily equivalent
to A(0) by a translation, it follows that |R(z, k)| =||R(z, 0)| for all ze o(A4(0)). As we
will see below (Lemma 1.2), this implies

s-limR(z, %) =(z—p*)~*

for all ze o(A(0)). Therefore, if I', is a sufficiently small circle around 4, (1.12) reads
s-lim P(x) =0,
since A(co0)=p? has spectrum [0, co). This is also evident from the explicit form

P} - = (u(x), p)ulk),

where u(x, k)= u(x —x) is the translated eigenfunction.

In Examples 3 and 4 it is possible, however, to derive norm-continuity of the
relevant part of the resolvent from (1.11) and a compactness argument [3, 6].
Briefly, let

A(k)y= A1)+ V,

where V is the term involving the Coulomb potential |x| ™! in (1.4) or (1.6). Ry(z, k)
=(z— A,(x))~ ! is strongly (not norm-) continuous at x, =0 for all z in some open
set 4,. However, VR(z, k) is compact and norm-continuous at x,. Applying the
Fredholm theory to the equation

R(z,x)=R(z,k)+ R(z, ) VR (2, K), (1.14)

it then follows that R(z, x)— R,(z, k) is norm-continuous as k—k, whenever ze 4,
is not an eigenvalue of A(x,). This proves stability for any discrete eigenvalue
Ae d, of A(x,), since the subtraction R (z, k) does not contribute to P(x) in (1.10).
The argument can be extended to N-particle systems by using a “connected”
resolvent equation instead of (1.14) [4, 7].

To complete our summary of existing stability proofs for Schrodinger eigenval-
ue problems, we should mention variational methods. Although restricted to
selfadjoint families, they have the great advantage to work with A(kx) directly
rather than with the resolvent, so that strong continuity of A(x) on a suitable
domain suffices to prove stability. The limit x— oo in Example 2 (and more general
“cluster” limits of molecular spectra) have been treated in this way [9].

In this paper we develop a general stability theory for discrete eigenvalues of
Schrodinger-type operators, which allows us to treat all these examples from a
common point of view. It is not restricted to selfadjoint families, but like the
variational method it works with A(x) directly and requires only strong continuity
in the following sense:
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Hypothesis 1. Let G be a first countable topological space and x— A(x) a function
on G taking values in the closed operators on a Hilbert space s#. For a given x,€ G
we assume:

Q) lim A(<)u=A(ko)u (1.15)

for all u in some core D of A(k,), and
(ii) lim A%(c)u=A*(co)u (1.16)

for all u in some core D* of A*(k,).

Implicit are the domain conditions D C D(A(k)) and D* C D(A*(x)) for x close to
K. In the examples given above it is known that CF(R") is a core of A(x) and A*(x),
so that Hypothesis 1 is satisfied. This alone is of course not sufficient for stability,
but it is the only continuity-condition we will use. The nature of the other
conditions is illustrated by the following class of results:

Example 5 (Schrodinger operators with core C§). We consider the formal operator
A(V)=p*+V(x) (1.17)

on L(R"), where the potential V plays the role of the perturbation parameter. V is
restricted to a subset G of L} (R"), which is determined by positive numbers &, 7, ¢

loc

- via the following conditions:
(i) Let 4,(V) be the operator (1.17) restricted to the domain CF(R"). Then
(u, p*u) < E{cosy(V) Re(u, Ay(V)u)
+siny(V) Im(u, Ao(V)u)+n(u, u)} (1.18)

for some y(V) in the range |y|<n/2—¢ and all ue C(R"). In particular, 4,(V) has
numerical range in some halfplane contained in

0={zeC|—n+eZarg(z+n/sine)<m—e}. (1.19)

(i) Ran(z— A4,(V)) is dense for some z¢ Q. Therefore 4,(7) has a closure A(V)
with spectrum in some halfplane contained in Q.

The topology on G is the L2 -topology, ie. the functions V—Vy are
continuous from G to LA(R") for any pe CZ(R"). Hypothesis 1 is then satisfied with
D=D*=CgZ(R").

Theorem 1.1. Let A(V) be the family of operators given in Example 5, and
E,(V)={u, AV)u)|ue CP(R"), lul =1L u(x)=0 for |x|<n}.
Let Q be an open complex set and G, a subspace of potentials Ve G such that
QNE,(V)=0 (1.20)

for some fixed (arbitrarily large) n. Then for each V€ G, the spectrum of A(V,) in
Q is purely discrete and each eigenvalue A€ Q of A(V,) is stable with respect to the
Sfamily {A(V)|Ve Gy}

Remarks. In the language of quantum mechanics: A(V) has purely discrete
spectrum in any complex energy region @ where tunneling to infinity is forbidden



Stability of Schrodinger Eigenvalue Problems 285

by energy conservation. As long as this barrier exists, the eigenvalues in Q are
stable when V changes continuously in a L _ sense.

Explicit sufficient conditions for Ve G are given in Sect. 6: Examples 1-3 are
subfamilies of the form A(x)= A(V(x)) — except for a trivial numerical factor in
(1.4). To apply Theorem 1.1 to these cases it therefore suffices to check the
numerical range E,(x) of A(x) for states ue CJ(R") with support in {|x|>n}:

Example 1. E,(x) is contained in the shaded region of Fig. 1:

arg ee

R Fig.1
n2

so that (1.20) is satisfied for any bounded set Q if n is sufficiently large. Therefore
A(i,) has purely discrete spectrum for any x, in the sector (1.2), and all eigenvalues
of A(k,) are stable with respect to the family A(x).

The same arguments apply to more general cases like

A()=p* + V,(x) + KV, (x)

on L*(R") with real VI,ZELIZDC(RV) which are bounded below and grow to + oo as
|x|— co. Analytic perturbation theory works for x, in the interior of the sector (1.2)
but not at x,=0. Whether or not asymptotic perturbation theory applies in this

case depends on the growth rate of V,(x).

Example 2. For given k€ R?, we restrict x to some finite ball around x,. Then
(1.20) holds for some n if Q has distance >0 from the positive real axis. Hence
A(x,) has purely discrete spectrum in the complement of [0, c0) and each
eigenvalue in this region is stable with respect to A(x). The same argument works
for

A(k)=p* + kz Vi(x—1)

on L*(R?), k=(k; ...ky)e R*", for complex V,e L} (R®) if V,(x)—0 as |x|— c0. We
note, however, that the “cluster” limits x— oo (in certain directions of R*") cannot
be obtained in this way.

Example 3. Theorem 1.1 applies to A(k, 8) exp(20) for (x, 6) satisfying (1.5). For
states u with support in {|x|>n}, (u, A(x, O)u) has distance <|e ’n"'| from the
shaded halfplane S in Fig. 2:

Im@+arg se

2Im @

e28[0,0)  Fig. 2
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Therefore A(k, 0) has purely discrete spectrum in the complement of S, and these
eigenvalues are stable with respect to variations of (x, 6). (In fact, it is known that
A(x, 0) has discrete spectrum in the whole plane if x 40, but the eigenvalues in S are
possibly unstable [6].)

Herbst’s description of the Stark effect is as follows [6]: For real k=0 the
Stark Hamiltonian A(x,0) has spectrum (— oo, + c0) without eigenvalues. The
Stark effect becomes visible in the spectrum after a complex dilation x—e’x, which
transforms A(x,0) into A(k, ). For fixed x, A(x, 0) is analytic in 0 in the region (1.5),
with discrete eigenvalues independent of 6 by the standard argument of dilation
analyticity [1]. For k=0 and —n/2<Im6<n/2 the spectrum is shown in Fig. 2:
its discrete part is the same as for =0 (hydrogen eigenvalues), while the
continuum exp(—20) [0, oo) is rotated by an angle —2Im@6. Each eigenvalue E is
stable with respect to A(k, 6) as long as E¢S, i.e. for

O<e=Im6O+argx=m—e¢ (1.21)

intersected with (1.5). Taking the union of these regions in the k-plane over |Im6)|
<m/2, we find that the perturbed eigenvalues are defined in a sector —m/2+¢
<argk =3m/2—¢, |k|<J, where they converge to E as k—0. For real x these are
the Stark resonances corresponding to E. We must refer to [6, 7] for further
details.

After these introductory examples we give an outline of the problems which
will occur in our discussion of stability. First, we remark that Hypothesis 1 implies
strong continuity of the resolvent. Let

A={ze C|R(z,«) exists and is uniformly bounded for « close to «,}.

We note that 4 is open. Given any compact I C 4 there exists a neighbourhood U
of x, such that R(z,«) exists and is uniformly bounded for (z,x)el’ x U. This
follows from (1.8) and a covering argument.

Lemma 1.2. Suppose that A(k) satisfies Hypothesis 1. Then

Kli_}I}’(lQ R(z,k)u=R(z,x,)u, (1.22)
and
Kli_'nKlOR*(z, K)u=R*(z,ky)u (1.23)

for any ue S if and only if ze A. In both cases the convergence is locally uniform in
ze .

Proof. Fix ze A. Since R(z, ) is uniformly bounded for x close to x, it suffices to
prove (1.22) for the dense set of vectors u=(z— A(x,))v, veD. Then by
Hypothesis 1,

IR(z, 1)u— R(z, teo)ull = | R(z, ) (A(x) — A(1co))v[ =0

as Kk—k,. Local uniformity in zeA follows from (1.8). The proof of (1.23) is
analogous. []
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In proving stability of a given discrete eigenvalue A of A(x,) we will proceed in
three steps:
(i) First, we need to know that for x close to x,,

dist{4, 0. (A(x))} Z&>0. (1.24)
(i1) Next, we want to show that for some ¢>0,
{z|0<|z—2l<e}CA. (L.25)
It then follows from Lemma 1.2 that
.?(—lj,lc’glp(K) = P(x,), (1.26)
and
s'(-l;,gl P*(k)=P*(x,). (1.27)

(1) Finally, we will have to prove
dim P(x) < dim P(x,) (1.28)

for k close to x,, since this together with (1.26) implies (1.9) by a result of Kato [8,
Chap VIII].

(i) calls for an effective method to control the essential spectrum. We will use
Weyl’s criterion (Sect.2) and a construction of Enss [5], extended to non-
selfadjoint operators (Sect. 3). This is applied in Sect.4 to prove invariance
properties of the essential spectrum under certain additive perturbations, includ-
ing some local perturbations of the Laplacian by differential operators of arbitrary
high order. After this digression we return to the stability of discrete eigenvalues in
Sect. 5, showing that the problems (ii) and (iii) are in fact closely related to (i) and
can be handled by similar methods. This leads to some general stability criteria
(Theorems 5.4 and 5.8) which are our main results. Examples play a dominant role
throughout this work, since our general framework (Hypothesis2 and 3) is
abstracted from concrete problems.

2. Weyl’s Criterion

Let A be a closed operator on a Hilbert space 5. We define its essential spectrum
by
Oeso(A)=0(A)\0 (4), (2.1)

where g(A) is the spectrum and o,(A4) the set of all isolated eigenvalues of finite
multiplicity (discrete spectrum). Let
W(A)={2eC|[|(A— A)u,| -0 for some sequence
u,eD(A4), |u,ll 40,u,->0 (weak convergence)}. (2.2)

Following Weyl [13], {u,} is called a “characteristic sequence of A— A”. Sometimes
it is convenient to normalize [u,||=1.
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Theorem 2.1 (Weyl’s criterion). Let A be a closed operator on a Hilbert space H.
Then
(1) W(A) is closed,
(i) W(4)Cou(A)
(iii) boundary of o (A)CW(A).

Proof. First, let A be a closed operator on a Banach space X. We quote from [8,
Chap. 1V, Sect. 5]:

Definition (Sect. 5, Subsect. 6).
2, ={AeC|nul'(A— A)=def(A— A)=00}.

This is Kato’s definition of the essential spectrum, which differs from (2.1).

Theorem 5.9. nul'(A— A) is the greatest number m= oo with the following property :
for any >0 there exists an m-dimensional closed subspace N,CD(A) such that
(A—A)ul| Sellul| for all ueN,.

Theorem 5.11. nul'(A— A)= oo if and only if there exists a sequence u,e D(A) with
lu,ll=1 and |(A— A)u,|| >0 which contains no convergent subsequence.

Problem 5.37. If A is a boundary point of g(4) then Ae X (A) unless A is an isolated
point of a(A).

Theorem 5.28. If 1 is an isolated point of o(A) and P the corresponding spectral
projection then dim P < co if and only if nul'(A— A)< co.

With these results we first show that Theorem 2.1 holds if we redefine
W(A)={ieC|nul'(A— A)=c0}. 2.3)

Proof. (i) follows from Theorem 5.9. (ii) Let Ae W(A). Then A€ a(A4) is evident and
2¢0 (A) follows from Theorem 5.28. (iii) Let 4 be a boundary point of ¢, (A).
Then A is a boundary point of g(4) and ¢ ,(A). It then follows from Problem 5.37
and Theorem 5.28 that nul'(A— A)= co.

It remains to show that the definitions (2.2) and (2.3) coincide if X is a Hilbert
space. More generally we have:

Lemma 2.2. Let X be the dual of a Banach space Y and A a closed operator on X.
Then nul'(A— A)=c0 if and only if there exists a sequence v,€D(A) such that
[v,l1+40 and v,(y)—0 for all yeY.

Proof. If such a sequence exists, it contains no convergent subsequence, hence
nul'(A—A)=o00 by Theorem 5.11. Conversely, if nul'(A—A4)=o00, let u, be a
sequence as described in Theorem 5.11. Since the unit ball in X is weak*-compact,
we may assume (by passing to a subsequence) that u,(y)—u(y) for some ueX and
all yeY. Since {u,} contains no norm-convergent subsequence, there exists ¢>0
such that |lu, —u,,, | > ¢ for each n and some m(n) > n. Therefore v, =u,—u,,,, has
the properties claimed in Lemma 2.2. This concludes the proof of
Theorem 2.1. []
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Remarks. The proof shows that Theorem 2.1 holds in reflexive Banach spaces. We
will use it mostly in the form of

Corollary 2.3. Let Q be an open, connected complex set with QNW(A)=0 and
Qno(A)£@. Then Qno  (A)=0, i.e. A has purely discrete spectrum in Q.

Proof. If Qnao, (4)=*0, then Q contains a boundary point of ¢, (A4). By
Theorem 2.1(iii) this is in contradiction to the hypothesis QnW(A4)=0.

We remark in particular that o, (4)=W(A4) if and only if each connected
component of C\W(A) contains a point of g(4). The classical example is 4= A*
[13].

Finally we mention a spectral mapping property which will be used in Sect. 4:

€8s

Lemma 2.4. Let A be a closed operator on a Hilbert space # with o(A) % 0. Then the
following are equivalent :
(i) Ae W(A),
(i) 0F(z—A) " e W((z—A)~Y) for some (and therefore all) ze o(A).
Also equivalent are:
(iil) A is unbounded,
(iv) 0e W((z— A)™ ') for some (and therefore all) ze go(A).

Proof. Any characteristic sequence of A — A4 is a characteristic sequence of (z— 1)~ *
—(z—A)~' if zeo(A). Conversely, if {v,} is a characteristic sequence of
pu—(z—A)~*, u=+0, then u,=(z— A) " 'v, is a characteristic sequence of z— u~ ! — 4.
This proves (i)«>(ii). (iv)—(iii) is evident. (iii)—(iv): Since A is unbounded,
|Au,[|>cc  for some sequence u,eD(A) with |ju]|=1. Setting
v,=(z— A)u,|(z— A)u,||~* for some zeg(4), we see that |[(z—A4) 'v,[[—0 and
(w,v,)—0 for all weD(4*). Since |v,||=1 it follows that v,->0, which proves
0eW((z—4)"Y. O

3. The Construction of Enss

The fact that characteristic sequences are non-unique leaves room for con-
struction. For Schrodinger operators, in particular, the condition u,—>0 can be
replaced by stronger support conditions such as suppu,C{|x|>n} [5]. This is
important since it shows that W(A4) depends only on the behavior of the local
operator A4 as |x|— co. The following is an abstract and slightly generalized version
of Enss’ construction:

Hypothesis 2. Let A be a closed operator on # with g(4)+#@ and resolvent
R(z)=(z— A)~!. We assume that {M,} is a sequence of equibounded operators on
A with the following properties:

(i) If {u,} is a characteristic sequence of A— A then there exists a >0 such that

limsup |M,u,l|>a for all n. (3.1)

(i) M,D(4)CD(A) and
[M,, Alu=Bu+K,u (3.2)
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for all ue D(A4), where K, is compact and |B,R(z)| =0 as n— oo for some (and
therefore all) ze g(A).

Lemma 3.1. Suppose that A satisfies Hypothesis 2. Then, if {u,} is a characteristic
sequence of A— A, so is v,= M u,,,, provided that m(n) is chosen sufficiently large for
each n.

Proof. We normalize ||lu,| =1 and let ze g(A4). Since (z— A)u,,~>0 it follows from
(.= A) M, || = M|l [(2— A, | + [ B,R(2)(z— A)u |
+ KR (2)(z — A)uy |

and from Hypothesis 2 that we can choose m(n) so large that
() (A= AM,u,| <|A—zl|B,R()|+n"",

(i) |M,u,l>a/2, and

(i) (e, Mu,)|<n™! for i=1...n,
where {e;} is some fixed basis in the (separable) space N spanned by the vectors
M u, (p,q=1,2,3...). Since the sequence v,= M u,,, is bounded, it follows from
(iii) that (f,v,)—0 for all feN, while (f,v,)=0 for fLN. Therefore v,~0, which
together with (i) and (ii) proves that v, is a characteristic sequence of 1—4. []

Example 5. For the operators A(V) defined in Example 5 the construction of Enss

18
M,=1-7,x) (3.3)

on L?*(R"), where y,(x)=y(x/n) with ye CP(R"), 0<x=1 and y(x)=1 for |x|<1.
Then M ,(x) has support in {|x|>n} and Hypothesis 2 holds in the following form:

Lemma 3.2. Let M, be given by (3.3). Then the operators A(V)=p?+ V(x) defined in
Example 5 satisfy :
(i) If || Au,,| is bounded for a sequence of unit vectors u,,€ D(A) and u,,~>0, then

'31_1'90 IMu,ll=1 forall n. (3.4)

(i) For all ue D(A)
LM, AJull S cn™ *(| Aull + [[u]) (3.5)
with a constant c independent of VeG.

Proof. (i) x,(1+p*)~'? is compact. Since the sequence Au, is bounded, the
sequence (1+p?)'/?u,, is bounded by (1.18) and thus weakly convergent to zero.
Hence

[ttt | = 12,1+ PH ™2 (L +p?) 0, | >0 as m—o0.

(i) [M,, A1=[p? r,J=2in""(Vx(x/n)-p—n~2Ax(x/n). By (1.18) |pu]
=const(||Au|| + ||u||) with a constant independent of Ve G. []

Remark. For any Ae W(A(V)) there exists a characteristic sequence {u,} with
u,€ C3(R”) and u,(x)=0 for [x|] <n. This follows from Lemma 3.2 and the fact that
CZ(R") is a core of A(V).
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Theorem 3.3. Suppose that A satisfies Hypothesis 2 and let
d A= inf (A—A)M ull. (3.6)

ueD(A), [|Mnul| = 1

If Q is an open, connected complex set with Qno(A)=+0 and limn infd, (2)>0 for all
LeQ, then Qno, (A)=0.

Proof. By Corollary 2.3 we need only show that QnW(A)=@. Since ie W(A)
implies }Lngo d (4)=0 by Lemma 3.1, this follows from limn infd,(1)>0. O

Remark. A useful lower bound for d, (1) is
d(A)=dist(4, E,),
where 3.7
E,={(Mu, AM,u)|ue D(A4), |M,ull=1}.

As an example we prove the first part of Theorem 1.1 which asserts that
Qno, (AV,)=0:

Proof of Theorem 1.1 ( first part). By (3.3) M,(x) has support in {|x|>n}. Since
E, (V)CE, (V) for m>n we have

d,(A) = dist(4, E,(V))>0

for all Ae Q2 and all m > n by (1.20). Next we note that E (V)+rCE (V) for any r>0.
This follows from
(u(a), Au(a)) = (u, Au)+ 2a - (u, pu) + a* (u,u),

where u(a)=uexp(ia-x), ae R". Without loss of generality we can therefore assume
that Q—rCQ for any »>0. Then Q intersects g(A4) in the complement of the sector
(1.19). Hence Qna,(A(V,)) =0 follows from Theorem 3.3. [

€8s

4. Invariance of the Essential Spectrum

Here we apply Enss’ construction to prove invariance theorems for W(4) under
additive perturbations. These results are not used in the following sections.

Theorem 4.1. Let A and B be closed operators on a Hilbert space # and suppose
that A satisfies Hypothesis 2. Then W(A) C W(B) if one of the following conditions is
satisfied :

(1) (A—BM,u=K,u+B,u for all uin a core of A, where K, is compact and
| B, |=0 as n—co.

(i) [(z—A)"*—(z—B)"'IM,=K,+ B, for some zeo(A)ng(B), where K is
compact and || B, || =0 as n— oo.

Remark. If B also satisfies Hypothesis 2 with the same sequence {M,} then (i) or (i)
implies W(A)=W(B).

Proof. (i) Let {u,} be a characteristic sequence of A— A. By Lemma 3.1 we may
choose a new characteristic sequence v,=Mu,,, with m(n) so large that
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K. u,l <n~'. Then |(4—B)v,|<|B,|+n"'->0 as n—>o0, so that v, is also a
characteristic sequence of A— B.

(i) By the same argument we can choose m(n) so large that
I(z—A)~*—(z— B)"*)v,||~0. Since v, is also a characteristic sequence of (z— ) *
—(z—A)" ! it follows that (z—A)"'e W(z—B)~!). By Lemma 2.4 this implies
AeW(B). [

We first illustrate Theorem 4.1 with some known results for a pair of closed
operators 4, B on .

Example 6. (i) If K is compact and (4A— B)u=Ku for all ue D(4)=D(B), then
W(A)= W(B).

@) If (z—A)"'—(z—B)™! is compact for some ze€g(A4)ng(B), then W(4)
= W(B).

(ii1) Let o(A)*@ and D(A™)CD(B) for some integer m>0. If A—B is
A™-compact, then W(A4)C W(B).

(iv) Let D(A4)> D(B), D(A%)CD(B) and g(4)no(B)+0. If A— B is A%-compact,
then W(A4)= W(B).

Proof. (i) and (ii) are evident from Theorem 4.1 with M,=1. (iii) Let zeg(A),
M,=(z— A)™™ for all n and apply condition (i) of Theorem 4.1. (iv) W(A)C W(B)
follows from (iii). For the converse, note that

[(z—A) "' ~(z=B)"'1(z—B)"'=(z—B) (A= B)(z—A) *(z— A)(z—B) "

compact bounded

for some zeg(4)no(B). Now use condition (ii) of Theorem 4.1 with
M,=(:z—B)™' O

On this abstract level the possibilities for constructing useful sequences {M,}
are rather limited. We can do better in concrete situations:

Example 7. On L*(R") we consider the formal operator

A=Q(p)+2,(p) V(x)Q2(p).

We assume:
(i) The Q, are polynomials on R’,
(i) VeLl (R"), and the form t defined on #(R") by

t(u, v) = (u, Qov) +(QYu, VQ,50)

is sectorial and closable. A is defined by the closure ¢ of ¢ via the representation
theorem [8, Chap. VI]

(iii) (u, f(p)u) = alt(u, w)| + b(u, u) (4.1)

for all ue #(R"), where f is a real measurable function on R’ with f(x)—co as
|x]— 0.

(iv) Let m; be the smallest integer such that 2m,= degree of Q,. V(x) and its
derivatives up to order max(2m,, 2m,) are continuous on R <|x| < oo and vanish as
[x]— 0.
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Theorem 4.2. Under the conditions (1)~(1v) given above, W(A)=W(Q,).

Remarks. W(Q,)=0,.(Q,) is the range of the function x—Q(x) on R". If C\W(Q,)
is connected, it follows from Corollary 2.3 that o (A)= W(A4)=0.(Q,)

More general operators of this type are constructed and discussed by Schechter
[12]. Our invariance result is considerably stronger than this Theorem 10.2 in the
sense that we impose no restrictions on the degrees of Q, and Q,.

Proof. We choose
M,=M=(1—x(x)(1+p*) (1 — 1)

for all n, with »>0 and real ye CJ(R") to be adjusted in the course of the proof.
First we verify Hypothesis 2. Since M — (14 p?)™" is compact, u,~>0 implies

Jim | Mu,—(1+p) "] =0. 42)
On the other hand it follows from |u,||=1 and (u,, f(p)u,)<c that

1A +p*)"u,|? 2 (1 +d%)" 2’(1 - |k|j d”klit(k)lz)
>d

>(1+ dz)"2’[1 — c('glrifdf(k))‘ 1} >a>0

for sufficiently large d depending only on ¢, where i is the Fourier transform of u. It
follows from this and (4.2) that (3.1) is satisfied. To prove (3.2) we first choose
2r = degree of Q,. Then

QoMu=0Q,(14+p> "u+K,u
and
EMu=Q3¥(1+p*) "u+Kiu

for all ue #(R*) with K, and K, compact. Now we choose y such that y(x)=1 for
|x| <R and we set V,=V(1— x). Observing that Q, is a local operator we then find
for all ue #(R"):
0, VQ,Mu= Q1VXQ2M”
=[0,(1+p3) ™ ILA+pY™ V(1 +p?) 77" ™]
LQ,(1+p*) ™ 1L +p?) (L= (1 +p*) " (1= 0)]u
=K,u.
Choosing now r>m, +m,, all four factors in square brackets are bounded and the

second one is compact, hence K, is compact. Similarly, Q¥ V*Q¥Mu= K’ u for all
ue #(R’) with K, compact. Therefore

t{u, Mv)— t(Mu, v) = (u, Kv) 4.3)
for all u,ve #(R”) with K=K, — K, + K;— K, compact, and
le(Mu, Mu)| < IM[(1Qo(1+p) "Il + | Ky |+ | K5 ) (2, 1)

Therefore M is a bounded operator from &(R') into the form domain D(z)
(equipped with t-norm), and as a consequence (4.3) extends by continuity to all
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ueD(?). It follows from the representation theorem that MwveD(4) and
[4, MJv=Kuv. Therefore Hypothesis 2 is satisfied with B,=0 and K,=K. To
apply Theorem 4.1 we remark that

(A— Qo) Mu=Ku (4.4)

for all ue D(A4), which proves W(A)C W(Q,). To show the converse we note that
F(R") is a core of Q, and that [Q,, MJu=(K,— K,)u for all ue #(R"). Since (4.4)
also holds for ue #(R"), it follows that W(Q,)C W(A). [

5. Stability of Discrete Eigenvalues

We now continue the discussion of stability as outlined in the introduction.

Lemma S.1. Suppose that A(k) satisfies Hypothesis 1 and that z¢o, (A(x)) for K
close to . If z¢0,(A(K,)), then z€ A unless there exist sequences k,€G and u,€ H
such that

K,—Kg,

5.1
u,€ D(A(k,)), lu, | 7~0,u,-»0 and |(z—A(x,)u,l—0. 1)

Proof. Suppose that ||(z— A(k))ul| = &ljul, e>0, for k close to x, and all ue D(A(x)).
Since z¢ o, (A(k)), this implies z€ 9(A(x)) and |R(z, k)| <&~ !, i.e. ze 4. Therefore, if
z¢4, there exist sequences x,—k, u,eD(A(x,), Iu,//=1 such that
I(z— A(x,))u,||=0. By passing to a subsequence we may assume u,—yu. It then
follows from Hypothesis 1 that

0= lim (v,(z— A(x,))u,)
= lim (= AGc)*v, )
=((z— A(xo))* v, u)
for all veD*. Since D* is a core of A*(x,), it follows that ueD(A(x,)) and
(z— A(x,))u=0. Hence u=0 since z¢a (A(x,)) by hypothesis. []
To prove (1.25) we want to exclude (5.1) for z close to A. This is done by

applying Enss’ construction to sequences of type (5.1), using the following
analogue of Hypothesis 2:

Hypothesis 3. Suppose that A(k) satisfies Hypothesis 1 and that 4+6. Let {M (x)}
be a sequence of families of operators on G with the following properties:
(i) M,(x) is bounded uniformly in »n and x.
(i) If {x,} CG and {u,,} CH# are sequences satisfying
Km=Ko s
€ D(A(K,)), 14,40, 1,0 and (5.2)

| A(r,,)u,,|| Sconst for all m,
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then limmsup M, (x,)u,,| >a>0 for all n.
(i) M (x) maps D(A(k)) into itself and

[M, (1), A()Ju=B,(1)u+ K, (1c)u
for all ue D(A(x)). For some z€ 4,

,}Ln’go K, (k) R(z, k)= K, (1c;) R(z, )
exists in norm and is compact, and

lim [|B, (%) R(z, )| =0

uniformly in .

Lemma 5.2. If Hypothesis 3 holds for some z € 4, it holds for all ze A. Given any
compact I' CA we have

Jim [ K, () R(z, ) = K, (o) R(z, 1) | =0 (5.3)
uniformly in zeT', and
lim |B,(1) R(z, )| =0 (5.4)

uniformly in (z,k)e I’ x U, where U is some neighbourhood of 1.
Proof. Consider the identity
K, () R(z, )= K (k) R(z¢, k) + (z — 2¢) K,(K) R(zo, k) R(z, K) . (5.5)

For k—x, we have K, (k) R(z,, k)= K,(1y) R(zo, k) in norm, and R*(z, k)= R*(z, k)
strongly by Lemma 1.2. Since K ,(x,)R(z,, ;) is compact, it follows that the last
term in (5.5) converges in norm to its value at x,. Local uniformity in z follows
from (1.8). To prove (5.4) let U be a neighbourhood of x, such that

lim | B, (1) R(zo. )] =0
uniformly in ke U and ||R(z,x)[|SM < oo for all (z,x)el’ x U. Using (5.5) with
B,(x) in place of K (k) we find for the last term

[ B(1)R(zo, ) R(z, 1) | = M| B, (1) R(z¢, k)| >0

uniformly in (z,k)e ' x U. []
By following the proof of Lemma 3.1 it is straightforward to obtain the
analogous

Lemma 5.3. Let A(x) satisfy Hypothesis 3. If {x,,u,} are sequences satisfying (5.1),
then so are {K,,, v,=M (x,)u,} provided that m=m(n) is chosen sufficiently large for
each n.

Theorem 5.4. Suppose that A(k) satisfies Hypothesis 3 and let
dyA k)= inf |[(A=A(K) M (K)ul. (5.6)

uesD(A(k))
[[Mn()ul] = 1
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Let Ae C be such that for some ny, and some §>0
dist {4, o, (A(x))} >0 (5.7)

and
d(A,K)>0 (5.8)

Sfor all n>ny, and all x in some neighbourhood of k. Then the following alternative
holds :

(@) If A¢o (A(x,)), then Ae A.

(i) If Aea (A(k,)), then  is a stable eigenvalue with respect to the family A(x).

Combining this result with Theorem 3.3 we obtain:

Theorem 5.5. Suppose that A(x) satisfies Hypothesis 3 for each k,€ G. Let Q be an
open, connected complex set such that Q0o(A(k)) %0 and d (4,1x)=06>0 for all ke G,
A€Q, and n>ng,. Then A(x) has purely discrete spectrum in Q and each eigenvalue
AeQ of A(x) is stable with respect to variations of k.

For a first illustration we return to Example 5:

Proof of Theorem 1.1 (conclusion). Let M, be given by (3.3) for all values of the
perturbation parameter V. Inspecting the proof of Lemma 3.2 we see that A(V)
satisfies Hypothesis 3 for any V,€G. The other conditions of Theorem 5.5 have
already been verified in the first part of the proof (Sect. 3). [

Proof of Theorem 5.4. (i) Let A¢a (A(x,)). If A¢4, there exist sequences {x,,u,}
satisfying (5.1). It then follows from Lemma 5.3 that d,(4,x,,,)—0 as n—oo in
contradiction to (5.8). Hence e 4.

(i) Let Aeo,(A(xy). If |z—A|>0 is sufficiently small, then zéo,(A(x,)),
z¢0,(A(x)) and d,(z, k) = 6/2 for all n>n, and all x in some neighbourhood of x,,.
By part (i) of the proof it follows that ze 4. This proves (1.25)-(1.27). Suppose now
that (1.28) does not hold. Then there exist sequences k,,—k, and u,,€ #, |u,,|| =1,
such that

P(x,)u,,=u, and P(ix,)u,=0. (5.9
By passing to a subsequence we may assume that u,,—>u. Using (1.27) we find as
weak limits of (5.9):
P(kg)u=u and P(x,)u=0,

which shows that u,—>0. In (1.10) we now fix the radius » of the circle I', in the

m w

interval 0 <r<§/2. Then by (5.8)
d(z, k) 2 dy(4,K,) — 12 6/2 (5.10)

for all zeI', and sufficiently large n, m. Let v,(z)=R(z, k,,)u,,. Then by (5.10) and
Hypothesis 3

0/ 1M, (1,,) v, | = 11z — Alre,,)) M (1,,) v, |
= (1M (1)t || + [ K (16,) R(z, 16, )ty | + 1B (16,) R(2, 16, )ty |
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for all zeI', and sufficiently large n, m. Operating with (6/2) M (x,,) on
U, = P(i,)u,,=(2ni) " § dzv,(2),
r,

we thus find the estimate

(6/2) | M, (1c,,) | S 7I| M, (16, )0, |
+(@2m)~! If |dz] | K, (1) R(z, 16,,) |
+(2m)~! Iff ldz| | B, (1) R(z, K, )ty |

Since u,,0, it follows from (5.3) that the first integral vanishes for each n as
m— oo, while the second one vanishes uniformly in m as n—oo by (5.4). Since
r< /2 this implies

nli_}n% limmsup M (x,)u,] =0. (5.11)
On the other hand, the sequence A(x,)u,,= A(x,)P(«,)u, is bounded since

A(k) P(x) is bounded uniformly for x close to k, by part (i) of the proof. Therefore
(5.11) is in contradiction to Hypothesis 3 (ii). [

Example 8 (Magnetic fields).
A(a)=(p— a(x))* + V(x) (5.12)

on L*RY). We consider a fixed potential V satisfying the hypothesis of
Theorem 6.1, and we restrict the perturbation parameter a to the space C* of real
C*-vector fields on R* with the topology given by the seminorms

da,
lal, = sup (lal+ [ 0)). r=123.0.
|x|=r 0x;,
Lk=1..v
A(a) is then constructed as the closure of (5.12), defined on C§(R") (Theorem 6.2).
It satisfies Hypothesis 1 for any a,e C*. The analogue to Theorem 1.1 is

Theorem 5.6. Let A(a) be the family defined in Example 8, and
E(a)={(u, A@u)|ue CF(R"), lu| =1 and w(x)=0 for |x|<n}.

Let Q be an open, connected complex set and G, a subset of vector fields ae C* such
that QNE,(a)=0 for some fixed n and all ac G,. Then for each ay€ G, the spectrum
of Alay) in Q is purely discrete and each eigenvalue A€Q of Ala,) is stable with
respect to the family {A(a)|a€ Gy}.

Example 4. Let A(x) be given by (1.6). If ue CP(R3), |ul|=1 and u(x)=0 for |x|<n,
then (u, A(x)u) has distance less than 1/n from o((p —x A x)?) =[x, c0). Hence A(x)
has purely discrete spectrum in the complement of [|k|, c0) and each one of these
eigenvalues is stable with respect to variations of ke R>.

Proof of Theorem 5.6. Defining M, by (3.3) and using the bound (6.9) on (u, 7*u)
the commutator estimate (3.5) is seen to hold uniformly in ae C!. It remains to
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establish Hypothesis 3(ii). Suppose that a,e C' and u,e C3(R") are sequences
satisfying a,—aq, 4,0 and ||A(a,)u,|| <const for all n. We have to show that
lxu,|| =0 for any ye C3(R"). By (6.9) [muu,l is bounded uniformly in n for each
k=1...v. The same follows successively for [|ymu,ll, lmou,ll, and |pgu,l
since a,—a, uniformly in x. Let A€ CF(R") such that Ay=y. Then |[yu,l
= A(1+p?)~ Y2(1 +pH)Y?yu,| -0 as n—oo since A(1+p?)~ Y2 is compact and
(1+p*)?u,—0. As a result, A(a) satisfies Hypothesis 3 for each a,eC*.
Theorem 5.6 now follows from Theorem 5.5. [

Concluding Remarks. For simplicity we have chosen our examples from the class
of “one-body” problems, in which the unperturbed potential V(x) has a simple
behavior for |x|— oo [e.g. V(x)—0 or V(x)— oo]. Actually the construction of Enss
[5] was devised to deal with N-body systems, i.e. with potentials whose behavior
depends strongly on the direction in which x— co in R*. An abstract version of it is
given by the following extension of Theorem 3.3:

Theorem 5.7. Suppose that Hypothesis 2 holds for A and
4
M,= Y M* (p<o0),
a=1

where the operators MY are bounded uniformly in n, o and satisfy (3.2) for each o. Let

a)= ol IG—A)Mul.
|| M%u]| = 1
If Qis an open, connected complex set with Q0g(A) =0 and lim infd’(2) >0 for all o
and all AeQ, then Qo (A)=0.

Proof. Suppose that
limsup | M, u, [ >a>0

for some sequence {u,} and all n. Then
lim sup || Mju, || >ap™' >0 (5.15)

for each n and some o= o(n). By passing to an infinite subsequence of {M,} we may
therefore assume that (5.15) holds for some fixed o and all n. With this remark the
proofs of Lemma 3.1 and Theorem 3.3 are immediately extended to
Theorem 5.7. []

By the same argument Theorem 5.4 extends to

Theorem 5.8. Suppose that Hypothesis 3 holds for A(x) and
p
M,(k)= Y Myx) (p<o0),
a=1

where the operators Mi(x) are bounded uniformly in n,o,x and satisfy the com-
mutator condition (iii) of Hypothesis 3 for each o. Then Theorem 5.4 holds if (5.8) is
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replaced by the condition
difdx)= inf  |[(A—A@)Mi(r)ul>5>0 (5.16)

ueD(A(k))
[IM7G)ulj =1

Sor all o, all n>ny and all x in some neighbourhood of .

Typically, M%(x) is constructed to have a range on which A(x) reduces to a
simpler operator A%(x) [up to an error of order o(n)]. Then the crucial estimate
(5.16) reduces to the corresponding estimate for 4%x), which may be obtained
from the numerical range of A%x) or from an upper bound on [(A— A4%k))™!].
Examples where stability can be proved in this way are the Stark and Zeeman
effect for N-electron atoms [7,4]. A similar but formally different case is the
cluster limit |x|]— oo in Example 2 (or in more general systems [9]), where A(x)
reduces to p?—|x|"! or p?—|x—x«|"! in complementary regions of R® with an
error of order x| ™.

As a general conclusion we may say that discrete eigenvalues of Schrodinger
operators on L*(R") are stable under large classes of perturbations (Hypothesis 1)
as long as they remain isolated from the essential spectrum, which in turn is
governed by the behavior of the operator near infinity in R*. Weyl’s criterion and
the construction of Enss provide a relatively simple, direct method to deal with the
qualitative question of stability. It is clear, however, that resolvent equations and
resolvent estimates are still needed for the quantitative and computational aspects
of perturbation theory.

6. Auxiliary Results

In Example 5 we have implicitly defined a space G of potentials Ve L (R"). The

following theorem gives explicit sufficient conditions for VeG:

Theorem 6.1. Let o, 5, y be real with |y|<m/2 and 0=wa<cosy. Suppose that
V=V,+V,in L} (R") such that

(i) cosyReV,(x)+sinyImV,(x)=0 (a.e.) and

@) |V,ull Salp®ul +plul for all ue CP(R).

On L*(R") we consider the operator A,=p*+V with domain C(R"). Then there
exist constants &, n depending only on o, f, y such that

(u, p?u) < E{cosy Re(u, Au) +siny Im(u, Ayu) +n(u, u)} (6.1)

for all ue CZ(R").

(iii) Suppose further that for any ye Cg(RY) V,y has arbitrarily small relative
bound with respect to p*.

Then Ran(z+ A,) is dense in L*(R") for sufficiently large real z.

Remark. Apart from hypothesis (iii) this is a natural extension of Theorem X.29 in
[10] to the non-selfadjoint case. We suspect that it holds without the extra
assumption (iii) as it does in the case v <3, where (iii) follows from V,e L (R").

Proof. We first prove (6.1). For the quadratic forms on C{’(R") we have
ReV,=Red,—p*—ReV,; ImV,=ImA4,—ImV,.
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Inserting this into hypothesis (i) we obtain

cosy ReA,+sinyImA,=cosyp?+cosyReV, +siny ImV,

=cosyp?—1V,|. 6.2)
Choosing d in o< <cosy we have
1Vull s ™t op>ul + Bllull .
Since ad ! <1 this implies
op* —|V,lz —po(d—a)™".

Inserting this into (6.2) we find the desired estimate

p*=<(cosy—35)"*{cosy ReAd,+sinyImA,+ pé(6—a)~'}.

As a consequence of (6.1) 4, has numerical range in the halfplane

S={x+iy|xcosy+ysiny+n=0},
which implies

I(z— Ag)ull 2 [ull dist(z, ). (6.3)

We now fix z¢S and prove that Ran(z— A,) is dense. Given any feCg(R") and
¢>0 we construct ge C3(R") such that

Iz—Ag)g— Sl <e. (6.4)

For any ye C3(R") with 0=y =1 we define 4,=p>*+V,, V,=V,x+V,. Since V1
also satisfies hypothesis (i) it follows that (6.1) and (6.2) hold for 4, with constants
&, n independent of x. By hypothesis (iii) ¥, has relative bound less than 1 with
respect to p®. Therefore A, has a nonempty resolvent set containing some left
halfplane, so that (6.3) implies

I(z— A4, =[dist(z,$)]"" (6.5)
for all z¢S and all y. Since C3(R") is a core of p? and thus of A, we can find
h,e C3(R") such that

l(z—A4)h,— fl<e/2, (6.6)
which by (6.5) implies
Ih, L= 1l +2/2) [dist(z, $)] 7.
Using (6.1) we then obtain a uniform estimate
(hy, (1+p*)h,)<c? (6.7)

with ¢ independent of the choice of ¥ and h,. Now let Ae CZ(R"), 0= A <1, such
that A f = f and

Ilp?, A1 +p?) ™ 2] <e/2¢. (6.8)
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Adjusting y such that yA=A it follows from (6.6) that

¢/2z | A((z— A )h,— N ==V, = V) Ah,— Ap*h, — f ||
2 (2= Ao) A, — f 1| = I[P AL +p*) "2 (L +p?) 2, Il

From (6.7) and (6.8) we conclude that g=Ah, satisfies (6.4). [
Using Kato’s inequality it is straightforward to extend Theorem 6.1 to the case
of real magnetic fields:

Theorem 6.2. Suppose that V satisfies hypothesis (i) and (ii) of Theorem 6.1. Let a(x)
be a real C*-vector field on R*. Then m,=p,+a,(x) (k=1...v) and Ay=n*+V are
defined on C§(R"), and there exist constants £,y depending only on a, B,y such that

(u, T*u) < E{cosy Re(u, Aou)+siny Im(u, Ayu) +n(u, u)} (6.9)

for all ueCZ(R"). If V, also satisfies hypothesis (i) of Theorem 6.1 then
Ran(z+ A,) is dense for sufficiently large real z.

Proof. The proof of Theorem 6.1 extends immediately to this case due to the
following result [3, Theorem 2.47]: if a multiplication operator has relative bound
<o with respect to p? it also has relative bound <o with respect to n%, uniformly
inaeCt O

Analytic families. In the discussion of Examples 1 and 3 we have mentioned that
analytic perturbation theory applies for x in the interior of the relevant sector. In
this connection the following criterion is useful:

Lemma 6.3. Let A(k) be a family of closed operators on a Hilbert space #, defined
for K in some open complex set G. Suppose that D is a common core of A(x) for all
ke G. Then A(x) is an analytic family in the sense of Kato [8, Chap. VIL] if there
exists a sequence of analytic families A,(x) on G such that

D }g{}o A, (K)u=A(k)u for all ueD and all ke G, and

(i) for some ze C, R (z,k)=(z— A,(x))™ ! and R(z, x)=(z— A(x))~ ! exist and are
bounded uniformly in n and .

Proof. Let u,ve s#. By Lemma 1.2 the functions f,(x)=(u, R,(z, x)v) converge to
f(x)=(u, R(z, x)v) for all keG. Since they are analytic in ke G and uniformly
bounded, it follows from Vitali’s theorem that f(k) is analytic in G. Since u, v are
arbitrary, R(z, k) is analytic in ke G. []
Typically, 4,(x) is obtained by putting a cut-off on some singular part of A(x),
e.g.
A,(K)=p*+x2+rxte >

in the case of Example 1. Then (i) is obvious for ue C3(R') and (ii) follows for real
z<0 by inspecting the numerical ranges of 4,(x) and A(x).
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