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Abstract. It is proven that every projectively Poincare covariant representation
of the free photon field defined by a pure quasi-free state is unixarily equivalent
to the Fock representation of that field.

1. Introduction

In order to describe photons radiated by a classical external current, coherent and
quasi-free states on the quantized free electromagnetic field have been considered
by several authors [1-6]. States on the quantized electromagnetic field are,
moreover, particularly suited to construct representations of the field that are
covariant under a given symmetry group G [3, 7-9*]. Quasi-free states also arise in
other physical problems, e.g., the vacuum states of generalized free relativistic
fields [10], the ground state of the interacting Bose gas at zero temperature [11]
and the equilibrium states of the nonrelativistic free Bose gas [12,13].

Let G be a topological group, (Jf, V) a strongly continuous unitary repre-
sentation of G, £ a regular state on the symplectic real-linear space (Jf^, σ) induced
by the complex Hubert space ^ and (^ W, Ω) the GeΓfand-Naimark-Segal
(GNS) representation corresponding to E [3]. The Weyl system (^ W) is called
projectively G-covariant if there exists a continuous unitary projective repre-
sentation (^ U) of the group G which implements the automorphisms
W( )-+ W(V(s) -) (Vse G) of the Weyl system (̂  W). Under additional assumptions
for the group G it has been proved in [7, 14] that there exists a bijection from
classes of sectors containing coherent states admitting a projectively G-covariant
Weyl system, onto the first cohomology group H1(G, 3f, V). In this paper we
attempt to extend the foregoing approach to sectors containing quasi-free states.

In Sect. 2 we derive a necessary and sufficient condition for two pure quasi-free
states to be in the same sector and we will classify all quasi-free states belonging to

1 During preparation of this paper we received the preprints by Basarab-Horwath, Polley, Reents
and Streater dealing with questions treated here
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a fixed sector. In Sect. 3 this condition allows us to deduce the existence of an
injection of classes of sectors containing quasi-free states with projectively
G-covariant GNS system, into the first cohomology group H1(G, ^~2(Jir),oc),
where 5r

2( JΓ1) is the Hubert space of Hubert-Schmidt operators on the real Hubert
space Jfr and α the representation of G on ^Γ2(^r} defined as
α(s) (A) = V(s)AV(s) ~ * (se G, Ae^2(JΓr)). For the covering group G of the Poincare
group &\ and its irreducible representations (Jf, V) of type [m, s] (m>0,
s = 0,^,...) and [0,A] (λ = 0, ±^, ±1,...) it is shown in Sect. 4 that the first
cohomology group H1(G, ^2(tfr\ α) is zero. Combining results of Sect. 3
(Theorem 7) and Sect. 4 (Corollary to Theorem 9) one concludes that every pure
quasi-free state associated to a projectively Poincare covariant representation of
the free photon field belongs to the Fock sector.

2. Quasi-Free States and Sectors

Let (L, σ) be a symplectic space, B a real inner product on L and F a real linear
functional on L. The functional EB on L, defined by £β(/) = exp(— ̂  #(/,/)) V/eL,
is a state on L if, and only if, |σ(/,g)|2^5(/,/)B(g,#)V/, geL. A state EBF on L,
defined by EB,X/) = exp(-|B(/,/) + iF(/)) V/eL,is called a quasi-free state on L
[15, 16]. In this paper we will restrict our attention to quasi-free states with F = 0.
One establishes straightforwardly the following properties for a quasi-free state
EB, which we mention without proof:

(1) The mapping λ±-*EB(λf+g) from 1R into <C has derivatives of all orders
(Y£0eL); this implies i.a. that EB is a regular state. For the GNS triple
(ĵ β, WB, ΩB) corresponding to the state EB, the mapping t±-*WB(tf) from 1R into
^(Jίβ) is a strongly continuous one-parameter group of unitary operators hence
there exists a self-adjoint operator A(f) in J^with WB(tf) = Qxp(itA(f)) V f e R

(2) The mapping f^-WB(f) from L into J*(^) is continuous with respect to the
jB-norm topology for L and the strong operator topology for

(3) (ΩB9A(fi)...A(f2n_1)ΩJ = QVneW and V/1? ...,/2πeL,

Ωβ) - Σ (ΩB, A ( f i ι ) A ( f h ) Ω B ) . . .(Ω* A(fin)A(fjn)ΩB} ,
π2n

where the summation is over all permutations π2n defined by
π2ll(l, ...,2w) = (i1j1, ...,znjn) and satisfying the inequalities I=z' 1 <i 2 < ...<iw and
ϊ\ <,/!,.. _.,zn< i/ I I = 2w.

Let Lβ be the real Hubert space obtained by completing L in the 5-norm the
inner product on LB will again be denoted by B. As σ is a bounded R-bilίnear
functional on L, it can be extended uniquely to a bounded IR-bilinear functional Jϊ
on Lβ, which yields a uniquely determined bounded IR-linear operator D on LB

such that σ(f,g) = B ( D f , g ) \ / f , g e L B . I t is not hard to show that ||D||^_1 and
D*= — D, where D* is the adjoint operator of D in the real Hubert space ZA Let
O =j\D\ be the polar decomposition of the bounded normal operator D on LB. The
initial and final subspaces, ^fin respectively ^fout, of the partial isometry j are
related by ^n = ̂ out. We are now in the position to state the following two
lemmata whose proofs can be found in [15] :
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Lemma 1. Let EB be a quasi-free state on the symplectίc space (L, σ). Then the
following conditions are equivalent :

(1) EB is a factor state on L.
(2) σ can be extended to a nondegenerate bounded ^-bilinear functional σ on LB.
(3) D is injective.

If the state EB satisfies one of these conditions, then ^f[n = ̂ foui = LB, i.e., the
operator j is orthogonal in LB. Moreover, the operator j is a complex structure on
(Zβ,σ): 7 is symplectic, j2 = - 1 and σ(fjf)^0 V/eZ5 The real Hubert space LB

becomes a complex inner product space Lj if one defines (i9f)\-*jf V/eLβand
(f>g)j = σ(f>jg) + iσ(f,g) V/, geZ8. Let 3fB denote the completion of U in the
σ( ,7' )-norm.

Lemma 2. Let EB be a quasi-free state on the symplectίc space (L, σ). Then the
following conditions are equivalent :

(1) EB is a pure state on L.
(2) EB is a factor state on L and there exists a complex structure j on (LB, σ) such

(3) \D\ = t onLB.
If the state EB satisfies one of these conditions, then the complex structure in (2)

is uniquely determined, the underlying sets [JfB] and [Z3] of the Hilbert spaces
Jfβ respectively LB coincide and LB is sequentially σ-complete.

The σ-topology on a symplectic space (L, σ) is the locally convex topology on L
defined by the semi-norms p/:0Mσ(/> g)\ (/, geL).

Conversely, starting from a complex Hilbert space Jf with inner product ( , ),
one can construct a real Hilbert space Jf r with inner product B0( - , ) = Re( , ) and
a symplectic space (Jf, σ) with σ( , ) = Im( , ). If A is a bounded IR-linear
operator on JΓ*", then A+ denotes its adjoint with respect to σ. If L is sequentially
σ-complete then there exists a one-to-one correspondence between pure quasi-free
states on L and the complex structures on L with respect to σ. Occasionally we
denote a state EB also by Ej where j is the complex structure on L induced by the
state EB.

Let EBι and EB2 be two pure quasi-free states on L. Combining the facts that L
is sequentially σ-dense in ̂  : = Jfβl and Jf2 : = JΓβ2 and that J^ and JΓ2 are
sequentially σ-complete, one concludes that the sets [JΓJ and [JΓ2] can be
identified. This implies the equivalence of the norms Bl and B2, hence the
dimensions of the Banach spaces JΓX and JΓ2 are equal and therefore also the
dimensions of the Hilbert spaces J^ and Jf2. For this reason there exists an
isometric operator T from Jf2 onto JΓ1? i.e.,

and Tj2=j,T .

Rephrasing the foregoing we have demonstrated that, given a pure quasi-free state
£ΰι, for every pure quasi-free state EB2 on L there exists a symplectic isometric
IR-linear operator T from tf\ onto tf\ with j2 = T+jίT We are now in the
position to prove a theorem on which much of the subsequent analysis relies.
Compared to the proof in [17, 18, p. 191] ours has been simplified and shortened
considerably. 3Γ2(tfr) denotes the set of IR-linear Hubert-Schmidt operators on
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Theorem 3. Let (L, σ) be a symplectic space and EBί and EB2 two pure quasi-free
states on (L, σ). Then the states EB and EB belong to the same sector if, and only if,

Proof. We remark that there exists a symplectic operator T on 3C\ such that
EB2(.Π = EBι(Tf) V/e jq". Thus (3FBl, WBl(T ), ΩBl) is a cyclic Weyl system corre-
sponding to the state EB2. The states EBι and EB2 belong to the same sector if, and
only if, the Weyl automorphism WBi(f)*-*WBί(Tf) (V/eL) is unitarily implement-
able in jfβι. By a theorem of Shale [19] the existence of the unitary intertwining
operator U(T) is guaranteed if, and only if, TT-te3~2(3f\). Exploiting the
equalities T z= —j\T+j{ and T*T= —jJ2 one gets the necessary and sufficient
condition.

In case EBί and EB2 belong to the same sector (3tfBί, WB](-\ U(T)~1ΩBί) is again
a cyclic Weyl system determined by the state EB2. A formula for the vector
U(T)~ίΩBί can be given [20, p. 316] but we shall have no occasion to use it. The
next theorem characterizes the quasi-free states belonging to a quasi-free sector,
i.e., a sector containing a quasi-free state. Although redundant for the proofs in the
next sections, Theorem 4 may be nevertheless of some independent interest.

Theorem 4. Let tf be a complex Hubert space and E the Fock state on (Jfr, σ). //
Ej is a quasi-free state belonging to the sector fixed by E, then

(1) there exist a complex linear sub space Ji of JΓ and a real linear sub space Jf0

of tfγ such that ^r = Jίf0®i^r

0@Jίr.
(2) There exists a symmetric Hubert-Schmidt operator h on JΓ0 with

SpftC(-l,0] and QφpSph such thatj = i + iH with

Q and h .

Conversely, if the conditions (1) and (2) are fulfilled thenj = i + iH is a complex
structure on L with respect to σ and the state Ej belongs to the sector given by E.

Proof. Theorem 3 assures the existence of a Hubert-Schmidt operator H in
Jf ' ' such that j=i + iH. Due to the assumption that j is a complex structure on
Jf r with respect to σ one derives that H is a symmetric operator on Jfr with
H ̂  — 1 and IHiH -f iHi — H = Q. One can easily show that — Iφp Sp H and Ker H is
a complex linear subspace of Jf. Let JΓ0 be the real linear subspace of Jfr spanned
by the eigenvectors of H with eigenvalues in the interval (—1,0), then

Define h =

A slight change of the preceding argumentation leads also to a designation of
the R-bilinear functionals Φ on Jf such that exp(— ^(BQ + Φ)) is again a pure
quasi-free state. Condition (2) is appropriately changed if one drops the Hubert-
Schmidt property of the operator h.

3. Projectively G-Covariant Quasi-Free Sectors and Cohomology

Let G be a topological group, (JΓ, V) a strongly continuous unitary representation
of G and EB a pure quasi-free state on (Jf r, σ). We define for all se G the R-bilinear
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functional V(s)xB by (V(s)*B)(f,g) = B(V(s)f9 V(s)g)\/f, geJfr. It is not hard to
show that for all seG EV(s)*B is a pure quasi-free state on (jΓr, σ) and
js=V(s)~1jV(s) the corresponding complex structure on (Jf, σ). In the sequel we
shall be concerned with sectors containing a projectively G-covariant pure quasi-
free state EB, i.e., the Weyl system (J4?B, WB) is projectively G-covariant. If a pure
state is projectively G-covariant then all the states from the corresponding sector
are projectively G-covariant. On the real Hubert space ^(Jfr) of Hubert-Schmidt
operators on Jfr one defines by α(s) (A) = V(s)AV(s)~l (Ae&~2W), se G) a strongly
continuous orthogonal representation of the group G. A 1-cocycle ξ on G with val-
ues in 9~2(tfr} with respect to the strongly continuous orthogonal representation
(«^"2(Jf Γ X«) of G is a continuous mapping ξ:G-+&'2(JFr) such that
ξ(st) = α(s) (ξ(t)) + ξ(s) Vs, feG. The real linear space of these 1-cocycles ξ will be
denoted by Zl(G9 F2(tfr\ α). The 1-cocycles ξ for which there exists an He ^2(jfr)
such that ξ(s) = (α(s) — id) (H) for all seG will be called 1-coboundaries and
will be denoted by B1(G9 SΓ2(tfr\ α). The real linear space
Hl(G^2(3fr\ά) = Zl(G,3~2(tfrl (ή/Bl(G,*T2(3fr\a) is the first cohomology
group of G with values in ?Γ2(3fr) with respect to the representation (&~2W), α). If
ξeZ^G^ίJT λα) then ζ:=ζ + B\G,*r2(tfr\ά) denotes an element of the first
cohomology group.

Theorem 5. Let EB be a pure quasi-free state on (3fr, σ). Then the state EB is
projectively G-covariant if, and only if, the mapping ξ:G-+g$(tfr\ defined by
ξ(s) = V(s)jV(sΓ l-j Vse G, is an element of Z\G, ̂ 2(Jfr), α).

Proof. Suppose the automorphisms WB( )-*WB(V(s) ) are for all 56 G unitarily
implementable in 34fB, then EB and EV(s]*B belong for all 56G to the same sector.
Appealing to Theorem 3, one concludes that for all s£G,js—je^2(tfr^ = 3Γ2(tfr).
From the work of Shale [19] it follows that the continuity of the projective
representation si-»t7(s) (56 G) is equivalent to the continuity in the Hubert-Schmidt
norm of the mapping s^-V(s)tV(s) — t from G into ^(JΓ1*). Thus ξ is a 1-cocycle.
The proof in the reversed direction is easily accomplished. In fact, the implications
we derived were equivalences.

In the following we only consider sectors EB containing a projectively
G-covariant quasi-free state EB.

Theorem 6. Let EB, EBί and EB2 be projectively G-covariant pure quasi-free states
with corresponding l-cocycles ξ, ξl9 and ξ2.

(1) The mapping EB^-^ξeHί(G, ?Γ2(3Cr\ α) is a sector mapping.
(2) l! = |2 if, and only if, there exist an Hε^2(JJfr) and a (/>6^(jΓr) with

j1 =j2 + H + iφ and V(s)φV(s)~ i=φ for all se G.
Assuming that the representation V is completely reducible with only infinitely

dimensional irreducible subrepresentations, then the operators H and φ are uniquely
determined by the given requirements.

Proof. Firstly, let EBί and EB2 be elements of the same sector with j1 —j2e^~2(Jtfr).
Then ξl — ξ2eB1(G, 3~2(3fr\α) and |x = |2. Secondly, ξ^ = ξ2 implies the existence
of a 1-coboundary ξ with ξί — ξ2 = ξ, i.e., there exists an He^2(Jfr) such that

1-H for all 5eG. Define the real bi-
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linear bounded functional Φ on 3fr by Φ(f,g) = B l ( f 9 g ) — B2(f9g) — σ(f9Hg) = σ(f9

(j1 —j2 — H)g)ι it turns out that Φ is invariant under the group G. There exists a
uniquely determined bounded R-linear operator φ on Jfr such that
Φ(/; g) = B0(f9 φg) = σ(/, iφg) for all /, ge JT. From Φ(V(s)f9 V(s)g) = Φ(f9 g) Vse G,
V/, ge tfr and the (C-linearity of the operators V(s) it follows that V(s)φV(s)~ 1 = 9
for all SE G. The proof of the converse is obvious. An application of Theorem 10
from the appendix easily proves the third statement of the theorem.

Now we are able to define an equivalence relation among the sectors EB. EBl

and EB2 are called equivalent if, and only if, there exist an H£$~2(3fr} and a
φEjpO such that V(s)φV(s)~* = φ for all seG and jί =j2 + H + iφ. This de-
finition is independent of the chosen quasi-free state from a sector. The class
containing the sector EB is denoted by EB. The mapping EB\-*ξ<=Hl(G,3'~2(3ίfr\tt)
is a class mapping, which is injective.

Theorem 7. Let G be a topological group containing a one-parameter subgroup G0,
(Jf , V) a completely reducible strongly continuous unitary representation of G with
only infinitely dimensional irreducible subrepresentations. If the representation
V\GQ does not contain the trivial representation as a subrepresentation and
Sp(FfG0)C[0, oo ) then the class EBo containing the Fock sector EBo contains only
the Fock sector EBo.

Proof. For simplicity we assume that the representation V only has two irreducible
subrepresentations. Let EB be a sector belonging to the class EBo. One can write
j = i + i(H + φ) with He$~2(3fr} and φ a bounded IR-linear operator on jf1"
commuting with all operators 7(5). Application of Theorem 1 1 from the appendix
yields that φ is a bounded (C-linear operator on 3C. Exploiting the special structure

of the representation V, φ takes the diagonal form φ = I * * . (The

irreducible subrepresentations are supposed to be defined on Hubert spaces Jft

and JΓ2 with 3ί = ̂ ®3Γ2.) The operator H + φ being a symmetric IR-linear

operator on JP allows one to deduce Ht — H=\ 1 i * , -
P V 0 (A 2 -A 2 )

Application of Theorem 10 leads to Hl = H and /l l 5/l 2eR The operator j is a
complex structure on (jΓr, σ). From the properties j2 =— i and σ(/,y/)^0one
deduces H + φ^-1 on JΓΓ and iHiH + iHiφ-φH + iHi-H = φ2 + 2φ. Again
Theorem 10 gives φ(φ + 2ί) = Q. Assume λ l 5 l 2 Φθ, then φ has an inverse and the
equation has the solution φ = — 21 Substituting this solution into the inequality

^—t one gets H^t. This contradicts H being a Hubert-Schmidt operator.

Theorem 7 clarifies the structure of the Fock class EBo. The results proven so
far for the first cohomology group H1(G,^2(Jfτ)Jα) give only information about
other classes if we can show that this cohomology group is trivial. In that case we
can draw the conclusion that other classes do not exist beside the Fock class. To
elucidate the structure of the real Hubert space ^Γ

2(Jίr) and the representation α
we are compelled to consider an equivalent problem.

Let $C be the Hubert space conjugate to the Hubert space Jf . Then every
operator AE^(^ r) can be uniquely written as A = Aί +A2 with ̂ e^pf, Jf)rand
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2 = $(A + ίAi).'] On the complex Hubert
spaces ^(jf^Jf) and ^(jf^Jf) one can define strongly continuous unitary
representations of the group G by a(s)(A)= V(s)AV(s)~ί. We can establish an
isomorphism from H1(G^2(jΓr\(ή onto Hl(G^2(^^f\ uy®H\G^2(^
&\ ά)r. It is well known that there exist a uniquely defined isometry / from
Jf®jf onto f2(tf,tf) such that I(f®g)(h) = (g,h)fVf9heJίr9yge3Γ and a
uniquely defined isometry J from Jf®Jf onto ^(J^JΓ) such that
J(f®g)(h) = (g,h)f V/, 0, /ιeJΓ. For the representations α one gets
/F(s)®F(s)/"1(-) = α(s)(-) and J7(s)<g>F(s)J~^0 = αOO( ) [K s) denotes an oper-
ator in ^(JΓ, Jf) with the same mapping prescription as the operator V(s) in
J*( JΓ, JΓ) ] By this means we have proved the existence of an isomorphism from
H\G, y2(tfr\ α) onto Hl(G, Jf® Jf", K® J/yetf^G, Jf ® Jf , V® V)r.

4. Cohomology and the Poincare Group

The study of the first cohomology group of a Lie group G with coefficients in a
Hubert space ffl carrying a strongly continuous unitary representation U of G was
initiated by Araki [21]. In [22, 23] these results were generalized to comprise
arbitrary locally compact groups. Our discussion will rely notably on results of
[23]. In calculating the cohomology groups mentioned at the end of Sect. 3 for the
Poincare group &\ the fact that the Poincare group is not amenable will play a
significant role. For convenience of the reader, we add briefly a few remarks on the
terminology and basic results.

Let G be a locally compact group, μ a left invariant Haar measure on G and
Ll(G] the Banach*-algebra of the complex-valued μ-summable functions on G. Let
(J f, U) and (JΓ, V) be strongly continuous unitary representations of G, (J% πv) and
(JΓ, πv) the corresponding nondegenerate representations of the Banach*-algebra
//(G) and A(U) and A(V) the C*-algebras generated by πl/(L1(G))5 respectively
πκ(L1(G)). Then the representation U of G is said to contain the representation V
of G weakly if there exists a homomorphism π from A(U) onto A(V) such that
π°πv = πv.

Let CB(G) be the set of complex-valued continuous bounded functions on G.
With the usual definition of addition, scalar multiplication, involution and norm,
CB(G) becomes a C*-algebra with unit. A left invariant mean on G is a state M on
CB(G) such that M(s/) = M(/)Vse G and V/e CB(G). (J(t): =f(s~ 4) Vs, ίe G.) The
group G is called amenable if there exists a left invariant mean on G. The group G
is said to have property # if the (left) regular representation of G contains weakly
the one-dimensional trivial representation. The group G is amenable if, and only if,
the group G has property .R [24, p. 61]. If in addition, the group G satisfies the
second countability axiom then the group G has property R if, and only if, the
regular representation of G weakly contains every strong operator continuous
unitary representation (J^ U) of G with separable Hubert spaces Jf [25, p. 260].

We equip the complex linear space ZX(G, J^ U} with the topology of uniform
convergence on compact subsets of G. For the Poincare group we aim at proving
that the 1-cohomology groups taken into consideration are zero. Clearly, this can
be achieved by proving first that B\G,^U) is dense in Z\G9J^U) and
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subsequently that Bl(G, ̂  U) is closed in Z\G, ̂  U). The latter problem can be
explored using general properties also shared by the Poincare group. To prove the
next Theorem, implicitly contained in [23, p. 329], we need a result of Guichardet-
Johnson [23, p. 309]. Let (^ U) be a strong operator continuous unitary
representation of a locally compact group G, which does not contain the trivial
representation as a subrepresentatlon. If, moreover, the representation U does not
contain the one-dimensional trivial representation weakly then B1(G,J^U) is
closed in Z\G,^U).

Theorem 8. Let G be a locally compact non-amenable group satisfying the second
countability axiom and H a closed amenable subgroup of G. Let (^ U) be a strong
operator continuous unitary representation of G, not containing the trivial repre-
sentation as a subrepresentatlon, on a separable Hilbert space ffl induced by a strong
operator continuous unitary representation UH of H. Then B1(G,J^f, U) is closed in

Proof. As H is amenable the regular representation of H contains the repre-
sentation UH weakly [24, 25]. As the regular representation of G is induced by the
regular representation of H and the representation U of G is induced by the
representation UH of H, the regular representation of G weakly contains the
representation U of G [25, p. 260]. The regular representation of G does not
contain the one-dimensional trivial representation weakly because G is assumed to
be not amenable. Hence the representation U of G does not contain the one-
dimensional representation weakly. Applying the Guichardet-Johnson theorem
we show that B\G, ̂  U) is a closed subset of Zl(G, ̂  U).

Now we continue our analysis by taking advantage of the structure of the
Poincare group and its irreducible representations. Let G be the covering group of
the Poincare group G is the semidirect product IR4©SL(2, (C) with respect to the
homomorphism A from SL(2, C) onto the proper orthochronous Lorentz group
J^τ

+. R4 is a closed invariant Abelian subgroup of the locally compact group G.
Let (jJf, V) be a strong operator continuous irreducible representation of G.
According to general results of Mackey the representation V is equivalent to one
of the standard representations. We only consider the representation V= Vp'ρ of G,
induced by a representation V^Q of the closed subgroup H=R4©G(p) with
p = me(Q) [m>0 and e(0) = (l,0,0,0)] or p = e(Q} + e(3} (e(3) = (0,0,0,l)) and
G(p) = {A<=SL(2,<E)\A(A)p = p} [26, p. 7]. [ρ is an index to characterize the
different equivalence classes of irreducible unitary representations of the little
group G(p), e.g. ρ may denote spin or helicity. Our analysis is independent of the
parameter ρ.] Sp(Vt1R4) = Ω(p):= {ApelR.4^^}. _

First we investigate the representation st-*V(s)(8)V(s)(sεG) on the Hilbert
space

H^with Ω ={ne(3)εlR4n>Q}u{U} for p = me(0) or Ω = {ne(3)eϊR4\n>ΰ} u {Oj
u{£ ( 0 )-h<? ( 3 )}u{ — e(0) — e(3)} for p = e(0} + e(3) [26, p. 77]. The representation V
is unitarily equivalent to a representation of G induced by the representation
F/ρ o f f / [27, p. 356].
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because of G(p) = G( — p) [26, p. 5, 7]. The representation F®F is equivalent to
V^Q® V~p'ρ [27, p. 343] these representations Vp>ρ and V~^ρ of G are induced by
the representations Ff^, respectively F#^, of the subgroup H = 1R4®G(p). The

representation F^'ρ®F~^'ρ of G is unitarily equivalent to a representation
of G induced by a representation of IR4©H0 with

0

2 / / J</Λ ) 0:gφ<4π!> [ί/0 is isomorphic to the group

0 e X P l ~ 2 ,
SO(2,IR)] [26, p. 85]. Writing the tensor product of these two irreducible
representations of the group G as a direct integral of irreducible representations of
G [26, p. 88] one sees that the spectral measure E of the representation F®FflR4

has the following property: for all Borel sets zlClR4 with ziC{peIR4 |p2 = 0}
E(A) = 0. The spectral measure E has support {peR4|p2^0}. As the Borel set
{peIR4|p2 = 0} has spectral measure zero, the spectral measure E is supported by
the open set {peIR4|p2<0}, i.e., £({peIR4|p2<0}) = l It is obvious that the set
{peIR4|p2<0} can be written as the countable union of closed sets Fn such that
each set is invariant under the group <£\ and 0 is not contained in any set Fn. We
may now apply a theorem due to Guichardet [23, Theorem 4]. We state this
theorem in a form adapted to the group considered here. Let G be the covering
group of the Poincare group &\ and (^ U) a strongly continuous unitary
representation of the group G. If the spectral measure E of the representation

00

U\ IR4 is supported by the set (J {F^ClR4!^ a closed set, Fn invariant under Λ(A)
n = l

for all AeSL(2, <C) and OφFn} then Z^G, ̂  U) is the closure of B\G, J^ C7). Thus
application of this theorem leads to the conclusion that Z*(G, Jf ® Jf, F® F) is the
closure of the set B1(G, JΓ® Jf~, F® F).

Next we check the assumptions of Theorem 8 for the group G. Let / be
an element of Jf®JΓ with F(s)®F(s)/=/ for all seG. Then
V(s)(If}V(s)~l=If(seG) with Ife^(^Jf)rC3T2(Jfr). Recalling Theorem 10 we
see that //=0 and so /=0. (F®FflR4 already does not contain the trivial
representation as a subrepresentation.) As the group G is not amenable and the
closed subgroup IR4©/i0 of G is amenable, Theorem 8 guarantees that
B\G,tf®tf, F®F) is a closed subset of Zl(G, tf®&, F®F).

With a slight variation on the arguments just given one gets an analogous
result for the representation (Jf®Jf; F®F) of G. In this case
Sp(V®V\1R4)=v{Ω(q)\qeΩp} with Ωp = {ne(0)eIR4|n^2m} for p = me(0), respec-
tively Ωp={ne(0}e1R4'\n>Q}^j{e(Q} + e(3}} for p = e(0} + e(3r The representation F^'ρ

with p = me(0} can also be treated by a different albeit standard method [7, p. 201].
The preceding arguments show:

Theorem 9. Let G be the covering group of the Poincare group and (JΓ, F) a
representation of type [m, 5] (m > 0, s = 0, \, 1,...) or [0, λ] (λ = 0, + \, ± 1,...) of G.

Corollary. // (JΓ, F) is a representation of type [0, λ] ® [0, - A] (A = 0, f, 1,...) o/ G
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Theorem 10. Let (Jf^ V) be a completely reducible unitary representation of a group
G which only has infinitely dimensional subrepresentations. If A is an ^-linear
compact operator on Cfrr with V(s)AV(s)~i —A for all seG then A = Q.

Proof. First we assume the irreducibility of the representation V. Then B:=A~ iAi
is a (C-linear compact operator on Jf commuting with all F(s)(seG). From the
irreducibility one infers B = λt(λe<ϋ). The infinite dimension of the Hubert space
Jf and the compactness of the operator B entail λ = 0. Let A* be the adjoint of the
antilinear operator A. The bounded C-linear operator A*A commutes with all
V(s)(sEG), so A*A = λt(λ<Ξ(£). Applying the same argument as before one
concludes A*A = Q, so ,4 = 0.

Next we assume for convenience that the representation V only has two
IA A \

irreducible subrepresentations. We can write Jf = J^φJf^ ^4= 11 12 with
V*21 ^22/

Ajk R-linear compact operators from Jf£-»Jfj (/cjΈ{l,2}) and
IV (s) 0 \

V(s)=\ 1 . For the operator A12 one obtains
\ 0 V2(s)l

V1(s)Aί2A\2 = A12A\2V1(s)(seG). Again one concludes Aί2A\2 = Q, so A12 = 0.

Theorem 11. Let s\->V(s) be a strong operator continuous one-parameter group of
unitary operators on a Hilbert space 3f. If the representation V does not contain the
trivial representation as a subrepresentation and Sp VC [0, GO) then every ^-linear
bounded operator on Jfr commuting with all V(s) is <E-linear.

Proof. Every IR-linear bounded operator A on JΓr can be uniquely written as
A = A±+A2 with A^3ί(tf,tf)r and A2e@(^tf}r. (J~ is the Hilbert space
conjugate to the Hilbert space «#]) If the operator A commutes with all V(s) then
the operators Aί und A2 also commute with all V(s). For /e^(IR) let /(/) be the
spectral integral of / with respect to the spectral measure E on R corresponding to
the one-parameter group V(s). Let / be the Fourier transform of /e5^(IR);

f(p) = (2πΓi/2 ] /(ί)exp(iίp)dί. Then /(/)-(2π)~1/2 ] f(t)V(t)dt and
~ _ ~ ° ° ~ ~ ~°°

A2I(f) = I(g)A2 with g(p)= /( — p)(peIR). Let (/„) be a sequence of real-valued,
uniformly bounded functions converging pointwise to the characteristic func-
tion χ(0tb) of the open interval (α,fc)cR (/ne«^(R)). Then I(fn)-*I(χ(a,b}) and
A§J ^AX(-b,-α)) in tne strong operator topology. One deduces that

^2^(X(α,fo))= ^(%(-b -α)M2 anc^ therefore ̂ 2^(^) = Έ( — ^)^2 f°r every Borel set A cR
Let yl be the generator of the group with SpA C [0, oo) implying E(A) = 0 for all Borel
sets Ac(— oo,0). Because the one-parameter group does not contain the trivial
representation as a subrepresentation E(0) = 0. Combining this result with the
spectral property of A we get £((0, oo)) = i. Taking A = (0, oo) we have proved A2 = 0.
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