
Communications in
Commun. Math. Phys. 82, 471-495 (1982) Mathematical

Physics
© Springer-Verlag 1982

The Spectral Class of the Quantum-Mechanical
Harmonic Oscillator

H. P. McKean and E. Trubowitz*
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

Abstract. The purpose of this paper is to study the so-called spectral class Q of
anharmonic oscillators Q= — D2 + q having the same spectrum λn = 2n
(n ^ 0) as the harmonic oscillator <2° = — D2 + x2 — 1. The norming constants
tn = lim /g [(- l)n en(x)/en(— x)] of the eigenfunctions of Q form a complete

Jet oo

set of coordinates in Q in terms of which the potential may be expressed as
q = x2 - 1 - 2D Vg θ with

Γ

= det δ..
L

e® being the nth eigenfunction β°. The spectrum and norming constants are
canonically conjugate relative to the bracket [F, G] = jVFDVGdx, to wit:
[_λ., λ.] = 0, [ί., 2λj] = 1 or 0 according to whether ί =j or not, and [ί., ίy] = 0.
This prompts an investigation of the symplectic geometry of Q. The function θ
is related to the theta function of a singular algebraic curve. Numerical results
are also presented.

1. Introduction

The spectrum of the quantum-mechanical harmonic oscillator1 Q° = —D2 +
x2 — 1 is 0,2,4,6, etc. The corresponding unit eigenfunctions are the Hermite
functions:

4?(x) = (χ/π2"rc!)- 1/2eχ2/2Dne-χ2 (n ^0).

Let Aq belong to the class S(R) of real infinitely differentiable functions vanishing
rapidly at ± oo2. The anharmonic oscillator Q = - D2 + q with potential
q = x2 — I + Aq has a discrete spectrum of simple eigenvalues λn = λn[q], increasing
to + oo with n, and corresponding unit eigenfunctions en (n ̂  0) of class S. The

* Sloan Foundation Fellow.
1 D signifies differentiation with regard to x.
2 xLDjAq = o(l) for x -> + co and every ij ^ 0.
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purpose of this paper is to study the spectral class Q — Q[x2 — 1] of such oscillators
having the same spectrum λn = λ% = 2n as β°, i.e., the aim is to explain to what
extent the quantum-mechanical oscillator is specified by its spectrum. The principal
results and their geometrical motivation will now be described.

Isospectral Flows

The flow of translation dq/dt — dq/dx leads immediately out of the class x2 — 1 + S;
more drastically, the KDV flow dq/dt = 3qdq/dx — (l/2)d3q/dx3 does not even
exist for q ~ x2 as the individual terms cannot balance unless q is sublinear.
Fortunately, a wide class of isospectral flows suggests itself by elementary geo-
metrical reasoning: Q is defined by the relations λn = 2n(n^ 0), so the normal space
to Q at q is, or ought to be, the span of the gradients3 Vλn = e2

n(n ^ 0). Now Def is
perpendicular to e2 for every i and j, as is plain for i =7, while for i =/=j, it follows
from4

D[er e.] - ef] - eT.e. = (λ. - λ)e.e.

and

tfDe] = - lήDή = tflefDή - ήDef]

= k φ. , ej = (λt - λjΓ^le-.ejYl^ = 0.

This suggests that the tangent space to Q at q ought to be the span of De2

n(n ^ 0)
and that5 dq/dt = 2De2 = Xnq ought to be an isospectral flow. The perpendicularity
of ef and De2 can be phrased more elegantly in terms of the Poisson bracket,6

[F, G] = JVFDVGώc, as [Λ,., /I] = 0. This states that the eigenvalues are involutive
and suggests that the flows dq/dt = Xq ought to commute. It is a source of satis-
faction that ef and De2 span L2(R) so that no direction at q is left unclassified', also,
the gradients Vλn = β2 of the relations λn — 2n are highly independent in the sense
that no direction in the span of some subclass lies in the span of the complementary
class [see Sect. 4]. This indicates that Q is a smooth submanίfold of the ambient
space x2 — 1 H- S, though the point is not pursued below.

The Exponential Map

It is a pleasant fact that the flows dq/dt — 2De2 may be integrated in a simple and
explicit manner, obviating any discussion of existence and the like. Let Xn be the
vector field q-+ 2De2 and fix q° in Q[x2 — 1], not necessarily at q°(x) = x2 — 1.
Then the flow dq/dt — Xnq originating at q = q° is expressed by

q = q° - 2D

3 V is the gradient in function space. The evaluation is elementary from the simplicity of the eigenvalue,
the variational equation Qen + q'en = λnen + λnen, and theίact that \ene'n = 0 in view of JV = 1.
4 [e£, βj] = ete'. — e[e .

5 The factor 2 is introduced with a view to the simplicity of subsequent formulas.
6 [F, G] is skew-symmetric and satisfies Jacobi's identity; see, for example, McKean-Moerbeke
[1975],
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with

eQ

n being the initial eigenfunction [β°e° — λne°~]. More generally, let the numbers
tn(n ^ 0) vanish rapidly as n t GO and let X = ΣtnXn. Then exq° belongs to Q and
may be expressed by the same formula with7

» = det
Γ 00 "I

δ.. + (eίl - 1) f e*e*:Q ^ U < °° I
L x J

The numbers tn have the interpretation of norming constants: cn = eje^( — oo)
and c + ̂  eM/£°( -f- oo) exist and satisfy the connection rule c~c + = 1, and tn =
/g c*/c~ in particular, if g°(x) = x2 - 1, as is mostly the preferred choice, then the
map t -> — £ corresponds to the reflection of potentials g(x) -» #( — x). The geo-
metrical content of all this is that the formula exq° = q° — 2D2 ^g θ establishes
an exponential map from the tangent space of Q at q° into Q: it is 1 :1 in view of
the meaning of the parameters £π,and in fact it is onto so that t is a global coordinate
on Q, relative, e.g., to the origin q°(x} = x2 - 1; in particular, x2 - 1 is the only
even potential in its class. The first fundamental form of Q at q is g.. = 4§De2De2,
i.e., \\dq \2

2 = ̂ g^dt^t.. This is a complicated animal even at the origin g° = x2 — 1,
and no attempt is made to deal with it beyond noting the formula

Σβ^V - 4(2πΓ 1/2(1 ~ ά)ll2(\ - b)1/2(l - ab)~ 1/2 ((K α, b < 1).

Symplectic Geometry

The quantities /L(j ̂  0) are involutive relative to the bracket [F, G], as noted
before. It turns out that so are quantities £. = lim / g [( — 1)' ̂ (x)/^ — x)], and

xt°o
the fact that the flow dq/dt = X.q = [q, 2λj] advances t. at speed 1 if i =j, and not
at all if ί =£ j, is to say that £ t(i ^ 0) and 2λ.(j ^ 0) are canonically conjugate relative
to the bracket:

A more global viewpoint is now adopted. The involutive quantities tn have an
existence outside Q[x2 — 1] and so produce commuting vector fields Yn : q -> DVtn

transversal to the isospectral fields envisaged before, leading off Q[x2 - 1] into
the ambient space; they fix the ί.'s and move the λ?s. It turns out that x2 - 1 + S
is too small an ambient space for the individual flows, but if S is appropriately
enlarged things appear to proceed nicely. The ambient space is now cut up by
two transverse foliations : one foliation has leaves Q defined by fixing λn(n ^ 0) not
at the eigenvalues ̂ [x2 — 1] = 2n, but at some other values with realistic comport-
ment as n I oo. The typical leaf P of the second foliation is obtained by fixing the
numbers tn(n ^ 0) in a similar fashion. Two leaves Q and P meet in a single point,

7 The formula is of Gelfand-Levitan-type; see, especially, Kay-Moses [1956] and Tanaka [1972/73].
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and the meeting is transversal as expressed by the fact that the corresponding
normal spaces, spanned by Vλ. and Vί j ? meet only in the null function and fill up
L2. The isospectral flows dq/dt = \q preserve the leaf Q and are integrated by
the previous rule: Δq = — 2Z>2/g[l -f (e* — 1)J^(£°)2]> likewise, the transversal
flows dq/dt = \nq preserve the leaf P and are integrated by a simple rule: Δq =
— 2D2 f% [e°, /°], /π° being any independent eigenfunction of β° with updated
eigenvalue λn= λ° + ί. The latter flows are of a different kind from the former in
that their parameters λn(n 1> 0) lie on the GO -dimensional simplex A0 < λ1 < λ2 <
etc. so that they have only a circumscribed existence; in this connection, it is
amusing to note that the leaf P[x2 — 1] appears to be precisely the class of even
potentials and so is perfectly nice, only it is incomplete as regards these flows.
This whole global picture is partly conjectural. The technical effort required to
confirm it seems disproportionate to the result, so only the leaf Q[x2 — 1] is
treated below, though the proofs have a wider applicability [see Sect. 4-5]. To be
candid, it is not even plain what the ambient space should be : for example, there
exist potentials outside the present class Q[x2 — 1] with spectrum λn = 2n but
exhibiting a charge: Δq(co) - Δq( — oo) = 4. It is conjectured that this charge is
always integral in any enlargement of Q[x2 — 1] and labels its connected pieces.

Theta Functions

The letter θ is used to point up the similarity between this determinant and the
Riemann-theta function as it appears in the inverse theory of Hill's equation;
see, for example, McKean- Trubowitz [1976]. A singular 2-sheeted curve of
infinite genus, with singular points λn = 2n(n ̂  0) or whatever, lies in the back-
ground. The associated Jacobi variety splits up into an uncountable number of
components indexed by the real number x9 provided with the family of singular
theta sums :

The numbers tn(n ^ 0) may even be expressed as sums, over the points of a certain
divisor on the curve, of integrals of differentials of the first kind [see Sect. 6].

Numerical Results

The appendix contains pictures of several potentials from Q[x2 — 1] displaying
the effect of the isospectral flows. They were made by O. McBryan by numerical
evaluation of θ.

Finite Interval

The whole situation is similar but technically simpler for operators Q acting, for
example, on functions of — 1 ̂  x ^ 1 vanishing at x = ±1. This will be dealt with
in detail in a forthcoming publication of E. Trubowitz.
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2. The Exponential Map

Let Q = Q[x2 — 1] be the spectral class of the quantum-mechanical oscillator
QQ = — D2 4- x2 — 1 obtained by fixing the eigenvalues λn = λ® = 2n(n ^ 0) in
the space x2 — 1 + S. It is proposed to make an exponential map of the tangent
vector* X - Σί.X. into Q via the rule exq° = q°-2D2έgθ = q with

= 0^1* '2-0 =

The initial potential q° is any point of Q; it is specialized to the origin x2 — I later.
The numbers t . vanish rapidly as 7 f oo . They have the meaning oϊnormίng constants :

*/*?(+ oo) = exp(±f/2).

This makes plain that the exponential map is 1:1; the proof that it is also onto is
postponed to Sect. 3.

Step 1. The discussion begins with a single parameter t = tn so that θ =
1 + (el - l)f "(e°)2 It is to be proved that q = q° - 2D2fgθ is an integral curve of the
vector field Xπ :g -» 2De2, i.e., dq/dt = Xq. The question of uniqueness is routine
and may be left aside.

Proof, θ is positive by inspection, so the recipe makes sense moreover, θ = 1
at oo and et at — oo, so Aq = — 2D2 *?g θ is class S. Now the function θ~ 1 et/2e® = f
is an eigenfunction of Q = — D2 + q with eigenvalue 2n, by direct computation,
and as it has precisely n roots in common with eQ

n and satisfies

it can only be the π'h eigenfunction en of Q. Besides,

dq/dt = - 2D2 fs [dθ/dt] = - 2D2Θ~ 1e' J (e°)2

by elementary computation, and since the flow preserves the spectrum of Q in
view of λm = 2[/lm, λn~] = 0,soq belongs to Q and may be identified as stated.

Amplification 1. The other eigenfunctions ofQ are

The computation is facilitated by the identity f e^e° = (λ° - λ°J
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Amplification 2. The preceding formula leads, after some tears, to the identity

1 *f} = ί &• ~ θ~ V - 1) ϊ eyn ] e»e« (i,j + «).
X X X X

This will be used presently.

Step 2 is to prove that

represents the action of ex upon cp for any tame combination X = ̂  ̂ X; of the indi-
vidual fields. l' = "

Proof. The formula of Step 1 and the commutativity of the individual flows9 imply
that qn = exq® can be expressed inductively as

with q_1 = qQ and θn = 1 + (etn - 1) J (e~)2, e~ being the nth eigenfunction of the
X

preceding potential qn_ί

iQ. Thus, Δq = qn — q_ 1 is ( — 2) x the second logarithmic
derivative of the product {"] 0., and it is required to identify the latter as the stated

i^n
determinant. This is done by Gaussian elimination with the help of Amplification 2 :
elimination of the first row of the determinant leads to the product of Θ0 and

[ Γoo oo oo ~j ~~|

Sy + ίe' -l) ί^-θoV0-!)/^!^ ί l ί i j ί n
L X X X J J

= det

in which en

+(n^0) are the eigenfunctions of et°x°q_ί =q0. The rule θ= Y[θ.

i^n
follows by induction.

Amplification 3. The product rule for θ leads to a proof of its existence and non-
vanishing for general rapidly vanishing parameters:

and

independently ofx.

9 [λ^λ^ = 0 expresses this fact.
10 The abuse of notation is only momentary.
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Amplification 4. The evaluation Aq = — 2D2 /g θ and the rule dq/dtj = X.q =
2De] lead to the identity e] = - D[5^g θ/dt.](j ^ 0).

Amplification 5. The formula for the individual flows of Step 1 lead inductively to
the evaluations

whence the connection rule c~c£ = 1 and the interpretation of tk = /gc fe

+/c~ as a
norming constant. The fact that the (tame) exponential map is 1 : 1 is now plain.

Step 3 is to carry Step 2 over from tame to general rapidly vanishing ίM(n^>0).
Routine estimates based upon the expansion11

n= 1

] + Σ («" ~ l)(eίj - 1M|>?, ej] + etc.

show that Jg = — 2D2 £gθ is of class S. The isospectrality of q = qQ + Aq and its
identification as exq° will be plain, the only moot point being the interpretation
of the parameters tn as norming constants, as in Amplification 5. But that is clear
from the estimate

- 1

and Amplification 412 :

Amplification 6. Choose q°(x) = x2 — 1 α5 ί/ze oπ'gfm o/ Q. T/zen ί/ze alternately
even and odd parity of the Hermite functions e® implies

^( - ί0' ~ ̂ ' ~ * 2 > etc ) = ^-x^o' r i ' ̂ ' etc )?

i.e., ί/ιe map X -> — X expressing reflection in the tangent space is mirrored in the
reflection q(x) -* q( — x) of the potential q = ex q°. The present choice of origin is
to be understood until further notice.

3. Surjection

The fact that the exponential map is onto the whole of Q is harder to prove. The
ftth eigenfunction en of a fixed potential q of class Q is proportional to xne~χ2/2

12 The exponent — 1 in the sum signifies the inverse matrix. The fact that en(x) = 0 has precisely n
roots must also be used.
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at + oo, so the constants

^ =(*„/<)( -oo), C = (*,/<£)( + °°)
exist. It is required to prove the connection rule c~c^ = 1 and the rapid vanishing

of tn = ^g c"n/c~ , and to verify q = exqQ with X = Σ tXn .

Connection Rule

The first 2 steps are preparatory.

Step 1. Introduce the more-or-less standard Hermite- Weber function:

(x, A) - Γ(p)

with p = 1 + λ/2. The integral is performed about the contour of Fig. 1 and the
fractional power y~p is the principal branch in the plane cut along (— oo,0].
The allied function w°_ (x, λ) = w° ( — x, λ) is also introduced. The following
information comes from Bateman [1953: 116 et seq.] :

Fig. 1.

a) <2°w = λw for w — w°_ or vv° .
b) w + is comparable to xp~le~χ2>2 at x = oo and to x~peχ2/2 at x = — oo .
c) w° is an integral function of λ, of order 1 and maximal type for fixed x.
d) Δ°(λ) = [w°_, w°] is independent of x; it is an integral function of the same

class with simple roots at λ = 0,2,4,6 etc. and no others in particular, for λ=2n ̂  0,
both w°_ and w + are proportional to the Hermite function e%.

Step 2. The Hermite-Weber functions of Step 1 may be imitated for general Q
with Δq vanishing at ± oo. These new functions are designated w + (x,Λ) and to-
gether with Δ(λ) = [w_, w+] have the same properties a)-d) as their prototypes.
The routine discussion is based upon the recipe

OO

w+ (x) = < (x) + J [w°+ (x)W°_ (y) - w°_ (χ)w° (j)] w+(}^<7(y)^
X

and may be omitted. The comparison w+ = w°[l -f 0(/l~1/2)]5 valid for fixed
x and /I J, — oo, is noted for future use it may be differentiated by x.

Step 3 is the proof of the connection rule: Off spectrum, the Green's function
(Q-ty'y1 may be expressed either as - Δ~i\v_(x)w+(y)(x < y) or as the sum
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Σ(λn - xΓXfrKίy), whence13

[J (An)]~ V_(x, Λ>+(j;, An) = en(x)e(y) (x < y\

by matching residues at λ = λn, and c~cπ

+ = J0'/^0 at A = /U But A and its proto-
type A° are integral functions of order 1 vanishing simply at λn = 2n(π ^ 0), and
A(λ) ~ A°(λ) for λ I — oo by the comparison of Step 2. A = AQ and c~c^ = 1
follow: such a function A differs from its Hadamard product only by a factor

ea+bλ ancj two Sucj1 factors coincide if their ratio tends to 1 along a ray.

It will be necessary to know that c*/c~ = l(n ^ 0) only at the origin of Q, i.e.,
only ifq(x) = x2 — 1. It is a corollary that x2 — I is the only even potential of class Q
iϊq(x) = q( — x), then its eigenfunctions, like those of q°(x) = x2 — 1, are alternately
even or odd, so that c^ /c~ = 1. The proof of uniqueness is modeled upon Levinson
[1949] and is the analogue of a theorem of Borg [1945].

Step 1 consists of preliminary estimates. Fix a number x and let qx(y) be y2 — 1
or q(y) according as y < x or y ^ x. The eigenvalues λ* and the eigenfunctions
ex

n(y) of the corresponding operator Qx — - d2/dy2 + qx move with x, and it is easy
to see that

dλx

φ) = an [sm(λ^lz(y + bn] + 0(n~ 1/2L3)]

by an elementary appraisal, and from the inequality 1 = J(e*)2 ^a2[
o(l)]2L, the evaluation λ™ = 2n, and the rapid vanishing of Aq, it develops that

The same trick applies to the eigenfunction:

rc — P*~\ v i/ lπ\ Y i > i / / i P^I ~y\p ( V i
^v ~ SW^^W Z^ \Ak An> ^fcW^fcW'

K _L

so

L / 1 2 + ϊ = /0^-1/4^

But the Hermite function e™(y) — 0(n~1/4) by routine appraisal, so e*(y) =
0(n~1/4+), and this is improved to 0(n~1/4)plain by substituting back; in particular,
en(y) = e~co(y)= 0(n~i/4\ The improvement also applies to the eigenvalue:
λx = 2n + 0(n~ll2\ independently of x.

13 signifies differentiation with regard to λ.
14 c — \c + ] means any number slightly smaller [larger] than <
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Step 2 is to explain the plan of the proof: Q and Q° have common spectrum
λn = 2n and if also c^/c~ = 1, then their eigenfunctions en and e® are common
multiplies of w+ and w+, respectively, for λ = 2n. This permits you to write 15

^[Δe (x)]2 Aw (x, λ)Δw + (x, λ) Λ , ,
_ L — ?Λ_>J_ — ~ v ' ' +v ; evaluated at λ = λ ,

-A(λ)

for fixed x and /l_ 1 < 0, the sum being taken over n ̂  N and the integral about a
circle of odd radius 2N + 1 enclosing A _ 1 . The plan is to prove that / = o(l) as
N |oo. Then

_
at Λ — Λ < —

The estimate w = w°[l 4- O(λ 1/2)] for λ[ — oo permits the left-hand side to be
replaced by the free Green's function (Q° — λ_i)~χ

ί x 0(l/λ_ί\ all of which is
o ( ί / λ _ ί ) for /L L J —oo, and comparison with the sum implies \_Δen(x)Y = 0
for every n ̂  0. Q = Q° is immediate from that.

Step 3 is to carry out the appraisal of /. Let Δx(λ) be the value of [w°_, w+] at x
and Gx

λ the Green's function for the operator Qx based upon the potential qx(y) =
y2 — I or q(y) according as y < x or not. Then Gx

λ(x,y)= — [zlx(A)]~1w°(x, λ)
w+(y,λ) for y > x, and the integral / of Step 2 is recognized as a sum of four pieces, of
which

/ = f r *( \ _ oo f dλ

and

are typical. The bracketed part of the first integrand is

00

GILqx - ί00] GΓ (x, x) = ί GA

x(x, y)Δq(y)G* (y, x)dy,
x

and so is controlled by

< V Q("-1 / 2)_0 ί Ar-ι/2 )=άι»-^r ( }

by the preliminary estimates e* = O(n~l/4} and A^ = In + O(^z"1/2) of Step 1. This
disposes of /1 = 0(JV ~1/2). The discussion of 72 is similar: The preliminary estimates
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provide the appraisals:

Λ^-Λ
and

so that 72 - 0(N~ί +). The proof is finished.

Behaviour of Norming Constants

The next item of business is to confirm that cn

+/c~ tends rapidly to 1 as n f c o .
This is the most difficult part.

Step 1. Let/Λ° be any solution of β°/=Λ/with CC °̂1 = L Then DUn*> e

n~\ =
enf®Aq, so In = §enf®Δq = c* — c ~ and, by the connection rule, it suffices to
prove that this integral vanishes rapidly as n ] oo. Now you may take

/π°(x) = n- 1 / 22B / 2(n!Γ 1/ 2e χ 2 / 2 J sin (2xy)e-*f dy,
o cos

the upper [lower] trigonometrical function being employed for even [odd] n, and
it is easy to see that

/n°(x)^0(π-3/V2/2; also, e2

n(x) = 0[x2n+ce-χ2/2~],

independently of \x \ ̂  1 and n, if c ̂  Aq.17 Let L = n1 / 6~ as before. The estimates
imply the rapid vanishing of the contribution to In = \enf®Aq from |x| ^ L. The
contribution from |x| < L is more subtle. To begin with, for |x| < L, Qh = λh has
two independent solutions of the form

h1 (x, λ) = A cos.,/! (x + L) + A" 1 / 2 J5 sin yi(χ + L)

Λ2(x, λ) = A sin^/λ(x + L) - A" 1/25cos^^ + L),

A and J5 being formal power series in λ~l determined by — 2λA + βx/ = qB,
2B' + A' - qA, and the values A = l,A'=Q9B = Q,B' = Qatx=-L. The error
involved in breaking off such a series is of the naively apparent order after multipli-
cation by Δq(x}. Now for |x < L, en is a superposition of hi and fo2 evaluated at
λ = 2n, of amplitude π~1/4, while/w° is a similar superposition of the corresponding
functions h° for βVof amplitude π~3/4, so that, up to rapidly vanishing stuff, In

is a sum of integrals §h.h°Δq over |x| < L, with coefficients of magnitude π"1 or

better. Terms involving sin cos, sin2 — 1/2, or cos2 — 1/2 are negligible as n | oo

16 The possibility of an exponential factor ea + bλ is obviated by the fact that Δx = z)°°[l + 0(1)] as λ; oo.
17 Σe " 2nt el(x) represents the elementary solution of dp/dt = - Qpon diagonal which is overestimated
by the product of etc and the free elementary solution on diagonal. The latter is [2π(l -ε2)]~1/2

exp[-x2(l -ε)(l + c)~x] with & = e'2t. Now take ε = l/2x2.
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in view of the fact that Aq is of class S, and the upshot is that In is controlled, up to
rapidly vanishing stuff, by

\[AA" + λ~ 1 BB^Δq = 2(A°B - AB°) - [A, 4°] - λ~ l [B, B°]
-L

and

J [4B° - AQB~\Δq = 2BBQ - [A, B°] - [X°, 5] + 2λ(AA° - 1),
-L

the right-hand sides being evaluated atλ = 2n and x = L. Now the key to the proof
is the

Lemma. The formal power series A — A° and B — B° evaluated at x = L vanish to
all orders in λ~l .

This will be proved in Steps 2 and 3 below. The rapid vanishing of In is easily
confirmed with its help. The first integral is plainly negligible, while the second
reduces to

C = 2B2 - 2[A, B] + 2λ(A2 - 1),

evaluated at x = L. But C is independent of x [C' = 0] and vanishes at x = — L so
C(L) = 0, too, completing the proof.

Step 2 is preparatory to the proof of the lemma. Let H0 = Jg, H1 = J[(l/2)#2],
H2 = J [(l/2)43 + (1/4) fe')2], ... , Hn - J/n[4], etc. be the usual KDV invariants.18

They have no meaning in the class Q, but the relative invariants19

do, and since the H's represent spectral information when they make sense, it is
not surprising that the J's vanish identically in Q. The proof employs the fact that
if p(t, x, y) is the elementary solution of dp/dt = — Qp, then Σe~λnt = j'p(ί, x, x),
so that J[p(ί, x, x) — p°(t, x, x)] vanishes identically. But this relative trace admits
the development20 (4πί) 1/2 [J0ί + J1 12 + etc.] for 1 10. The vanishing of Jn(n ^ 0)
is now plain.

Step 3 is the proof of the lemma. Introduce the discriminant of Q in the
interval |x| < L:D(λ) = hί+ λ~ 1/2h'2 evaluated at x = L. The logarithm of
D(λ) admits a development21 in powers 1/2 — n(n ̂  0) of /I ί — GO, in which the
coefficients may be expressed as short KDV invariants \L.Lln plus gradients of
long KDV invariants H. evaluated at x = ±L; similarly, the logarithm of
D(λ)/D°(λ) admits a development with (vanishing) relative invariants in place of
short invariants, plus rapidly vanishing contributions from x = ± L. The upshot
is that ^g[D(A)/D°(A)] vanishes rapidly as λ[ — oo. The proof of the lemma is
finished by comparison with the development

D(λ) = e2L^~λx[A- (2λ)~ !B+(- λ)~l/2(B + A/2}'} evaluated at x = L

18 McKean-Moerbeke [1975], for instance.
19 ll = ln[x2 - 1].
20 McKean-Moerbeke [1975] can serve as a model for the proof.
21 McKean-Moerbeke [1975].
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and its counterpart for D°(λ).

Proof of the surjection. Choose a potential q of class Q. The numbers tn = /gcπ

+/c~
vanish rapidly as n f oo and so may be used to form the tangent vector X = ΣtnXn .
The flow e~tx :0 < t ^ 1 moves q to some point g°eQ, reducing all the numbers
c*/c~ to unity. But q° can only be the origin qQ(χ) = x2 - 1, by uniqueness, and
surjectivity follows by reversing the flow: q — exq°. The proof is finished.

4. Canonically Conjugate Variables

The region of definition of the parameters tn(n ^0) is extended from Q into the
ambient space by the rule

It is to be proved that the variables 2λi and t. are canonically conjugate relative to the
bracket [F, G] = JVFDVG. The vanishing of [/l,/l.] was already noted; also
[ί., 2/ί.] = 1 or 0 according to whether i=j or not since the flow dq/dt = X.q =
[g, 2/1.] advances ί. at speed 1 if i =j and not at all if i ^7. The only point still at
issue is the vanishing of [ί., tj~\ .

Proof. The gradient of tn is found to be22 Vtn = (A)~1[w'+w_ — w'_w+] evalua-
ted atλ = λn. This expression is of the form enfn with Qfn = λn fn since en is propor-
tional to e~~tn/2w_ = etn/2w+, while h = etn/2w+ — e~tn/2w_ satisfies Qh' =
λh' + h and h = 0 for λ = λn also, [/π , ej = 1 is easily proved finally, Vίn = 0(x ~ *)
at ± oo since en(x) behaves like χne~χ2/2 and/n(x) like x~n~ΐeχ2/2. Now it is plain
that [ίp ί ] exists. It vanishes automatically if i — j, while if i ̂  j, the same follows
from the identity Kh = 2λDh for h = enfn9λ = λn, and K = qD + Dq- (1/2)D3 :
in detail, 2λ.[t.9 ίj - ^h.Dh. = ^hίKhj - - fΛ^XΛ. - - 2λί$hjDhi = 2λi$hiDhj =
2λ.[t.9 1 .]. The only step needing clarification is that from lh{Kh. to — Ih.Kh^ This
is dealt with by noting ! = [/„, ej ̂  - 2xen/π, so that 2^/1.̂ . ~ 2x2/z./ι7. - 1/2 and
the contributions from + 'oo in the necessary partial integration cancel out.

Amplification 1. The formula Vtn = enfn leads to a direct evaluation of[ti,2λj} :
ifi ^ 7, the bracket is proportional to

and so vanishes, while ifi —7, it is

A More Global View

Now the spectrum λn(n^0) and the logarithmic norming constants tn(n^0)
should provide a complete set of canonically conjugate coordinates not just

22 w _ = etnw+ at λ — λn. The gradient of this relation is now taken and combined with the following
facts: a) dw±(x)/dq(y) vanishes at x = y, b) Vλn = e*,c) en= ce~tn/2w_ = cetn/2w+, d) c2 = - l/Δ'(λn).
The spot signifies differentiation with regard to λ.
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in Q = Q[x2 — 1] but in an appropriate ambient space, x2 — 1 + S, say, or wider,
i.e., the general spectral class Q obtained by fixing λn(n ^ 0) not at λn [x2 — 1] = 2n,
but at some other values with realistic comportment as n f oo, should meet the
class P obtained by a similar fixing of tn(n ^ 0) in a single point; moreover, these
Q's and P's should be the leaves of transversal foliations of the ambient space.
The purpose of the present section is to examine the geometry of this picture in the
special leaf Q = Q [x2 — 1]. The situation is outlined in the next three articles.

Completeness

The directions Vλ. = ef are normal to the leaf Q at q, while the directions dq/dt. =
Dβj are tangent to it, as expressed by the first canonical identity [/t, λ.~\ = 0, and
it is a source of satisfaction that these directions together span L2 so that no direction
is left unclassified. This is termed completeness. The same holds for the leaf P at
q : Vt. = e.f. is normal, dq/dλj = De.f. is tangent in view of the third canonical
identity [ίί,ίj.]=0, and the same type of completeness obtains. Contrariwise,

Vλ. and DVtj [DVλί and Vt. ] need not span: for example, at the origin q°(x) = x2 — 1,
they span only the even [odd] functions.

Transversality

The second canonical identity

[t,, 2A.] = Ί.\

implies that the normal spaces to Q and P meet only in the null function in view of
what went before, and it is a further source of satisfaction to find that these two
spaces together span L2, expressing a transversality of Q and P; the same holds for
the tangent spaces, confirming the picture of Fig. 2.

Independence

The second canonical identity also implies a stringent independence of normal and
tangent directions. For example, if the normal directions Vλn = e* are divided into
two classes, then nothing in the span of the first class lies in the span of the second, the
point being that anything in the intersection is simultaneously perpendicular to
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Def and to De.fi an<^ *s nu^? by completeness and transversality. This type of
independence indicates that Q is a smooth submanifold of the ambient space;
naturally, the same holds for P.

Proof. The rest of this section is occupied by the proof of completeness and
transversality.

Step 1. Fix a complex number λ outside the spectrum, let G = G; (x, y) be the
Green function (Q — λ)'1, and introduce the operator

H :/-> J( ± 1) x [G2(x, y) - G(x, x)G(y, y ) ] f ( y ) d y ,

the -f sign being employed if y > x and the — sign otherwise. The present step
contains appraisals of H required below. G(x, x) ̂ c1(x2 - λ)~1/2 for λ < 0 by
routine estimation23. This provides the preliminary bound:

<2max

which implies

I I rrf 1 1 2 <
||M/ II 2 -

"X Γ "J7 i y II 2 _ .2^.2 II f II 2

- 2

Thus, H is a bounded operator on L2: in particular, c2(λ) — 0(N2) on circles of odd
radius 2N + 1, so that ||ίf||2 = 0(N2) there. Better information is available
for λ < 0: 1 if || 2 = O(λ~ 1). Now H is inverted by K - 2/1D with K = qD + Dq-
(1/2)Z)3, as a routine computation shows. This will lead to the bound \DH\ 2 = O(N3)
on odd circles. To begin with, (K - 2λD)H = 1 implies DHf = (L- 2λ)~ x(l - q'H)
f + g with L = — (1/2)D2 -f 2q and Lg = 2λg. Next, it is necessary to observe that
the distant spectrum of L approximates that of — (1/2)D2 -f 2(x2 — 1), namely
4n(n^0). It follows that 0 = 0: indeed, gΉ/eL00 by the preliminary bound
and H/eL2, while any non-vanishing solution of Lg = 2λg is exponentially
large if 2λ is not in the spectrum of L and could only unbalance the identity for
DHf. The upshot is that DH^(L- 2/1) ~ x (1 - q'H) plain. Now (L - 2/1) - 1 and G
have a similar behaviour for \λ\ = 2N + 1, so the idea of the proof will be ade-
quately conveyed by confirming || G(x2 -f- lγ/2H \\2 = 0(N3) on odd circles. The
preliminary bound implies ||(x2 -f l ) ί / 2 H f \ \ ^ = 0(JV2)||/||2, so it suffices to
overestimate || Gh ||2 by 0(N) \\ h j^ for /zeL2 n L°°. That is easy:

G0. ! being the free Green's function for ̂ °(χ) = x2 - 1 and λ = - 1. But/- G0. 1 1

23 G(X,JC)^ jΛ c ί[2π(l-e 2)]" 1 / 2exp[-x 2(l-ε)(l+ε)~ 1] at with λ < 0, c ^Aq, and ε = e'
o
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looks like x~2 far out since it solves (Q° + !)/= 1 and vanishes at ± oo. The proof
is finished.

Step 2. e2 and e.f. span L2. The residue of H at λ = In is Rn = e2

n (x) enfn — enfn (x)
£2, and the fact that || H\\2 = 0(N2) on odd circles justifies the expansion
H3 = d3H/dλ3 = 6Σ(λn — λ)~4Rn off spectrum, by a self-evident application of the
Cauchy integral for H3. Now let/eL2 be perpendicular to ef and e.f.. Then
H3f= 0 and the vanishing of || H \\ 2 at λ = — GO implies that Hf= 0, too, so that
/= (K - 2λD)Hf= 0, as well.

Step 3. De2 and De.f. span L2. The proof is similar. The extra technicalities
required will be found in Step 4.

Step 4. ef and Όe] span L2. The fact that \\DH\\ 2 = 0(N3) on odd circles
justifies the expansion DH4 = Dd4H/dλ4 = 24Σ(λn - λ)~5DRn. Let /eL2 be
perpendicular to e2(n ^ 0). Then Rnfis a multiple of e2

n and DH4f belongs to the
span of De2(n ^ 0). The same follows for DHf, and the fact that || 2λDHf + f\\ =
0(1) as λ[ — oo, finishes the proof. This final point requires justification it makes
use of the identity DH = (L~ 2λ)~ 1 (1 - q'H) of Step 1. || 2λ(L - 2λ)~ V + / 1|2
= 0(1) is plain, so it suffices to prove [| (L — 2λ)~1q'Hf\\2 = o(λ~l}\ as in Step 1,
the idea will be adequately conveyed by proving ||G(x2 + l)1/2ίΓ/||2 = o(λ~l).
The bound G(x, x) ̂ c,(x2 - λ)"1 for λ < 0 implies \Hf\ ^c2(x2 - /ί)~1 / 2

\(y2 - λΓ1/2\f\dy = o\λ~W(x2 - A)'1/2], so

But || G(x2 -f 1) || ̂  = O(l), as may be confirmed directly for G° and carries over to G
itself, while

I I G(x2 — λ) 1 1 | 3 — §dx§G(x,y)(y2 — λ) ldy—0(λ 1){(y2 — λ) 1dλ = 0(λ 3/2)

by exchange of integrals. The upshot is the necessary bound || G(x2 + l)1/2#/||2 =
o(λ~l) with nothing much to spare.

Step 5. eifί and De.f. span L2. The proof is similar. The discussion is finished.

5. Transversal Flows

The present section contains a brief discussion of the transversal flows dq/dt = Ynq
produced by the vector fields Ύn: q -> DVtn: it is desired to move the nΐh eigenvalue
λn at speed 1 keeping the rest of the spectrum and all of the norming constants
fixed, and there is a simple recipe for that24.

Individual Flows

Let n = 0 and fix q°. The ground state e® is positive, so q~ = q° — 2D2^ge® makes
sense, and it turns out that the corresponding operator Q~ has a) the same spectrum

24 Deift-Trubowitz [1979] may be consulted for details omitted here.
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as Q° but with λ° excised, b) eigenfunctions e~ = (λ°n - ^Γ^G^Γ1^ e°]
(n ^ 1), and c) the same norming constants, i.e., e~(x)/e~( — x) ~ e°(x)/e°( — x) as
x f oo for n ^ 1. The eigenvalue λ® is now restored to a different place λ* < λ° by a
similar recipe: Q~ has an eigenfunction f~ with eigenvalue λ* which is of one
signature (+ ) and satisfies f~ (x)//0~ ( — x) ~ eto as x f oo , and it turns out that the
new operator Q+ with potential q+ = q~ -2D2/g/0~ has a) spectrum λ+ <
λ^<λ°2< etc., b) eigenfunctions

and c) the same norming constants t^ = £° as β° moreover, it is easy to check that
the map q° -» q+ effects the flow dq/dt = DVt0 with parameter t = λ+ - λ%. The
auxiliary function f~ is easily computed from the eigenfunctions of Q° : it is
proportional to (e°)~ 1 [e% , /°] with

/o = μ+ - λg)-1 x |V°>2w° - <rto/V. evaluated at λ = λ+].

The flow now takes the simple form Δq = - 2I>Vg[>°, /°].

Multiple Flows

The recipe is easily extended to multiple flows: several eigenvalues Λ,?(i ίgn) are
excised in their natural order by successive applications of the map g° -» q~ and
put back in the opposite order at new places λ* < λ+ . . . < λ* to the left of λ®+ 1 by
use of the map q~ -^ q + The result may be put in the simple form:

with

ff = (1+ - λ0^1 x [^/2w°+ - β-ίί/2w°. evaluated at λ = 1+],

[e°, . . . ,/n°] being the Wronskian determinant. It is a pleasant feature of the recipe
that if λf= λf for i =£j, then also [e?,/?] - 1 for i φj, so that the big Wronskian
simplifies to [ °̂,/7°], and the reduced formula Aq= — 2D2^g[e?,/?] expresses
the jth individual flow in the same manner as for j = 0. The discussion of the case
n = oo is not so simple and will not be entered upon.

Charge

To be candid, the matter is not quite so simple, even for n < oo: starting from
the origin, the flow produces in q(x) novel terms c2(± co)χ~2 + c3( ± oo)χ~3 +
etc. near + GO and so leads out of the familiar ambient space x2 — 1 4- S: for
example, c2(± oo) - ±(l/2)Σ[λ+ - Λ,°] for any q°ex2 - 1 + S. This only means
that the ambient space must be enlarged to accommodate such behaviour; it
seems reasonable to admit terms c0( ± oo) -f cx( + oo)*"1 as well. The number
CQ( + °°) ~ CQ( — °°) is called the charge of q. The spectral interpretation of c2

should have a counterpart for c0 since it cannot be moved by any isospectral flow in
view of the rapid vanishing oϊDe2 at + oo. The subject merits further investigation.
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Example
The proposed enlargement of the ambient space produces a wider spectral class
Q[x2 — 1]. To see this requires an example. Let q°(x) = x2 — 1 and, in q(x) = etx qQ

= x 2 - ! - 2£>Vg[l + (el - l)ί*(έφ2], make 1 1 + oo or I -co. The corres-
ponding limits q + (x) and q ~ (x) = q + ( — x) are

q + (χ) = χ2 - 1 -2D2 ](e°0)
2 = x2 - 1 + o(l)at -oo =x2 + 4+ o(l)at + oo,

X

X

q- (x) = x2-!- 2D2 J (el)2 = x2 + 3 + 0(l)at - oo - x2 - 1 + 0(1) at + oo .
00

The behaviour at + oo shows that q+ and q~ have escaped from x2 — 1 + S;
more drastically, the eigenfunction

tends to 0 as it co or j — oo. The explanation is that the former ground state 0 is
not in the spectrum ofQ~ or β + , the remaining eigenfunctions

oo Γ oo ~~|— 1

e:=*°-^κ<H f ( eo ) 2

X \- X J

of index n^l already forming a full set.
Proof. Let/6 L2 be perpendicular to e* (n g: 1), say. Then

for n ̂  0, inclusive, so that

x Γ oc, Ί
f/e° = f fe°/ f (e°}2

J I ̂ o J \J eo/ J ^ CM r
-oo L J

Γoo Ί-l

This leads to the contradictory evaluation of/as a multiple of (e^)2 J (e°)2

x Γ °° Ί
which is noί in L2, provided h = e® j /^o/ί (βo)2 belongs to L2. The latter

— oo L J

point requires a speck of ingenuity.
The map/-> h is dual to the map
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and the latter is bounded: indeed, with e in place of e% for simplicity,

-1

if /vanishes near + oo, and so also in general.

The eigenvalue λ° may now be restored to its original position by the recipe used
for the individual flow of index 0 : A° lies below the spectrum of β + , so that the
latter has a positive eigenfunction/0

+, and the new operator Q with potential
q = q+ — 2DVg/0

+ has spectrum λn = λ®(n ^ 0), i.e., it belongs to the spectral
class Q[x2 - 1]. But this is not the old but some enlarged class: /g/0

+ ~ x2/2 at
± 00, SO

= x2- 1 + 0- 2+

in particular, q has charge 4.

at + oo

at - oo

6. Theta Sums

The so-called theta sum Θx(t0,t19t2, etc.) played a central role. The name is justified
by recollecting25 what happens to the classical Riemann theta function of a non-
singular-elliptic curve

Fig. 3.

25 McKean [1979] gives details.
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of genus g as the intervals [Λ,Γ, λ+] are pinched to single points A . ( z = 0, ... , g).
The curve becomes singular as in Fig. 3 \_g = 5], falling apart into two sheets
labelled plus and minus', simultaneously, the quadratic form figuring in the theta
sum becomes huge, and the principal part of the theta function reduces to one of a
number of finite sums θk indexed by k = 0 , . . . , # , corresponding to a breaking up
of the Jacobi variety J of K into g + 1 connected pieces; this is caused by the
breaking up of the space of divisors26 p1 ? ... , pg of degree g into g + 1 pieces
according to the number 0 ̂  k ̂  g of points on the upper sheet27. The principal
parts look like

in which the constant c depends upon k and xeJ is expressed by means of integrals
of differentials of the first kind [DFK] summed over the typical divisor having k
points on the upper sheet, the sums being construed modulo periods. The forms
ω.= [(λ-λjΓ

1-(λ-λ0Γ
1']dλ(j=l9...9g) serve as a basis of DFK28 and

Pi

Xj = Σ siβn Pί x ί ωj (J = !> ••• >9\
i= I oo

in which sign p i s + 1 [ — 1] on the upper [lower] sheet and, in the z th integral, oo
is taken on the same sheet as p.. The same type of geometrical interpretation is
available for the present theta sums: There is a singular curve

of infinite genus, some kind of Jacobi variety J broken up into uncountably many
pieces indexed by the real number x, and a system of theta sums Θχ9 one to each
piece. But what is the divisor p0 , p{ , p2 , . . . producing the argument ί0 , ί1 , t2 , . . .
of the sum? and are they related in the classical way via some natural class
DFK? The answers are not far off. Divide the line into two pieces by a cut at x and
let <2~~[β + ] be the operator Q restricted to functions on the half-line y ̂  x\_y ^ x]
vanishing at x. Q~ and Q+ define side spectra λ^(n > 0), and the divisor is simply
the points p = (λπ

+, -I- 1) on the upper sheet of K and p — (λ~, — 1) on the lower sheet.
Now regard ωn = (λ — λn)~ ldλ(n ^ 0) as a differential of the first kind. Formally,

P 00 λjt J1} 00

Σ R = Σ ίπ = 'βΠ

provided the side spectra are disjoint from the fixed spectrum λn = 2n. But λ*(k ^ 0)
are the roots of w±(x, λ) = 0, while e~ ί nw+ (x, λ) = w_ (x,A) =/= 0 for λ = λn, so that

26 p is the typical point [/l(ρ), Xp)] of K.
27 pf = λ. is disallowed.
28 The presence of poles looks odd but their residues are really vestigial periods.
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Amplification 1. The side spectra move with x as in Fig. 4: For x = — oo, the left-
hand spectrum is absent and λ* = 2n(n^ 0). These points move steadily to the
right as x comes in from — oo simultaneously, the left-hand spectrum enters
from -f oo, crossing the right-hand spectrum only at the points 2,4,6, etc. and
occupying, for x = oo, the place λ~ = 2n(n^ 0), the right-hand spectrum having
disappeared. The rule that the side spectra cross only at 2,4, 6, etc. follows from the
fact that if, e.g., λ* = 6 = λ~, then e3(x) = 0, so that e3 is also an eigenfunction of
β~, i.e., 6 is a left-hand eigenvalue.

Appendix: Numerical Results

The following pictures of q(x) = x2 — 1 — 2D2^gθ were kindly made for us by
O. McBryan by numerical evaluation of θ for five active parameters f .(0 ^j ^ 4);
their values are indicated under each figure. Figures 5-7 display an unexpected
progressively deep well. This appears to contradict the fact that as ί = ί01 oo in
β ίxo(x2 — 1) = q(χ\ the final potential q + (x) has spectrum λ^ = 2n(n ̂  1) higher
than that of q°(x) = x2 — 1: actually, the well moves off to + oo and disappears at
t = oo.
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Fig. 5. (7,0,0,0,0)

Fig. 6. (10, 0, 0, 0, 0)
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Fig. 7. (20, 0, 0, 0, 0)

Fig. 8. (7, 7, 7, 0, 0)
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Fig. 9. (7, - 7, 7, 0, 0)

Fig. 10. (7, 7, 7, 7, 7)
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Fig. 11. (7, -7,7,- 7,7)
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