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Abstract. We start a nonperturbative study of the Wilson-Kadanoff re-
normalization group (RG) in weakly coupled massless lattice models.
Nonlocal hierarchical models are introduced to mimic the infrared behaviour
of the \{Vφ)2 + λ(VφY model and the like. The RG is shown to drive these to
the line of fixed points corresponding to the massless ^c^(λ)(Vφ)2 models.

1. Introduction

The present paper is a (self-contained) continuation of the program started by
[11]. We aim at a rigorous theory of weakly coupled massless lattice models, a
counterpart of the high and low temperature cluster expansions developed for the
massive case. Our approach parallels other recent attempts of rigorously studying
massless models like λ(Vφ)4, the dipole gas, the low temperature Coulomb gas or
plane rotator [3-5, 7-9]. It is centered around the idea of the renormalization
group.

In [11] we have exhibited the block spin structure of the free Gaussian model
\{Vφ)2 in d^2 dimensions by writing

_ d _dk

~ϊ ~ΎZk)*_ + ..., (1)

where the kernel (VjtfkQ)zy, ze3~kZd, yeZd, is concentrated around z~y and
decays exponentially for \z — y\->co uniformly in k. The Gaussian fluctuation fields
Zk are independent for different k and their covariances possess an exponential
decay uniform in k.

Our hierarchical model is patterned on this structure. Here are the main
simplifications we introduce when constructing it:

1. the number of random variables Zk

r yeZd, is reduced to one Zk

yo for each
block of 3d sites centered around 3j/0 (in the original model there were 3d — 1
variables),

2. all Zk fields are taken as equally distributed,
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3. the Zk variables are taken to be bounded uniformly in k and y,
4. each family of kernels {Vμ£0kQ)zy, μ=l, ...,d, is replaced by one sί(z — y)

where stf is a function on the lattice with vanishing mean supported in the block of
3d sites around zero.

For the sake of generality we will also replace the rescaling factor 3 giving the
scale of blocks by any odd number L ^ 3 .

Step 3 is an essential simplification. In the \{Vφ)2 model large values of the
fluctuation field Zk have small probability (because the Z^-distribution is super-
stable, see [11]) and in fact cutting off the Zk integrations does not change the
critical behaviour of the model. With the perturbation λ(Vφ)4 we expect this to
remain true. However, the removal of this restriction is nontrivial. We shall try to
do it in the future basing on the methods developed here and for the standard
(unbounded) hierarchical model [2]. The other simplifications are quite natural,
especially in view of the analysis of [7].

In the hierarchical model the role of the Gaussian fields Vμφ, μ=l , . . . ,d, is
played by one field φ whose two-point function {φxφy} satisfies Σ(φxφy} = 0 and

y

decays as \x — y\~d, thus simulating the behaviour of (yφxVφyy in the massless
Gaussian model.

The main aim of the paper is to study the model perturbed by means of, say,
the λφ4 interaction [this corresponds to the λ(Vφ)4 perturbation in the original
model]. The interacting model is studied by means of the renormalization group
transformations integrating out the fluctuations Zk in turn, starting with Z°. There
is a line of fixed points for these transformations corresponding to the interactions
\cφ2 (it mimics the Gaussian line \c(Vφ)2). The main result proven in the present
paper is the convergence of the interacting model under the renormalization group
transformations to one of the fixed point models for small λ (compare somewhat
related studies of discrete spin models [13, 14, 16]). This will be the basis for the
study of the long distance behaviour of correlations (governed by this fixed point)
in the next paper. Because of pedagogical reasons and having in mind future
generalizations to the case with unbounded fluctuations, we consider first the
"local" model where all Zk

y variables are independent. In this case the block spin
transformations factorize and become transformations of functions on a compact
interval. Taking the fourth order derivative is all one needs to prove the
convergence to a fixed point.

Next we consider the "non-local" case where Zk

ys are weakly coupled for
different y's. The high temperature cluster expansion [18] for the Zk integration
becomes the main tooΓin the study of the renormalization group transformation.
The main estimate needed is a bound on general truncated expectations in the high
temperature Zk state. The bound contains no factorials when no groups of
variables, with respect to which the truncation occurs intersect, the factorial of the
number of groups if they all coincide and interpolates properly between those two
extreme cases. Such estimates were studied for lattice gases in [15]. For our model
we prove one which, being not the strongest possible, is sufficient for our needs.
This is the most technical part of the paper. We assume that the Zk state produces
a sufficiently strong exponential decay. In the second paper to appear we shall
carry over the present construction to the \{Vφ)2 + λ(Vφ)4 model simplified only
by cutting off big fluctuations. There the fluctuation fields exhibit exponential
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decay for λ = 0 but it cannot be made arbitrarily strong, so we have to perform the
high temperature cluster expansion on a proper scale. Also, the marginal terms
will have to be treated with special care.

The paper is organized as follows. Section 2 contains the description of the
model together with some results about the free two-point function to be proved in
the second part of the present study. In Sect. 3 the RG transformations are
introduced. That they drive the model to the line of free fixed points is shown in
Sect. 4 for the local case and in Sect. 5 for the nonlocal weakly coupled one. The
main result of the paper is stated in the beginning of the section. Section 6 contains
the proof of the truncated expectation bound used in Sect. 5. The bound is
obtained by means of a technically involved but more or less standard high
temperature cluster expansion. Finally, the Appendix contains the proof of simple
results about shortest trees used in the text.

2. Description of the Model

We begin with the definition of our hierarchical model. To avoid the problems
connected to the thermodynamical limit which shall be studied later, we work in
finite volume using periodic boundary conditions. Let L be an odd integer, L ^ 3,
and N= 1,2,.... Take AΉ = TLd

LN as the periodic lattice. The obvious inclusion

allows us to identify ΛN as a subset of Zd. Algebraic operations however as well as
distance functions on periodic lattices will be taken as the periodic ones. Let bj

y,
j= 1,..., JV, be a lattice block of Ljd sites in ΛN, centered at l)y:

bl = {xeΛN: | χ " - / | < ± L \ y e Λ N _ j } . (1)

Consider a function jtf on Zd, supported on ftj, with zero mean, J / ( 0 ) Φ 0 and
nonconstant in bJ\{0}. Introduce random variables Zk

y labeled by yeΛN__k_1,
fc = 0, ...,JV—1. For xelRd denote by [x] the point with integral components
closest to the components of x (for x for which we shall use [x] this will be
determined unambiguously).

The basic random field φ of the model labeled by xeΛN is given by

Σ L~
N-k-ί

= ΣL~τk

J!/(lL-kx]-LίL-k-ιx])Zk

L-*-lχl (2)
N~τk

This mimics (1.1) showing how φ is built from the fluctuation fields Zk.
It is also useful to introduce block spin fields φk labeled by xeΛN_k:

(3)
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where we have used

Σ ^(x) = 0 (4)
xeZd

kd_

following the definition (2) of stf. The factor L 2 in (3) is the rescaling factor
corresponding to the canonical dimension of the gradient of a scalar field. Notice
that

φ\ = L^φχt\A + stf{x-LlL-'x\)Z\L-^ (5)

-L
which gives the decomposition of φk into the block spin field L 2 φ\£-\x-\ on the

next scale Lk+1 and the fluctuation on the scale ZΛ
To specify fully our model the distribution dvk of the fluctuation fields Zk has to

be given. We shall consider several cases. The starting point will be

/. The "Free" (Noninteracting) Model

Here the random fields Zk are independent for different k. Depending on whether
Zk's for different y's are independent or not the model will be called the local or the
nonlocal one. Depending on whether all Z*'s are (almost surely) bounded
uniformly in k and y or not we shall speak about the bounded or the unbounded
case.

In the present paper we shall study only the bounded case. For the local model
we shall take each Zk to be distributed with the same compactly supported even
probability measure dχ.

To describe the nonlocal model suppose that we are given for each sequence

y = (yv '--^iml y^\ ™^1, U2Jy) such that

X exp UUDΛ W2Jy)\ ύ i(2m)! κ2m, (6)

where v4>0 is big enough, κ > 0 is small enough and L{y) is the length of the
shortest tree on the set y of points of the sequence y and possibly other
(continuum) points. Throughout the paper we shall use the distance in ΊLd which is
the sum of the distances between the components of the vectors (and similarly for
periodic tora). We shall also assume that

U2m(yι> >yim) = U2m(yi + a,...,y2m + a)

(7)

For y 1 ?..., y2meΛk define Uk

2Jyl9..., y2m) by averaging U(yv ..., y2m) over identi-
cal periodic translations of all the variables. Put

oo Λ 2m

u N - k - 1 { χ k ) Σ Σ U H - I ( j Π z ; ( 8 )

u { χ ) Σ Σ U ( y i i . . . j j Π z ; i , ( 8 )

m=l yieΛN-k-l \ L m ) i = l

Notice that (6) guarantees the convergence of the series on the right hand side of
(8), since the Z's are bounded.
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In the nonlocal model the distribution of the Zk field will now be given by

dvk(Zk)= ~ e x p [ - UN-k-\Zk)-] Π dχ{Z$9 (9)

where Jί stands for the normalization factor (as it always will). This slightly
involved definition of the distributions of Zk for the nonlocal case makes them
almost coincident for different k in large volumes (in finite volume Zfe's live on
different lattices).

Let us denote by < — >o the expectation with respect to the above described
total probability measure (in the bounded local or nonlocal case), i.e.

<->o=i(-)*n\(Z*). (10)
fc = 0

We gather here some elementary properties of the free two-point function, to be
proved in [17], which show that the free model really mimics the free massless
lattice field.

Proposition 1.

2. KφXlφxX<C\Xl-x2\-a (12)

with C independent of N.

3. lim ΣK£,A2>ol = °o (13)

In 2 and 3 we assume that A is sufficiently big and K is sufficiently small for the
nonlocal case.

Remark. (13) shows that (12) is the best polynomial bound. Recall that 1-3 are the
properties of (VφXiVφX2y for φ being the massless free field.

For each free model we will consider

II. The Interacting Model

This is obtained from the free one by turning on interactions V, where V is a
translation invariant functional of the field φ. Given such a F, define the
expectation for the perturbed model to be

? » K (14)

One may take for example V(φ) = λ Σ Φt ^ u r m a m a m l m this and the
xeΛN

subsequent paper is to study the long distance behaviour of the bounded nonlocal
interacting model.

3. The Renormalization Group Transformation

We shall examine the long distance behaviour of the interacting models via the
renormalization group method. The first renormalization group transformation
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consists in generating the effective potential Ύx V depending on the block spin field
φ1 [see (2.3) and (2.6)] by integrating out the fluctuation field Z° in the Gibbs
factor:

(1)

The choice of the proportionality constant is to large extent arbitrary. We shall
stick to the convention that potentials vanish at zero field:

7(0) = 0. (2)

Then

T, V(φ') = -logjexp [ - V(L~Hi-.., + #°)1 dvo(Zΰ)

+ logίexp[-F(^ 0)]rfv 0(Z°), (3)

where we define

^k

x=^(x~LlL'ιχ-])Zk

[L-iχ]. (4)

The next renormalization group transformations are defined in a similar way:

• 1 )]<*v f c _ 1 (Z*- 1 ) . (5)

Since they differ from the first transformation Tx in fact only by the volume of the
lattice, it is enough to study Tλ = T. For simplicity we shall consider T only on even
translation invariant potentials.

The first important property of T is that the potentials

ve(Φ)=\c Σ Φl (6)
^ xeΛN

constitute a one-parameter family of fixed points (i.e. are reproduced in the form).
Indeed,

c(Ψ1)= -logjexp

= ^~ά Σ Φl-i*=~ Σ (Φϊ)\ (7)

where we have used

Σ ΦiL-ix^x = ΣΦ[L-1x]s^(χ~LίL~1xJ)Z(j)

L-ίχ] = Q (8)
xeΛjγ x

which follows from (2.4).
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Similarly as in (8) one shows using (2.2) that

N-ί

Σ (9)
k=0 xeΛN-k-1

Hence the state < — )^ c is again a free one but with changed one-spin
distribution dχ.

The key result of the present paper, as mentioned in the Introduction, consists
in showing that for sufficiently small V the subsequent application of T drives V to
a point FCoo on the line of fixed points. In other words the perturbed model
becomes free at long distances.

4. Convergence to the Line of Fixed Points. The Local Case

In the local case, where dvo(Z°)= Y[ dχ(Zy), T preserves the class of local
potentials y^ΛN-t

i.e.

HΦD
xeΛN- i

This is a result of the factorization of (3.4):

-logjexp

+ logJexpf- Σv(^(x-Ly)Z°j\dχ(Z°y)).logjexpί-

Hence we write

+ loί
xebo

- Σ « "
xsbo

(2)

dχ(Z°v)

dχ(z)

dχ(z). (3)

To define precisely the domain of ί, notice that (2.2) and the uniform boundedness
of Zj's imply that φk

x are also (almost surely) uniformly bounded. Because of that
we shall consider the potentials v defined only on a (sufficiently big) interval
[ —α, α]. The domain of t will be

9 = {ve C4([ - α, α]): v(0) = 0,υ(-φ)=- v(φ)}, (4)

considered with the topology of uniform convergence with all derivatives up to
order 4. It is easy to see that t maps 3) into itself.

Theorem 1. Let Θ be a small enough neighbourhood of zero in Θ. Then for each veΘ
there exists C^GIR 1 such that

(5)
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where

υc(φ)=±cφ2.

K. Gawedzki and A. Kupiainen

(6)

Proof. Upon the iteration of ί, i 's are driven to zero in the directions transversal to
the line of fixed points and to one of the fixed points along the line. The transversal
directions are distinguished by means of the Taylor expansion up to the second
order. Write

(7)

(8)

where

(9)

We shall prove the following

Lemma 1. There exist 0<(5<l and α > 0 such that for each 0<η small enough

d4v

implies that

and

Proof of Lemma ί. (3) yields

where

and

Notice that

d4v'

xebb

(10)

(ID

(12)

(13)

(14)

(15)

L
V

, (16)
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where ^ is the sum over the partitions of {1,2,3,4} into k sets Ip ...,/fc and

< —,..., — ) Γ is the truncated expectation with respect to the state

< - > = - ^ ί - e x p f - Σv[L'2φ + ̂ (x)z)}dχc(z). (17)

Now since (10) implies that

dφ'
for i= 1,2,3,

(16) gives

Similarly

Since

and

dφΔ

d2v'(0)

dφ2

2 dφ2

c' =
d2υ'(0)

dφ2 '

(19) and (20) yield (11) and (12). •

(18)

(19)

(20)

Theorem 1 follows immediately from Lemma 1 since the convergence of u's in
3) is equivalent to the uniform convergence of their fourth derivatives together
with the convergence of c's. •

5. Convergence to the Line of Fixed Points. The Nonlocal Case

In the nonlocal case T does not preserve locality any more and so we have to
consider general nonlocal potentials. Also, instead of the simple C 4 convergence in
the local model, we have to deal with all the derivatives of V. To describe V in a
uniform way for all volumes, let there be given kernels ^2m(χi' ••• 2̂m) defined for
xieZd satisfying

exp \τAL{x) \V2m(x)\S(2m)\η2
(1)

where we denoted x = (xί9 ...,x2 m), X Ξ { X 1 ? . . . ,χ 2 m }, and η will be chosen suf-
ficiently small. We also demand

V2m(xv ..., x2m) = V2m(xί + a, ..., x2m + a) = V2m(xπ(1),..., xπ(2m)) (2)
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and

V2(x,x) = 0. (3)

Let for x l 5 ...,x2meΛN V2m(x) be defined averaging V2m(x) over identical periodic
translations of all the variables. It is straightforward that V2m(x) satisfy the periodic
versions of (l)-(3) \_L{x) is now the length of the shortest tree on the points xt and
possibly other (continuum) points lying on the torus].

Our potential VN will now be

VN{φ)=V?(φ)+V»{φ), (4)

where

V?(#)=\c Σ Φl (5)

and

GO Λ

vΛΦ)= Σ Σ UMV?JX>ΦXI-ΦX^, (6)
m=ί xlt..,,x2meΛN \Zm)'

which is well defined when η is sufficiently small. Note that (1) defines a metric dA

on the space Ϋ"N of VN's:

where

ί > - f ^ Σ UίUSf (7)
X2,....,χ2meΛN

(1-1,4 is not a norm). We use the notation \V\A also for V2m and x ε ί in (7).
Our result is (compare with Theorem 1 of the local case)

Theorem 2. Let VN be of the form (4), with \V\=η. There are Ao, ^ 0 ( ^ ) > 0 such that
for A>A0, η<ηo(A) TVN can be written as

TVN = V"~1 + fvN, fvNenΓN'1 (8)

and

\TVN\ASδ\VN\A δ<l, (9)

\C'-C\^OL\VN\Λ. (10)

δ and α do not depend on N or C.

In [17] we will show (using Theorem 2) that the thermodynamic limit of our
model exists provided A is large enough and η is small enough. That is, each pair
V=(c, {V2m}) determines an oo volume Gibbs state < — }v and

<->„= lim <->£w
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in the sense of convergence of correlations. Moreover there is a TV such that

and (8)-(10) hold in the limit JV-+00.
We will also show that if cn-+c and \V{n)— V\A->0, then

(in the sense of convergence of correlations). Thus we get

Theorem 3. For \V\A sufficiently small

<->™-^r<-v....
where

We will now proceed with the proof of Theorem 2. We will suppress below the
superscript N since all our estimates will be uniform in N. Let us start by
computing V. From (3.3) we get for m> 1 or for m= 1 and x1 Φx 2 that

2m /^^v ti^v \τ

^»(χi—^2J=i" Λ "Σ Σ Σ ( ^ ( ^ . . ̂ W ) , (ID
fc=l Hj)ί=i (yi,...,y2m)\dΦyI

 δΦyi I

where ]Γ is the sum over the partitions of {1, ...,2m} into sets Iv ..., Jfe, δφ-i

= Y[δφy. and <— ... — >Γ is the truncated expectation with respect to the state
iel

z). (12)

But

r = Σ TJ-ΛTJTΪ Σ hΛy.v)^ (13)

where

V 1 1 Vι'
i= 1

Using (3.4) we may rewrite

2m~\l\ 2m-\I\

^v= Π ^(Vi-LUi) Π z

M ι

Ξ ^ ( ^ ^ ) z π ? (16)
/ = 1 ί = 1

where

ui = lL v J . (17)
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Inserting (13) and (16) into (11) we obtain

vL(χ)=L-*»Σ(-Dk+1Σ Σ Σ Σ
k {Ij) {rπj} y:[L-ίy\=x {vj}

2wj^|Jy| + min(l,fc- 1)

• Π ( ( 2 m , ! | J , | ) , V2mβIpVjWiϋj,»,-)) <ZB ι ... Z-Uk}
τ. (18)

The main input used in the proof will be the following result shown in the next
section devoted to the cluster expansion.

Proposition 2. Suppose that D, A are big enough, K and η = | V\A are small enough (the
bound on the next constant generally depending on the ones already fixed). Then
uniformly in N

\(ZUι ... ZBk}
τ\ S Π K! Π exp[D(2»ι,-1/,|

j l

5 . . . , ^ ) ] ? (19)

where Mr are the numbers of the sequences w l5 ...,wk equal up to permutations and
L(u1 ... ;uk) is the length of the shortest graph on the points of [juj and possibly
other points connected with respect to the groups Uj. j

The connected structure of the right hand side of (18) is now clear. Let us define

-L{x) V2Jx) and similarly for W'2m. From (18) and (19) it follows

that

V \W (x)\
{X2,...,X2m)

2(mi-m) Γi -j

^ - - Σ Σ Σ f f l M _ M t i , lM^°P7^)-7
mi^fi

+L~dm Σ Σ Σ
kZ2,{IjUmj} y:[L~lyi] = xi {vj}

• Π Mr! exp [̂ L(x) + D ΣUUj)~ \ Σ Uy^Vj) ~UUu, .. i J . (20)

Notice that for m = 1 in the right hand side of (20) we may sum over y such that
x1 = [L~ ίy1] φ [L~ V2] on^y Denote by J^ a sequence ( i 1 ? . . . , ifc) of integers, 1 ̂  i7-
^2m}— \lj\. For given ^ and J^ denote

ϋs = {viίl9 ...,u ί k f c), % - ( u ί i l ? ...,uikfc) (21)

and by f3 iVs! the product of the factorials of the multiplicities of occurrence of
s

different points in ΰy. Notice that

Σ Π ' (22)
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We shall need the following results dealing with the shortest trees which are
proven in the Appendix.

Lemma 2. Let t and s be lattice subsets such that [ I T 1 ! ] =5. Then

LL(s)-±(L-l)d\s\^L(t), (23)

(24)

(25)

for sufficiently small ε > 0 uniformly in t.

From Lemma 2 it follows that

/x x—i JΓX

Ak

LJ J Δ-Li 2*Lι t/

Using (22) and (26) we get a bound on the last part of (20)

IJP s

But

F A
(27)

Lemma 3.
_ Γ p.Λ . _

(28)

where Σ *'5 ^ e 5 w m o ί ; β r ^ e t r e e s o n k points and Lτ{u^) is the length of the tree τ
τ

when the points are taken to be those of ΰ^.

Proof of Lemma 3. —Γ L(u^) > έ££(u^) where £?(uj) is the length of the shortest

tree on the points of u^ and no other points (see [6, p. 197]). But

exp[-e'A<?&,)•]g f l N s~ N °Σexp[-ε'ALtf i j)]

εΆL^)] (29)

since N^s~2 is the number of trees on Ns (coinciding) points. •
Notice also that

Lτ(ί^)^ iL τ {Όj)-γ(L~ ί)d{k- 1). (30)
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(27), (28), and (30) yield

Π Mr! exp[...] ύ Σ exp [ - (31)

(we have omitted the "prime" at ε). Inserting (31) into (30) we obtain

/,2ml — 2m

2 m V

ni{y,v)\exp\τ

dm Σ Σ
(32)

where again in the first term A1 on the right hand side for m= 1 we may sum only
over y = {y1,y2) such that x1 = [_L~ 1yί] φ [L~ ιy2\

A. The k = 1 Term

First we shall estimate Av Denoting \V\A by η (7) gives

τ-dm y y

For m1=m>l

Hence for m > 1

^ υ(2m)!/7 2 m

"- ι\2my.η2" e0{η)m ^{

for some 0<<5 < 1, provided η is small enough.
For mί=m=ί

L

(33)

(34)

(35)

(36)

for some0<<5<l since for Ld — {L — 2f choices of y1 there exist choices of y2 such
that L{x) = L{γ). For other (L-2) d choices of yι L{x)-L{γ)^ - 1. Hence putting
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together (33) and (36) we get for m — 1

(37)

for some 0 < δ < 1 provided η is small enough.

B. The fe>2 Terms

We pass to estimation of the second term A2 on the right hand side of (32). We
shall use the following

Lemma 4.

Σ Σ exp [ - εALτ(v,y] ΓJI W2mj(yI]t v})\
y-[L ιyύ = χi {vj} j

7.)!J72 W i. (38)
j

Proof of Lemma 4. Fix yv Note that W2m(x) is translation invariant. Write Fourier
series

P

Then by the tree structure of (42)

Σ ...^(oΓΉWί^o)
y:y>i= fixed j

The claim follows by virtue of (11) since there are Ld choices of yv Π
With Lemma 4 we obtain

A(2mj-\Ij\)

AaL-«.-» Σ Π ' . i^Zm,)!^. (39)

Now use

£ l = fcfc-2Π(2mi/-|/J.|)^Jk!Πc2mj"w (40)

and estimate

Σ
j

( m , . . . . . f life)
nj=2m,Πj>

Σ Σ Π Σ (nj

k=2 (wi,.,,-,/iϊc) j «f= n

(41)
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where &(η) is A dependent. But

j ^ ( ^ K _ l ) ^ Π ^ i / 2 ) e χ p ^ (42)

j i

Hence

(43)

for some 0 < δ < 1 provided η is small enough (the bound on η depending on A).
Gathering (35), (37), and (43) we obtain

Σ \W2Jx)\£(2m)\(δη)2m (44)
(X2,...-,X2m)

for some 0 < δ < 1 provided η is small enough.
The first part of Theorem 2 is thus proven.

We still have to estimate the coefficient c' multiplying the term - Σ Φl in V.
^ X

Notice that \(d — c) is given by the right hand side of (18) for m = 1 and xι=x2 = x.
Thus \\d — c\ may be bounded by the right hand side of (32) for m = 1 with the sum
in the first term A1 over all y = {y1,y2) such that [L~1y1]=x. Now (37) must be
replaced by

A1S2ηe&iη). (45)

Combining (44) and (45) we obtain

\c'-c\^aη (46)

and the proof of Theorem 2 is completed. •

6. The Cluster Expansion

In this section we shall prove the basic Proposition 2.

A. The Properties of the Measure

Let us begin with the following result about the measure dv(Z) given by (5.12)

Lemma 6. Let η be small enough (the bound on η depending on A and K). Then

—
1

Y\dχ(Zy), (1)
y

where I2m are translation and permutation invariant, /2m();> - >y) — 0 and t n e eυen

probability measure dχ has the same support as dχ. Moreover,

(y)l^(2m)!K2m. (2)
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Proof of Lemma 6. By (5.12)

dv(Z) = - L exp [ - V(Z) + υ{&)~\ Π dχ(Zy), (3)
JV y

where we have omitted the sub- and superscripts indicating the volume. Notice
that due to (5.4) and (5.16)

, - Ly)2Z2

y +ΣΣ 7rτy V2JP)^iv> P)Z5, (4)
z, v m v \-£m).

where y = [L~ίv~]. But by virtue of (5.23) and \V\A<Lη

Σ V2n(v)<*(v9y)

1 Σ exp \y L(v)\ I V2m(v)\ S (2m)! (CAη)2m. (5)

The terms of (4) local in the field Z will be used to define dχ. The other terms

together with the terms coming from U(Z) [see (2.8)] build up the 72m(j;)Z-

terms in (1). (2.6) and (5) show that (2) holds if (CAη)2m^κ2m. •

From now on we assume that η satisfies the assumption of Lemma 6. It is
preferable to rewrite (1) by introducing for lattice subsets y the random variables

m,y:y fixed V^ V

Then

1 . _

(7)

The following estimate will be needed:

Lemma 7. For K sufficiently small

Σ K'^explALtyYWtfίfjl^ΘiK). (8)

Proof of Lemma 7. By (6) and (2)

^ Σ Σ^

t r ( 2 m - 1)! y = {0,yZ....y2nd

Σ 2m(Cκm)2mS(9{κ). C
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B. The Expansion

Our main aim is to estimate <ZS i ... ZUk)
τ, where < — ... — > τ is the truncated

expectation with respect to dv(Z). Without loss of generality we may assume that
the order of points in the sequences ΰv ...,ΰk agrees with some fixed ordering of
the lattice points. First we shall obtain for (ZUi ... ; Z - k ) τ a cluster expansion
formula. Write

iU Z-udv(Z)= ±JΠZδj.exp[-

where y is a family of lattice subsets y [ | j | ^2 since otherwise </(j;) =
Given y, consider the set

and its finest partition with the property that

each Uj and each yey are in the same subset of the partition. (10)

Denote by Xα, α = l , . . . , ^ 1 the sets of the partition containing u s and by 1̂ ,
β=l, ...,B1 the other ones. In (9) we shall fix first the clusters {Xa} and {Yβ}
performing the rest of the summation and only then shall we sum over {Xa} and

β

For Hc{ί, ...,k} andX being a subset of the lattice such that for each jeH
UjCX, denote

(H,X) = X, I 1 1 )

and define

f j j))]Σi Π Z-UJ Π ( c " / ( W - 1) Π dχ(Zy), (12)

where ^ is the length of the sequence ΰj and ]Γ is the sum over the families yc of y,
y

yCZ (\y\ ̂ 2), such thatX cannot be divided into two subsets so that each Upj
and each γeyc is in one of the subsets. Similarly for a lattice subset Y, \Y\ ̂ 2 , put
ρ(Y) = ρ(Y) where ¥=(</>, 7), i.e.

Q(Y)= Σ ί Π ( e x p [ - / 0 ? ) ] - l ) Π ^ Z y ) . (13)
yc yeγc ysY

Now we may rewrite (9) as

• Σ ' Σ'

where £ ' runs through the sets {Zα} such that ^ = (Ha,Xa) with



Renormalization Group Study of a Critical Lattice Model. I 425

Xa are pairwise disjoint and each Uj is in someXΛ. £ ' runs through the sets {Yβ}
{Yβ}

(the empty set included) of lattice subsets Yβ9\Yβ\^2, disjoint among themselves
and with XJs.

Next we shall transform (14) so as to exhibit the cancellations between the
numerator on the right hand side and the denominator

To this end introduce for two lattice subsets V1 and V2

JO if 1
15 2 \l if 1

Using these symbols we may write

partitions π = {
Σ Σ

x}4= i (Yu..,, YB)

, a?)

where in Y\ ££ runs through the pairs (Xαi,Zα2), α x < α 2 , (XaiXβ\ and (Yβί, Yβi\
se

β1 <β2, with allXα and Yβ treated as different elements. We shall call ££ a line on
elements Xa, Yβ. Now standard transformations (see [1, Chap. II]) yield

Σ Σ Σ ^
X α = (Hoc, X«)

ΣΣ Σ us)
x = (Hx,Xoc)

where Σ ^s the sum over the sets of lines «£?, ^ ' is the sum over the sets of lines 3?
r r

forming a graph on Xa, Yβ connected with respect to the elements Yβ and the group
of elements composed of XJs. A(S£): - l/(JSf)-1.

Since by the definition of the truncated expectation

,j=l
Σ

partitions π = {£
of (l, . . . ,/c)

Π
jeKy

we easily read off from (18) the following cluster expansion formula:
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Proposition 5.

" 1 ? " ' ' Uk [ j = i '

• ΣH Σ γΣγ ^ Σ Π ^ ) Π Λ ) Π ^ ) , (20)

where Σ i-s t n e s u m o v e r ^ne se^s °f ^nes ^ forming a connected graph on the
r

elements Xa, Yβ (treated as different).

Proof With this expression for the truncated expectation we easily obtain (19), first
fixing on the right hand side of (18) the partition {Ky} of (1,...,k}, each Ky

composed of points of HJs such that the corresponding Xα's enter into a single
connected component of Γ, and then summing over {Ky}. •

Remark. We shall call the sum on the right hand side of (20) the external sum, as
opposed to the internal sum contained in the ρ terms.

(20) will be the starting point for the estimation for which we shall also need
appropriate bounds on ρ(X) and ρ(Y).

C. Estimation of the ρ Terms

Proposition 6. For D sufficiently big, K sufficiently small and some C ̂  1

iQin^iCK112)^-1 Gxpl-AL{Y)-]9 (21)

(22)

where JL=(H,X) and Ll(Uj)jeH;X\ [J uλ is the length of the shortest graph on the

points of X and possibly other points connected with respect to the sets u
and the points of X\ [J Uj.

Proof. Define forX1 ? ...,Xa, Γbeing disjoint lattice subsets, Xl9 ...,Xαφ0,

l ) ί (23)

where ^ r u n s through the collections yc of yC / IJ Xa\u^ \y\^2, such that

( u I J u Γ cannot be split into two subsets so that each Xa and each yeyc is in
some set of the partition.

We shall estimate ρ using the standard Kirkwood-Salzburg equation method
(see e.g. [10]).

Lemma 8. For x1eXl9X\: =X1\{xί}

Σ

~Q{X\yj{ U Xa)^S,(XX:s^^;Y\S), (24)
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where for 5φ0

K(XVS) =
{yι,.-.,yb}

and

(25)

(26)

Proof of Lemma 8. Let us consider in γc in (23) those j ; for which xl

taking S= uQA^) and {j1 ? ...,^b} = {^V^}. The set / of those y is described by
giving {y 1 ?...,j j and the sets yβy9 x1εyβγCX1 for fixed β giving {}^nX1 ^ey' and

X1 =yβ}. For j ey^y', xxey we have )?CXV Hence we may write

Σ Σ Π Σ
y {yi,. . .,yb} A iypy)

Xa)vS,(XXSnX^«;Y\S).
/ j

(27)

(27) easily yields (24). •
We shall need the following estimate for the kernels K{XVS):

Lemma 9. For K sufficiently small

(28)

Proof of Lemma 9. By virtue of Lemma 7 for K sufficiently small

S Σ

oo i

^ Σ T Y Σ
b = 0D- (n,...,y_b)

ypnXx =• 0

^ Σ rrίc Σ ^

Σ

. D

The Kirkwood-Salzburg equation (24) together with Lemma 9 allow us to
prove

Lemma 10. For K sufficiently small

\~ρ(Xv ...,Xα;y)|^C - | X i l 1(Cκ 1 / 2)l iΊeXp[-/lL((x ί I);y)] (29)

uniformly in Z (for almost all Z).

Proof of Lemma 10. We shall proceed by induction over M:=\X1\
Jt ... 4- \Xa\ +17|.

For M = 1 ρ({xx} φ) = 1 so that (29) holds. Now suppose that we have proven (29)
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for M^M0. Then for M = MO
O

p
[

p J ^ S ) ! , (30)

where we have used

\ S X ± 0

By Lemma 9, (30) yields (29). •
Since for JL=(H,X)

\-D Σ Vj + Uuj)j\ί Π ZUjρ(Xv ...,Xa;X\([)Xλ) Π dχ(Zy),
[ JεH \ jeH \ \\ α // yel

where X l 5 ...,Xαare the sets of the finest partition of (J Uj such that each UpjeH,
jeH

is in one subset of the partition and since

for some y1e Y, Lemma 10 yields (21) and (22). •

D. Estimation of the External Sum

Let among the sequences ΰp j = l, ...5fe, there be 5 different ones ΰjι,...,ΰjs

occurring with multiplicities M l 5 . . . , M s , ] Γ M r = fc. For if C{1, ...,fe} let
r

H: = (fe l5..., ks) be the sequence of the corresponding multiplicities (kr ^ 0). Let for
X=(i ί ,Z) 5 X: =(H,Z). Notice that ρ(J£) depends only on X Denote by ¥ either X
or Y and put

M if v=x
yV ; lρ(F) if V = y ,

Ll(uj)jeH;X\[juj\ if V = X

V \ j e H / (32)
if v=

and F = X or 7 respectively. Consider for m^.1, n^O

(33)

where £ ' r u n s through the diagrams on the elements Fί? 1 S i S m + n, (treated as

different ones for different fs) connected with respect to the group {FJ, 1 ^ i ^ m ,
and the elements Vb
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Lemma 11. For D and A big enough, K small enough and some C (n^

- Π
L L J i = l

(34)

Proof of Lemma 11. (Compare [1, Lemma II, 4].) We have the following Kirk-
wood-Salzburg equation obtained by studying the lines of the graphs Γ ending
on Vx\

m

ί=2

V Γί Λ(V V )</>(¥ ¥ {¥ } {¥ } ), (35)
Ωc{m+ l,...,m + n} t^eΩ

where by definition φ(0; ¥ 5 ...) = 0.
We shall use induction on mΛ-n. Suppose that (34) has been proven for

m + n^M0 [it holds for m + n = 2 since | φ ( ¥ 1 ; ¥ 2 ) | = |ρ(¥ 1)ρ(¥ 2)| and we can use
(21) and (22)]. Then for m + n = M0 + l

n

p = 0

{vt Σ +
2)^E- m Σ L(Vtl)

t2>m + p

=O\PJ (Vtl)

• Σ -r/ Σ 2CiFi|ρ(¥)|exp[i^L(¥)]γ, (36)

\FnFiΦ0 /

m

where we used |φ(¥ 1 ? . . . , ¥ m ; φ ) | ^ Π IβWL following from (35).
i = 1

We shall estimate the sum over ¥ by the method of combinatorial
coefficients [12]:

Σ ^ ^ | if Σ
β β β

Given F one may construct ¥ in the following way:
k

1. Choose βC IJ Mj which will contain a point in each u such that /zr>0
J = l

(Q = φ will correspond to ¥ = 7).
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s

2. Choose the number h= Σ hr.
r= 1

3. For each qeQ choose nq^l.nq will be equal to the sum of hr>0 over those r

for which q will be taken as the point of ujr. Σ n

q

 = h
qeQ

4. For each qeQ choose nq times the sets ujr containing q.
5. For each set ujr just chosen pick a corresponding sequence ΰjr.
Notice that in Step 5 we only have to specify the multiplicities of the points of

ujr since, as we have assumed, points in ΰ appear in fixed order.
We take account of the procedure described above by choosing proper

combinatorial coefficients for each step:

Adi. TF\

Ad 2. 2 Σ \

for 0(1) sufficiently big (see below),
Γ s

Ad 4. exp 0(1) ̂  hr(ίjr + L(ujr))
L r=l

Ad 5. 2Σh^'.

Only Step 4 is non-trivial. Estimate

f ^ — ^ exp[-0(lK]

^ Σ T ^ Γ Γ J exp[-©(1)6^] ^ 1 (37)

if (P(l) is big enough. In (37) we have used L(u)^:εJ£(u) where =Sf(w) is the length of

the shortest tree on u (and no other points) (see [6, p. 197]) and £ 1 =ί^~2 where

Σ r u n s through the trees on / points. τ

τ

(37) shows that we have chosen a correct coefficient for Step 4.
Altogether we may bound the product of the coefficients just chosen by

2'F'exp

for Θ(\) sufficiently big. Hence

0(1) Σ •
r = 1

(38)

• e x p[0(1) Σ H

Σ expC-ίPdKin + ̂ ϊOα^lFil (39)
V .VnVi Φ0
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if only D, A and κ~1 are big enough. We have used (21), (22), (31), (32) and in the
last estimate also (37).

Substituting (39) into (36) we complete the proof of (34) for m + n = Mo -h 1 and
thus altogether. •

s

Now we come back to (20). Denoting H\:= Y[ kr\ and using (33) we may
r= 1

rewrite (20) as

KZBi;...;Zay\ϊ Π e x p [ ^ , + L(_Mj.)] Σ T^uΉ^
j=ί (Hβ)£=i Λ l [[ΰj

ΣH« = (Mi Ms) α

• Σ Σ ^iψ(x1;x2,...,χ^y1,...,yB)i

))] Σ Σ TT -̂TTT

x> 1,y1,...,y l >)|9 (40)

where x 0 is a fixed point of IJ ur Notice that

Σ W + Σ L(Yβ)^L(uv-..,uk) (41)
α = 1 J 8 = 1

for non-vanishing terms φ. Hence

Σ

Σ

g ΠM (!
j j

Σ )] (42)

with arbitrarily big 0(1), provided that D, ̂ , K~ X are big enough. We have used in
turn (34), (22) and the argument with the combinatorial coefficient (38) to bound
the sum over Xx with fixed Xv (42) together with (37) imply (5.13) completing the
proof of Proposition 2. •
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Appendix

Proof of Lemma 2. Take the shortest tree τ on the points of t and possibly other
points. Consider the set Ls. For each point Ls of Ls which is not in j ; or in the set of
the other points, add to τ a line joining this point to one of the points t of t such
that L~xt = s. We obtain a tree on Ls and possibly other points of the length ύL(t)

+|s | d (recall that we work with the distance being the sum of coordinate

distances). This gives (5.23).
Now consider a map K : IR1 —•R1

: - χ x] if

K shrinks the balls of radius \{L— 1) around the points of LΈd to points. Notice
that

Consider the dth Cartesian power of κ,κd:Rd->IRd. κd also decreases the distance
(in the periodic case IRd must be replaced by tora). But κd(t) = [_L~ V) = s. For τ as
above application of κd produces a tree on s, and possibly other points, which is
not larger than K. Hence (5.24) follows. Under κd acting on the endpoints, the
length of the lines of τ is preserved only if the endpoints lie in one of the 1 x ... x 1
cubes which are not shrunk by κd. Any line joining points in two different cubes
gets shortened by at least L — 1 (here we use the non-Pythagorean form of the
distance). It is possible to follow along τ in a continuous way running through
each line at most two times. Suppose that doing this we cross the points of t in the
order (tv . . . , ί^) . Since a 1 x ... x 1 cube contains at most 2d (lattice) points in t,
when following along τ we have to jump to another cube at least 2~d\t\ — 1
times. Thus the length of τ gets shortened by at least \(L— l)(2~d|ί| — 1) under κd.
Hence

This together with (5.23) yields (5.25). •
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