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Abstract. Let δ be a closed * derivation in a C* algebra 21 which commutes
with an ergodic action of a compact group on 5ί. Then δ generates a C*
dynamics of 91. Similar results are obtained for non-ergodic actions on abelian
C* algebras and on the algebra of compact operators.

1. Introduction

In [9] Sakai showed that a non-zero closed * derivation in C(T) commuting with
translations is a constant multiple of the derivative. Following this, it was
shown in [4, 7] that if G is a locally compact group and δ is a closed * derivation
in C0(G) commuting with left translations by elements of G, then δ is the generator
of a C* dynamics (i.e., strongly continuous one-parameter group of * automor-
phisms) of C0(G). A like result holds for C0(G/H) (H a closed sub-group of G),
provided that G is either separable or the projective limit of Lie groups. In this
note, we assume G is compact and we obtain similar results for an ergodic action of
G on an arbitrary C* algebra (Theorem 2.1), and for an arbitrary action of G on an
abelian C* algebra (Theorem 3.2), or on the algebra of compact operators
(Theorem 4.1).

We refer to [1, 3, 9] for background on unbounded derivations in C* algebras.

2. Ergodic and G-Finite Actions

Before stating our first result we recall a few facts about Banach space representa-
tions of compact groups. Let V be a Banach space, G a compact group, and α a
strongly continuous representation of G on V.For each πeG, define Pπ'V -• Fby

Pπ(x)= fdim(π)tr(π(s))αs(A>)ds.
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Then Pπ is a continuous projection on V. The projection

corresponding to the trivial one-dimensional representation has as its range the
space of fixed points for the action α. A vector xeV lies in span{Pπ(F):πeG} if
and only if span{αs(x):seG} is finite dimensional. Such vectors are called G-
finite. The G-fίnite vectors are norm dense in V.

Theorem 2.1. Let 21 be a C* algebra with identity 1,G a compact group, and
α: G -> Aut(2ί) a strongly continuous ergodic action. Let δ be a closed * derivation
in 21 commuting with the action of a. (i.e., otsδa~ί = δ for all seG.) Then δ generates
a C* dynamics tyί

Proof. Let Pπ, P o be as above. Note that P0(3I) = d since α is ergodic. There is a
unique faithful G-invariant state τ on SI, defined by τ(x)ί = P0(x). @(δ) is a Banach
*-algebra with the graph norm

Since δ commutes with α, s-> ocs\@(δ) is a strongly continuous representation of
G on £2(<5). It follows that for each xe@(δ) and πeG,

and δ(Pπ(x)) = Pπ(δ(x)). (1)

Note in particular that for xs2{δ\

(2)

- 0 .

Since 9(δ) is dense in SI, Pn(β{δ)) is dense in Pπ(SI). But Hoegh-Krohn, Land-
stad and St^rmer [5] showed that Pπ(SI) is finite-dimensional. Therefore, Pπ(3I) =
PJβ(δ))^@(δ). By (1), Pπ(3I) is invariant under δ and therefore consists of
analytic vectors for δ. Thus the G-finite vectors are a dense set of analytic vectors
for δ. Since 21 has a faithful state τ satisfying τ(δ(x)) = 0(xe@(δ)) and δ has a dense
set of analytic vectors, it follows that δ generates a C* dynamics [2, Theorem 6]. •

Remark. If G, in Theorem 1, is abelian, then there is a continuous one parameter
subgroup {yt} of G such that exp(ί<5) = oayt. To see this, assume first that G acts
faithfully on SI. According to [8], for each peG, the spectral subspace correspond-
ing to p is one dimensional and is spanned by a unitary u(p). The action of G
is given by α (u(p)) = (g,p}u(p). For each p,qeG, there is an m(p, g)eT such that

u(p)u(q) = m(p, q)u(p + q). (3)

Since C u(p) is invariant under exp (tδ\ there is for each t e U and p e G a A(ί, p) e T
such that

exp(tδ)u(p) = Λ(ί, p)«(p). (4)

Using this and (3) one checks that p -• A(ί, p) is a character of G for each
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Hence there is a unique yteG such that λ(t, p) = <y ί5p>. It follows from (4) that
t -> yt is a one-parameter subgroup of G. For fixed p, < yt, p >1 = [ exp (£<5)(w(p) )]w(p)*.
Thus £-»<y ί ?p> is continuous. Since G is discrete, this means that {yt} is a con-
tinuous one-parameter subgroup. Finally exp(tδ)u(p) = (yt,p}u(p) = uγt(u(p)).
Since span {u(p):peG} is dense in 91, exp(ί(5) = αyt.

The remark remains valid in case the action α has a non-trivial kernel JV. This
is because a continuous one-parameter subgroup of G/N always lifts to a conti-
nuous one-parameter subgroup of G. This follows, for instance, from [6, Lemma
3.12].

Theorem 2.1 can be generalized to C* dynamical systems (9X, G, α) where G
is compact and 91 is G-finite; that is Pπ(9ϊ) is finite dimensional for all πeG. For
this we need the following lemma, which may be known, since it is a straightforward
generalization of [2, Theorem 6].

Lemma 2.2. Let δ be a closed * derivation in a C* algebra 91. Suppose that φ is a
completely positive map ofSΆ into ffl(#P\ that the corresponding Stinespring represent-
ation o/9I is faithful, and that φ{δ{a)) = Ofor all ae£&(δ).

Assume that either of the following conditions holds:
(1) δ has a dense set of analytic elements, or
(2) Range (δ + ίl) is dense in SΆfor all ίeίR\{0}.
Then δ generates a C* dynamics of*&.

Proof. Let {π, Jf j be the Stinespring representation of 91 corresponding to the
completely positive map φ and let V:J^-+X* satisfy V*π(a)V= φ(a)(ae<Ά).
Define an operator H i n X by 2{H) = span {π(α) Vξ : ae®{δ\ ξeJtf}, iHπ(a)Vξ =
π(δ(a))Vξ. Using the derivation identity and the relation φ(δ(a)) = 0 one can
check that H is well-defined and symmetric. Furthermore π{2f(δ))β{H) c 3ι{H) and
π(δ(a))φ = ϊ[H, ά]ψ(ae@(δ)9ιl/e@(H)). One can now conclude that H is essentially
self-adjoint and that δ is a generator as in the proof of [2, Theorem 6]. •

Theorem 2.3. Lei (91, G, α) fee α C* dynamical system with G compact and 9ί G-
finite, and let δ be a closed * derivation in 91 commuting with a. Assume that ifas2ι(δ)
is fixed by α, then δ(a) = 0. It follows that δ generates a C* dynamics of

Proof. The proof of Theorem 2.1 shows that the G-finite elements of 9ί are a
dense set of analytic elements for δ. If {π,Jf} is a faithful representation of P0(9I),
then π°P0 is a faithful completely positive map of a 91 satisfying π°PQ(δ(a)) = 0
for all ae3)(δ). It follows from Lemma 2.2 that δ is a generator. •

3. Compact Transformation Groups

Definitions. (1) Let X be a locally compact Hausdorff space and δ a closed * deriva-
tion in C0(X). A closed subset M ^ X is called self determining (or a restriction set)
for 5 if whenever fe2(δ) and/ | M = 0, it follows that δ(f)\M = 0. If M is self-deter-
mining, the formula <5M(/|M) = δ(f)\M defines a * derivation in C0(M) with domain
{f\M:fe®(δ)}.

(2) A * derivation δ in a C* algebra 9ί is said to be well behaved if for every
ae9{δ)s&, there is a state φ of 9ί such that | φ(α)| = || α || and φ(δ(a)) = 0. For a *
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derivation δ in an abelian C* algebra CQ(X\ the following is an equivalent condi-
tion [11, Proposition 7]: for all xeX and for all/e0(<5) , if ||/|| = |/(x)|, then

Proposition 3.1. Lei δ be a closed * derivation in C0(X). Suppose ω is a state of
C0(X) with support M ^ X and ω(δ(f)) = 0 for allfe@(δ). Then M is self-deter-
mining and δM is closable.

Proof For all /, ge9(δ\

ω(fδ(g)) = ω(δ(fg)) - ω(δ(f)g) = - ω(δ(f)g).

If f\M = 0, then for all ge®(δ\ ω(δ(f)g) = - ω(fδ(g)) = 0. Since 3>(δ) is dense in
C0(X), it follows that δ(f)\M = 0. Thus M is self-determining.

Now suppose </π> c ®(<5)s/JM->0 and <5(/B)|M-»fc uniformly on M. Then
for all ge@(δ\ ω(δ(fn)g) = - ω ( / n % ) ) - 0. On the other hand, ω(δ(fn)g)- ω(%).
Therefore ω(%) = 0 for all ge2(δ\ and /z = 0. Thus (5Mis closable.

Theorem 3.2. Let X be a locally compact Hausdorff space, G a compact group, and
(C0(X\ G, α) a C* dynamical system. Let θ : G x X -> X be the corresponding con-
tinuous action of G on X. Suppose δ is a closed ^-derivation in C0(X) commuting with α.
Assume that if fe@(δ) is fixed by α, then /eker(<5). Then δ generates a C* dynamics
of C0(X). Ifψ is the action ofUonX corresponding to the C* dynamics exp(ί<5),
then each orbit ofxj/ lies in an orbit ofθ.

Proof. We have assumed PQ{@(δ)) c ker(δ). Since δ is closed, ker(δ) is norm-closed,
and it follows that P0(C0(X)) c ker(ί).

Let M be an orbit of θ, and let ω be the unique G-invariant state of C0(X) with
support M. Thus ω(f) = P0(/)(x) for any xeM. Since Po(<5(/)) = δ(P0(f)) = 0,
ω ( ^ ( / ) ) : = 0 for all fs2{δ\ Hence by the proposition, each orbit of M is self-
determining and δM is closable.

Now δM is invariant under the action of G on C(M). By Theorem 1, or [4,
Theorem 3.2], 5M generates a C* dynamics of C(M). It follows that δM is well
behaved, and because this is true of each orbit M, δ is well behaved.

Although we do not strictly need this, we wish to observe that each δM is already
closed. The argument is essentially due to Batty [1, Theorem 6.4]. Let !F be the
family of functions fe@(δ) such that f\M = 0 and / is fixed by α. By assumption
$F c ker((5). If peX\M, there is a ge@{δ) such that 0 ^ g ^ 1, gf(p)-= 1, and g\M = 0,
because ®(<5) is a Silov subalgebra of C0{X). Let/ = Pofe). Then/e J^ and/(p) > 0.
Consequently, M = r\ {/^(O) / e ^ } . Because ^ is well behaved, it follows from
[1, Corollary 4.5] that δM is closed.

Next we show that (I ± δ)(@(δ)) is dense in C0{X). It will then follow that δ
is a generator [9, Proposition 4.7]. Let FeCc{X) and let K be a saturated (that is,
G-invariant) compact subset of X such that -F = 0 outside K. If M is an orbit of
0, then there is an fe@(δ) such that (/ + <5(/))|M = F\M, because δM is a generator.
Let ε > 0. By a compactness argument, there is a saturated open set UΏ M such
that |F(x) — (/ 4- <5(/))(x)| < εϊor xeU. By compactness of K, there is a covering
{ί/1,..., Un} of K by saturated open sets and functions f19... Jne@(δ) such that
| F ( x ) - ( / . + <5(/.))(x)|<εforx6ί7..
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Let {hί,..., hn} be a partition of unity over K subordinate to {C/J, with each
h.eP0(C(X)) <= ker(5). Define/ - £ / Λ Then /e®(δ)* and <5(/) - X<5(/.)/ιr Now
F = £>i.F and F-(f + δ(f)) = lfi.(F-(fi + δ(fι))). It follows that | | F -
(/ + <*(/)) L < ε a n d (7 + < 5 ) ( ^ ) ) i s d e n s e Similarly (/ - δ){β{δ)) is dense, and
δ is a generator.

Since δ M is a generator for each orbit M, there is a one-parameter group
{0 t

M :ίelR} of homeomorphisms of M such that

f(Φt

M(p)) {fe2{δ),VeM). (1)
ί = 0

Define φt(p) = φt

M(p) if peM. For any fe@>{β) and p1,p2eX,

\f(Φt(p1)) -f(p2)\ £ \f(Φt(Pi)) - / ( P i ) l

Thus (t,p)-+J(φt{p)) is jointly continuous, and since ®(<5) is dense in C0(X),
ψ : ! R x I - > I i s a jointly continuous action of IR on X. Let {βt :teU} be the cor-
responding C* dynamics. It is evident from (1) (and a short compactness argu-
ment) that the generator D of {βt} extends δ. Therefore D = δ and exp(ίδ) = βt.
The statement about orbits is then clear. •

Remarks. (1) In modern potential theory there is a large literature on dissipative
(dispersive) operators D commuting with compact group actions. Under general
conditions numerous authors obtain dissipative group invariant extension
operators D^D which generate strongly continuous contractive (respectively,
positive) semigroups {expίZ)}f>0. But in the different settings the dissipative
(respectively, dispersive) condifion on the initial operator D is typically not a
consequence of the group invariance, and is placed as a separate assumption. The
relevant dissipativeness assumption for derivations is well-behavedness, and it is
interesting that, in the present setting, this condition does follow from the assumed
group invariance.

(2) We note that δ is implemented by a self-adjoint operator in a suitable
representation. Let ω be any faithful G-invariant state of C0(X). Then ω satisfies
ω{δ(f)) = 0 {fe®{δ)). Let C0(X) act on L2(X, ω) by multiplication. Define H in
L2(X, ω) by 3f(H) - 9>{δ\ iHf= δ{f). Then H is essentially self-adjoint, and H
implements δ in this representation. That is, δ(f)g = ί[H,f~]g(fe@(δ), ge3>(H)).

4. Actions on

In this section we prove an analogue of Theorem 3.2 for the compact operators.

Theorem 4.1. Let a be a strongly continuous action of a compact group G on the
algebra Jf of compact operators on a separable Hilbert space Jf7. Let δ be a closed *
derivation in C/f which commutes with a. Assume that if ae&(δ) is fixed by α, then
δ(a) = 0. It follows that δ generates a C* dynamics.

Proof Let °lί denote the unitary operators on ffl ,0> the projective unitary group
, and π'M^Θ* the natural map. We give °U the weak operator topology.
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& the quotient topology and Aut(jΓ) the point-norm topology (απ-> 1 if [| απ(x) —

x| |->0 for all xejΓ). Then there is a topological group isomorphism φ:^-^

Aut (Jf) given by φ(π(u))(x) = uxu*.
According to [10, pp. 103-111], there is an exact sequence of compact groups

I->T->#ΛG-+I,
and there is a continuous homomorphism σ :H -» % such that the following

diagram commutes:

H —>G

Thus oc°j(h)(x) = σ(h)xσ(h)*(heH,xeyf). Replacing G by H and α by α°j5

we can assume that α is implemented by a continuous unitary representation
σoϊG.

A finite rank projection e is fixed by α if and only if eJ f is reducing for σ. Since
G is compact, there is an increasing sequence < en > of such projections with strong-
limit (e π )=H. By assumption P 0 (Jf) ^ ker(<5); hence eneker(<5) and δ(enaen) =
enδ(a)en(ae@(δ)). Since en^((5)en is dense in enX'en and the latter algebra is finite
dimensional, we have enJΓen = en^(5)en c ^((5). The restriction of (5 to enJf eπ is
necessarily a bounded derivation of this algebra. Let JΓO = (J £„<#"£„. It follows

that δ \jf0 is well behaved and (/ ± δ)jf0 = j f 0 . But since || enaen - a \\ -> 0 for all
αe JΓ, it follows that JΓO is a core for δ. Hence δ is a generator. •

We suspect that there should be a common generalization of Theorem 3.2 and
4.1 to a wider class of C* algebras.

Notes added in proof: (1) After completing this paper we learned that C. Peligrad [13] and A. Ikunishi

[12] have also studied closed * derivations commuting with compact group actions. Our Theorem 2.1

was first proved by Peligrad.

(2) One can give an example showing that the assumption that G is compact is essential

in Theorem 2.1.

(3) Further progress has been made on the problem considered here.

Let (31, G, α) be a C* dynamical system with G compact. Let δ be a closed * derivation in 31 which

commutes with α. Suppose the fixed point algebra 3ία s ker(<5).

Theorem [14]. If G is abelian, then δ is a generator.

Theorem [15]. If G is separable and 31 is type I separable, then δ is a generator.
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