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Absence of Discrete Spectrum in Highly Negative Ions*

Mary Beth Ruskai1

The Rockefeller University, New York, NY 10021 USA

Abstract. Let HN be the Hamiltonian for the Coulomb system consisting of N
particles of like charge in the field of a fixed point charge Z. We show that if the
particles are bosons, then HN has no discrete spectrum when N^N0= cZ2 for
some constant c. If the particles are fermions, then HN is bounded below
uniformly in N. These results can be extended to molecules and to other power
law potentials.

I. Introduction

Let HN be the Hamiltonian

HN(W, Z) = - £ Aj - £ Zrj ' + £ HV (la)
7=1 7=1 j<k

When W=l,HN is the Hamiltonian of N charged particles in the field of an
infinitely heavy nucleus of charge Z. If these particles are fermions and Z ^ N -f 1,
so that HN(l,Z) is the Hamiltonian for a negative ion, it is known [1-3,18] that
HN has only finitely many bound states. However, very little is known about the
precise number of bound states. When N = 2, Hill [4,5] has shown that #2(1,1)
which is the Hamiltonian for H~, has precisely one bound state in the sector of
natural parity; Grosse and Pittner [6] have shown that H~ has precisely three
degenerate bound states in the sector of unnatural parity. Hill's results can be
extended to show that H ~ ~ has no bound states [7], but Hill's techniques are
unlikely to be suitable for N much larger than 3 or 4. All other methods known
for estimating the number of bound states of multi-particle systems are either very
specialized or very weak [8-10].

In this paper we show that for a system of N charged bosons, HN(W9Z) has no
discrete spectrum when N is sufficiently large. Then the only possible bound states
are eigenvalues imbedded in the continuum. Because our method of proof uses
smoothing functions which need not leave a given symmetry subspace invariant,
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we do not prove absence of bound states in each symmetry subspace, nor do we
prove absence of discrete spectrum in the antisymmetric subspace corresponding
to fermions. However, we believe that fermions also have no discrete spectrum for
large N and discuss the extent to which our proof is valid for fermions in Sect. III.
Furthermore, we can show that the Hamiltonian HN is bounded below uniformly
in N for fermions. Thus, at worst, the fermion binding energy can be made arbitrarily
weak by making N sufficiently large.

For convenience we scale HN(W,Z) and consider instead

HN(ω) = - £ A. - £ rj1 + Σ ω'jiΛ (lb)

where ω = WZ~l. Let @(HN) be a core for HN(ω) with the following property:
Whenever F is a bounded C2 function and ψ is in @(HN), then FΨ is also in
@(HN). Note that @(HN) is invariant under multiplication by smoothing functions,
but the functions F need not have any properties which guarantee that a particular
symmetry subspace of @(HN) is also invariant. In particular, FΨ need not have
the same permutational symmetry as Ψ. We now define

εN = inf
Ψm@

one can similarly define ε^ and ε^ if the inίϊmum is taken over ψ in the symmetric
and antisymmetric subspaces ̂ + and $>~ respectively. We can now state our main
result as:

Theorem 1. For every fixed ω, there is an NQ such that N ̂  NQ implies εN = εN_l.
We will prove Theorem 1 by showing that for sufficiently large N

\ Ψ N H N ( ω ) Ψ N d x > ε N _ ί \ \ Ψ \ \ 2 (3)

for all ψ in 9>(HN\ This implies that εN ^ εN_ lm Since εN^εN_l always, we conclude
that eN = £ N _ 1 . Furthermore, it follows from the Hunziker-van Winter-Zhislin
(HVZ) theorem [11-14] that the essential spectrum of HN(ω) begins at εN_^
Therefore HN(ω) has discrete spectrum if and only if εN < εN _ 1, so that our theorem
implies that HN(ω) has no discrete spectrum for N ̂  N0. Since (3) is a strict
inequality, we can also conclude that εN is not an eigenvalue oϊHN(ω) for sufficiently
large N. Our method of proof will also show that N0 ^ cZ2 for some constant c.

We emphasize again that our proof requires smoothing functions F which do
not leave the symmetric and antisymmetric domains S>± invariant. Thus the above
statements are valid only if we impose no permutational symmetry restrictions on
Ψ. However, we can extend Theorem 1 and the discussion in the preceding
paragraph to bosons as follows: Suppose ε^ = εN_ 1 and εN_ί is not an eigenvalue
of HN_ΐ(ω}. Then the HVZ theorem implies that εN_1 =&N_2. Therefore, there is
an N' so that εN = εN_λ = ... =εN, and εN, is an eigenvalue of HN,(ω). It is well
known [14] that the ground state of HN,(ω) is unique and positive, which implies
that the ground state is symmetric. Therefore εN,=ε^.. Now ε^^ε^, and

ZN =£N = εNf = εN'> so tnat εN = 8N f°r aH N > N'. Thus we conclude, as above,
that for some constant c:
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a) β + = ε J ί _ 1 = β J ί 0 f o r N ^ N 0 ,

b) HN(ω) has no discrete spectrum in the symmetric subspace Q)+ for N ̂  N0,

c) ε^ is not an eigenvalue of HN(ω) for N ̂  cZ2, and

d) N0^cZ2.

Theorem 1 implies that εN = εNo for all N ̂  Λ/0, so that ε~ ^ ε^ ̂  εNo. Thus
there is a constant /I such that

BN^-A, (4)

i.e. the fermion ground state energy is bounded uniformly in N. This means that
if Theorem 1 does not hold for fermions, then, at worst, ε^_ l — ε^ can be made
arbitrarily small.

Our results extend to more general Hamiltonians than (1). In particular,
Theorem 1 holds for molecules and for Hamiltonians in which potentials of the
form 1/r are replaced by l/ry where 0 < y < 2. For simplicity we give a detailed
proof of Theorem 1 in Sect. II only for the Hamiltonian given by (1). Generalizations
are discussed in Sect. III.

We will use the following notation. Let X = {x = ( x 1 . . . X N ) } where xj = (rj?α,-)
denotes the space and (if necessary) spin coordinates, α,-, of the/h particle. Integrals
of the form Jdx include both integration over U3N and summation over spin; and
\dxk means integration over coordinates of all particles except the /cth. As usual
r^ xh I and rjh = 11\ — rj. We now fix p ^ 2 and define

•= Σ
* 7 = 1

Ωk(B) = {x:\?k\p<Brk}9

and

Γk(B) = Ωk(B) - Ω^- j = {x: 1 < rkB\fk\~1 < 2}.

In what follows, p is fixed and the dependence of Ωk(B) and Γk(B) on p is suppressed.
The following properties of Ωk(B) are extremely useful and easy to prove:

a) x in Ωk(B)=*rjk<(B+ l)rk

b) x in Ωk(B)^>rk

l <(BP+ l ) ί / p \ r \ ~ l

We can now sketch the main idea of our proof. In the cone ΩN(B) one has by
property (a) above

-r^+Σ ωrΓ^^-r- i+ωί/V-lK^+l)- 1 ^ 1 ^^ 1 , (5)
7 = 2

where λ = ω(N — i)(B + I)"1 — 1 can be made positive by choosing ω or N
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sufficiently large. It is then tempting to say

lΨdx^εN_ί J \Ψ\2dx.
Ω N ( B ) Ω N ( B ) Ω N ( B )

However, the second inequality holds only when ψ = 0 on dΩN(B) which is not
true in general. Therefore, we will multiply ψ by a smoothing function G so that
Gψ = 0 on X-ΩN(B). This will, of course, introduce an error in the kinetic energy,
but we will show that this can be bounded outside the region {|x|: |r |p<R} for
sufficiently large R. We will further show that for B ~ Nί/p the regions Ωk(B)
(k = 1 . . . N) cover X. Thus, for sufficiently large N and R, the question of whether

or not HN has any discrete spectrum is determined entirely by f ΨHNΨdx. We
| r | P <Λ

will show that R ~ N3/p and that this is sufficient to show that f ΨHNΨdx > 0
\r\P<R

for sufficiently large N.
The absence of discrete spectrum is therefore a consequence of the fact that

the Coulomb repulsion ]Γ ωr^1 dominates the attraction — J//"1 when TV
j<k _ j

is large. Screening occurs when particles are far from the nucleus. The Coulomb
repulsion limits the number of particles which can be within a ball of fixed radius.
Therefore, when N is large, the Coulomb repulsion forces particles away from the
nucleus and into a region where screening gives an effective repulsive potential.
This intuitive argument is independent of permutational symmetry and we expect
our results to hold for both bosons and fermions. However we have only succeeded
in proving that ε^^εN_l^-A; we have not excluded the possibility that
e^_ t > e~ ^£N_ί. Further discussion of the fermion problem is given in
Sect. III.

Results similar to Lemmas 2-6 have been obtained by Uchiyama [1] for N = 2
and ω > 1, and by Zhislin [2] for N — 1 > Z = 1/ω using p = 2. However, Zhislin's
R grows exponentially with N and his proofs are considerably more complicated.

II. Proof

All of the smoothing functions we need will be defined in terms of a fixed function
#:(R+->[R such that

i) g has a continuous second derivative,
ii) 0(ί) = 0 i f f £ l ,

iii) 0 ( t ) = l i f ί^2,
iv) 0 < g(t) < 1 if 1 < ί < 2, and
v) M = sup|0'(f)|2(l-0(ί)2Γ1<oo.

ί
In order that (v) be satisfied it is sufficient that g ~ exp( - (2 - t)n) near t = 2.

We now give two Lemmas which will allow us to estimate the error in the
kinetic energy which comes from our smoothing functions.

Lemma 2. Fix B and k and let F be any positive function in C2(X) for which
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jF = 0 on X - Γk for all j = 1 . . . N. Then

Σ
7 = 1

$\Ψ\2FΔjFdx. (6)

". Let Vk = θ V, Then
Λ . i J

(7)

By Green's formula the last term on the right in (7) can be written as:

rkB/2<\rk\p<rkB Γk(B)

Substituting this in (7) gives

ί\^k(F

Similarly, one can show

(8)

= JF2|V^|2^ - $\Ψ\2FAkFdx. (9)

Combining (8) and (9) gives (6).
We now introduce the smoothing functions Gk(x1...xN) = g(rhB\fk\-ί)9 where

g is defined above.

Lemma 3. Fix k and B. Then for ail Ψ in @(HN

}ψdX= Σ $\Vj(Gkψ)\2dχ+

(10)

Proof. Both Gk and ^/l — G2 satisfy the hypotheses of Lemma 2. Therefore

= Σ S\Vj(

The theorem then follows from the fact that for all j

GkΛjGk + Jl-GlΔ^l-Gl = - \VjGk\
2(l - G2)- '.

We are now ready to estimate EN(Ψ} = \ΨHNΨdx. We will let

(11)
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j^k

and note that

$ Ψ H k

N _ ι Ψ d x ^ S N _ , | | Ψ \ \ 2 for all ψ in

Lemma 4. Fix p ̂  2 and B ̂  2. ΓΛen for all Ψ in

where λ = ω(N- l)(B 4-1)"1 - 1.

Proof. It follows from Lemma 3 that

EN(Ψ) = EN(GkΨ) + EN(Jl-G2Ψ) -

Now, using (12), one sees easily that

7 = 1

(12)

(13)

(14)

(15)

(16)

dx. (17)

Since GkΨ = 0 for x in X — Ωk(B\ the last term on the right in (17) becomes

ί \Gk\
2\Ψ\2(-r^+ Σωrj

Ωk(B) \ j+k

where we proceed first as in (5) and then use the fact that rk < \r\p. If we combine
this with (13) applied to GkΨ, (17) becomes

\ 2 \ r \ ~ l d x . (18)

We now need to estimate £ $\Ψ\2\VjGk\
2(l - GlΓ^dx. We first note that

jGk i= 0 => 1 < rkB\fk\- 1 < 2. Then for j

kp
* | - U 2 p - 2
k\p )

-1\ |2

P 1-2
fclp

so that for all p ;> 2

Similarly,

Combining these estimates and applying property (c) of Ωk(B/2\ one finds that for
all B > 2
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N

Σ iv/
j = l

1 ̂  M(B2 + 4)|rk|;
2 ̂ ι;2

(19)

Substituting (18) and (19) in (16) gives (14).
We will prove our main theorem by repeated application of Lemma 4. To

sketch the idea we consider N = 3. Applying Lemma 4 twice one gets

As we will see below, for suitable choices of J3,

E3(JT^G*Jl - G\ Ψ) £ ε2 | | V
7! - G2

so that

G2(l - G?

G 2<F||

E3(Ψ) ^ s2\\Ψ\\2 + $\Ψ\2(λ\r\p - 8MB2)\r\-2dx. (20)

We need to generalize this to arbitrary JV and to find conditions under which the
last term can be made positive. Since λ\r\p — 8MJ32 > 0 only for large |r|p we will
also need to smooth around {x:|ήp ̂  R] for a suitable choice of R.

Lemma 5. Fix p ̂  2 and let B = 21 + llp(N - l ) l / p . Then for all Ψ in 0,

λ\r\p-2^2^M(N~l)B^^ (21)

where λ = ω(N- ΐ)(B + 1)~ x - 1.

Proof. Let Ψl = Ψ, Ψk+ ί - ^/T^GJΨk(k = 1 . . . N - 1). Then by repeated applica-
tion of Lemma 4

h= 1

*

Now ^+ 1^0->G,^l^r/ c5|f/ c |;
1<2, and ΨN

whenever ΨN ^ 0 we have

rPkβP ^ 2

p Σ rj (fe = 1 -

Adding these N — 1 inequalities gives

- 1).

(22)

for all k^N. Thus,

(23)

so that

r£ ̂  [(β/2)" - (N - 2)](N - l)-1!^!?-

Now choose B = 2(2(N - l))1/p. Then N ̂  2 implies β > 2 so that

Np
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( - N~1 - \Thus ί — r^-f Σ ωrjN^ ^λr^1 whenever ΨN^Q. Then, using (12) and

(13) as in the proof of Lemma 4, one finds

Substituting (24) in (22) and using

J V - l

one finds

Remark. Let ^ = 21 + 2/pM(N- IJB2^"1. If Ψ = 0 whenever Ir^^, then
Lemma 5 implies that EN(Ψ) ^ εN_ 1 \\ Ψ\\2. Since B < B + 1 <; 3£/2

ω2 - x ~ 1/ί?(JV - I)1 -Vp>λ^ω3- l2~llp(N - I)1 ~ 1/p - 1, (25)

so that when N is large λ>(ω/5)(N - l)1'1^ and Rα < 40 24/PM(JV - l)3^"1.

Lemma 6. For ^i ery /ϊxeJ ω there are constants Nω and cω such that for every
N^Nω and for every Ψ in @(HN) there is a Ψ0 in @(HN) such that

a) Ψ0 = 0 whenever r ̂  2R where (2/5)cω(N - l)3/p < R ̂  cω(N - l)3/p, and

b) E N ( Ψ ) ^ s N _ l ( \ \ Ψ \ \ 2 - \ \ Ψ 0 \ \ 2 ) + lΨ0HN(ω/2)ΨQdx. (26)

~ N

Proof. Let G0(x) = g(\r\pR'1) and V = 0 Vr Then proceeding as in the proofs
j=ι

of Lemmas 2 and 3 one can show that

and similarly for ^/l — G2,. Thus

N N

— V (ΨA Ψdv — V f l V (G Ψ\\2dv +LJ jiΆjfux— ^ J I V j W o - * / ! αΛ ̂

Σ ί |V jG 0 | 2(l-G 2Γ 1l«Ί 2<ίx. (27)

Since I V j G o l ^ Λ - ^ - M

Let ¥'0 = V/1-G^¥' and Ϊ/

1 = G0'F. Then ϊ/

0?ί:0=>|r|p<2JR and
|r|p > K. Using (27) and then applying Lemma 5 to ψί one finds

2 ί \Ψ\2dx
R<\r\p<2R

$Ψ0HN(ω)Ψ0dx-MR-2 j \ψ\2dx
R < | ι ] p <2R
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+ \Ψ0HN(ω/2)Ψ0dx

R<\r\p <2R L i < f c J

Choose

R = 22 + 2/pM(N-l)B2λ~1 with B = 21 + 1/P(N - l ) 1 / p . (29)

Since ψί=0 when \r\p <R, (29) implies

f l^ιl2Mp~2(k(P>l/2 - 21+2/pM(N - i)B2)dx > 0. (30)

Now use (25) to choose Nω so that N^Nω implies

Then ωN(N - l)/4 > λ for all N ̂  Nω9 so that the last term on the right in (28) is
bounded below by

J
R<\r\p<2R

£ J
R<\r\p<2R

f
t f < | r | p<2K

J l lF|2A4-1^-1[l-(22 + 4/ί7(N-l)1 + 2/p)-1]dx>0. (31)
Λ < | » | p < 2 Λ

Thus N^Nω implies

EN(Ψ) ^ 8N _ ! II ̂  || 2 + J Ψ0HN(ω/2)Ψ0dx.

Since l^l 2 = I^J2 + IfJ2, this gives (26). To complete the proof we note that (25),
and (29) imply that for N^Nω

This gives (a) if cω = &0-24/pMω~1.

Proof of Theorem 1 . By Lemma 6, if suffices to show that

J Ψ0HN(ω/2)Ψ0dx^εN^\\ΨΌ\\2

9

\r\P<2R

N

where HN(ω/2) = //^ + 2 Σ ωrjΐ J' ̂ N = ~ Σ ^j + rl^ and K is βiven

j<k j = l

by (29). It is well-known that H0 ̂  -JV/4 and, as before, \r\p < 2R=>rjk <4R.
Therefore,

|r |p<2K

'N
^jV _ l)1"3^] l l^o ||2, (33)

16 |L ' ' ω
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where the last inequality follows from (32) for N ̂  Nω. When p > 3, (33) can be
made arbitrarily large by choosing N sufficiently large. Let p = 4 and choose
N0 ^ Nω so that (N0/16)[ωc~ \N - 1)1/4 - 4] > εN__ I B Then by Lemma 6

III. Remarks and Generalization

A Dependence of N0 on Z

We consider the case W= 1 so that ω = Z~ ί. By the remark following Lemma 5,
it follows that the Nω of Lemma 6 grows no worse than Zplp~ 1. In fact (25) implies
(Nω - 1) ̂  [15/(5 2~1/p - 3)]p/p-1 Z^'1. Since p can be chosen arbitrarily large,
we find Nω < 8Z + 1. Thus, we conclude that for large Z the dependence of JV0

on Z is determined by (33). Since εN_1 is not known exactly, we will find JV0 large
enough to satisfy - 1 +ω(4cJ~1(JV - l)1"3'*^. Thus

(N0 - I)(P-WP = 4cωω- 1 = 5 2624/pMZ2.

when p = 4, this gives N0 ̂  54228M4Z8. However, since p can be made arbitrarily
large, we obtain the better estimate

N0 - 1 ^ 320MZ2. (34)

B. Molecules

L
- 1 i*Λ u (τx7 v^ K x / \^ Ύ \* u I - 1Our results remain true if we replace — Zrk

 1 in HN(W,Z) by — £ Z^|rfc — R

where R^ are fixed. Choose £ so that (5P+ l)~1Ap/?/2 = max^ ...RL}. Then if
|r|p £ R and x in βk(β), R, g (̂  + 1)" 1/p|r|p/2 < rfc/2, and

L L

L

where Z - 2 £ Z, and A - ̂ Z~^JV - !)(£ + 1)~1 - 1 as before. Since R~B~

(N - l ) 1 / p and R - β3 - (N - l)3/p in Lemma 6,R>R for sufficiently large N. Let
1F1 be as in Lemma 6. Then ί F 1 = O f o r r < K < J ^ and Lemmas 4 and 5 remain

valid when applied to Ψl. Thus Lemma 6 holds with ω = 1

a possibly larger Nω.

C. Other Power Law Potentials

Our methods can easily be generalized to show that the Hamiltonian

N N

j = l J 7=1 j<k

also satisfies Theorem 1, when 0 < y < 2.
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Since x in Ωk(B) implies that - r^J + ω £ r~k

y ^ λ/ft~
y, where λy = ω(N - 1)

jf fc
(β + l)~ y -l , Lemmas 4 and 5 remain valid if λ\\GkΨ\2\r\~*dx is replaced by
λyl\GkΨ\2\r\-Πx. Then in the proof of Lemma 6, (30) becomes f |¥M 2 M; 2

(|r|2-Uy - 22 + 2/pM(N - l)B2)dx > 0 if R2~^ = 22 + 2/pM(N - l)B2λ~l =
c^(N — l)(2 + rttp for some constant c^. The last integral in (28) can again be made
positive as in (31) since

(λy/4)R~v - MR~2 = (Ay/4)R-y[l - (22 + 4/%/V - I)1 + 2/*)-1] > 0.

Thus Lemma 6 holds with R <^ c2(N — l)1/s where s = p(2 — γ)/(2 + y) for some
constant c2. We complete the proof as before using

J Ψ0

\r\P<2R

for some positive constant c3. For each fixed y < 2, we can choose p so that s > y
and (35) can be made arbitrarily large.

D. Increasing the Interaction

If JV is fixed, HN(W,Z) has no bound states if the nuclear charge Z is sufficiently
small or the interaction parameter W is sufficiently large. To be precise, for each
fixed N there is an ω0 such that ω = WZ~l > ω0 implies that HN(ω) has no discrete
spectrum.

When N = 2 this result was first proven by Uchiyama [15]. Since the fermion
ground state is always a singlet when JV = 2, εj = £2 = εz so that both bosons
and fermions have the same critical ω0. Using a perturbation expansion in ω,
Stillinger [16] has estimated ω0 ~ 1.0975. Ruskai [17] has used Hill's techniques
[4,5] to obtain the less accurate, but rigorous bound ω0 < 1.343.

We now sketch the proof that HN(ω) has no discrete spectrum for sufficiently
large ω. As before, the proof for bosons follows from the proof for particles without
any permutational symmetry restrictions. Lemmas 2-5 do not depend on the value
of ω. Lemma 6 holds for arbitrary N if ωx is chosen so that λ > (ω/5)(N — I ) 1 " 1 / p

whenever ω > ωί as in (25). To complete the proof, we write (33) as

J Ψ0HN(ω/2)ΨQdx £ (N/4)[- 1 + ω2cj || <F0||
2 (36)

\r\p<2R

for some constant CN. Since (36) can be made arbitrarily large by choosing ω
sufficiently large, the argument following (33) can be used to show EN(Ψ) ^
ε v - J ^ I I 2 for ω sufficiently large.

E. Fermions

We now indicate which portions of our proof in Sect. II remain valid for fermions,
i.e. if we restrict Ψ to @~ and replace εN by ε~. Lemmas 2 and 3 obviously do
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not depend on permutational symmetry. Before discussing Lemmas 4-6, we note
that Gk is symmetric with respect to the interchange i+-*j provided i =f= k and; =/= fe,
but not with respect to z«-»fc. Therefore GkΨ is antisymmetric in the coordinates
of the N - 1 particles (1, . . . , fe - 1, fc + 1, . . . , N), so that

This is sufficient to extend the proof of Lemma 4 to fermions.
The proof of Lemma 5 does not, unfortunately, hold for fermions. The problem

fc-l

is that ψk = Y[ y/1 - GjΨ and GkΨk will not be antisymmetric in general
j=ι

so that Lemma 4 cannot be applied to Ψk. The functions GkΨk are antisymmetric
within the clusters ( ! , . . . ,&— 1) and (k 4- 1, . . . ,JV) but not with respect to inter-
changes between clusters. Therefore (13) becomes J Gk ΨkH

k

N _ 1 Gk Ψk ̂  εk

N _ 1 \\ GkΨ J 2

where εj^ is defined by taking the infimum in (2) over the subspace @k(HN_1)
consisting of functions antisymmetric within the clusters ( l , . . . , / c — 1) and
(fc + 1,. . . ,JV). It would suffice to show ε^_! ^ε^_ l 5 but we know of no reason
to expect this to hold in general. We note, however, that @k is an invariant subspace
of HN_l containing Q)~ . Choose Nf so that εj^ is an eigenvalue of HN, and
εk

N' + ι =ZN" If N'>3 and this ground state happens to be unique, it must be
antisymmetric since there are no totally symmetric functions in ^k. Then by the
same argument used to show that ε^=εN, we could conclude ε^'_ 1 =ε^_ 1 .
Unlike the symmetric case, however, we know of no physical or mathematical
reason which would justify the assumption that HN has a unique ground state on
@k(HN). Therefore, we cannot conclude that ε^ = ε^, except by occasional
accident.

Lemma 6 and the proof of Theorem 1 are invalid for fermions only because
they depend on Lemma 5. In fact, our entire analysis extends to fermions except
for the application of (13) to GkΨk. If a suitable extention of Lemma 5 could be
found, Lemma 6 would also hold. The completion of Theorem 1 can even be
modified, if necessary, to accommodate a different dependence of R on N. Since
ε^ is bounded uniformly in JV, we can use (4) to replace (33) by

ί ψ 0HN(ω/2)ΨQ ^ J Ψ0HN(ω/4)Ψ0dx + (ω/4) £ f Ψ0r^ Ψ0dx
j<k \r\p&2R

^(-A + ωN(N- 1)/(32R)) || Ψ 0 1| 2, (37)

which can be made arbitrarily large by making N large, provided that J^ grows
more slowly than N2. In the boson case (33) needed R growing more slowly than
IV, which was satisfied by choosing p > 3 since Lemma 5 implied R ~ (N — l)3/p.
Because the boson result implies uniform boundedness of ε^, (37) can tolerate
R ~ N1 for some t < 2. Thus a weaker version of Lemma 5 would suffice in the
fermion case.

If the fermion proof could be completed with R ~ Nk/p for some fixed k and
arbitrarily large p, then one could similarly improve the bound on JV0. We first
use the well-known fact that the eigenfunctions of H are Slater determinants of
the hydrogenic eigenfunctions, φk(k= l,...,gπ2), of — A -t- r"1 which have eigen-
values λk — — l/4n2(k = 1, . . . , qn2) where q is the number of spin states. Then there
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is an n0 such that

and the ground state energy of HQ is ^ - £ qn2/4n2 ^ - (gcJ/3/4)N1/3. Then
«= i

(33) could be replaced by

\r\p<2R

for some constants α and β. Then we could conclude, as in Sect. A above, that
N0 ^ BZ6/5 for some constant B.
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