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Abstract. Let 6 be a closed * derivation in a C* algebra 2 which commutes
with an ergodic action of a compact group on . Then § generates a C*
dynamics of . Similar results are obtained for non-ergodic actions on abelian
C* algebras and on the algebra of compact operators.

1. Introduction

In [9] Sakai showed that a non-zero closed * derivation in C(T) commuting with
translations is a constant multiple of the derivative. Following this, it was
shown in [4, 7] that if G is a locally compact group and ¢ is a closed * derivation
in C,(G) commuting with left translations by elements of G, then ¢ is the generator
of a C* dynamics (i.e., strongly continuous one-parameter group of * automor-
phisms) of C,(G). A like result holds for C,(G/H) (H a closed sub-group of G),
provided that G is either separable or the projective limit of Lie groups. In this
note, we assume G is compact and we obtain similar results for an ergodic action of
G on an arbitrary C* algebra (Theorem 2.1), and for an arbitrary action of G on an
abelian C* algebra (Theorem 3.2), or on the algebra of compact operators
(Theorem 4.1).

We refer to [1, 3, 9] for background on unbounded derivations in C* algebras.

2. Ergodic and G-Finite Actions

Before stating our first result we recall a few facts about Banach space representa-
tions of compact groups. Let V' be a Banach space, G a compact group, and « a
strongly continuous representation of G on V.For each neG, define P :V — Vby

P (x) = [dim(n)tr ((s) ) (x)ds.
G
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Then P_is a continuous projection on V. The projection

Py:x— [o(x)ds,
G

corresponding to the trivial one-dimensional representation has as its range the
space of fixed points for the action o. A vector xeV’ lies in span{P_(V):neG} if
and only if span{o(x):seG} is finite dimensional. Such vectors are called G-
finite. The G-finite vectors are norm dense in V.

Theorem 2.1. Let U be a C* algebra with identity 1,G a compact group, and
o: G — Aut(W) a strongly continuous ergodic action. Let 6 be a closed * derivation
in A commuting with the action of a. (i.e., a0, ' = d for all s€ G.) Then 6 generates
a C* dynamics of .

Proof. Let P_, P, be as above. Note that P () = C1 since « is ergodic. There is a

unique falthful G invariant state T on 2, defmed by ©(x)1 = P,(x). Z(0) is a Banach
*-algebra with the graph norm

%l = Il + oty

Since § commutes with o, s — o |2(0) is a strongly continuous representation of
G on Z(0). It follows that for each x€2(3) and neG,

P (x)e2(0), and (P, (x))= P (5(x)). (1)
Note in particular that for xe2(9),
T(0(x))1 = Py(6(x)) = 6(P(x))
= o(z(x)1) = t(x)o(1) 2)
=0.

Since Z(0) is dense in A, P_(2(6)) is dense in P_(A). But Hoegh-Krohn, Land-
stad and Stgrmer [ 5] showed that P_(2) is finite-dimensional. Therefore, P () =
P (Z(5)) = %(6). By (1), P() is invariant under é and therefore consists of
analytic vectors for 6. Thus the G-finite vectors are a dense set of analytic vectors

for 6. Since A has a faithful state 7 satisfying 7(5(x)) = 0(xeZ(d)) and 6 has a dense
set of analytic vectors, it follows that § generates a C* dynamics [2, Theorem 6 |. Il

Remark. If G, in Theorem 1, is abelian, then there is a continuous one parameter
subgroup {y,} of G such that exp (1) = a,. To see this, assume first that G acts
faithfully on 2. According to [8], for each) pe G, the spectral subspace correspond-
ing to p is one dimensional and is spanned by a unitary u(p). The action of G
is given by o, (u(p)) = <g, p ) u(p). For each p, geG, there is an m(p, )€ T such that

u(p)ulg) = m(p, Qu(p + q). (3)

Since C-u(p) is invariant under exp (t5), there is for eachteRand pe G a A(t, p)e T
such that

exp(d)u(p) = AlL, plu(p)- )
Using this and (3) one checks that p — A(t, p) is a character of G for each teR.
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Hence there is a unique y,€G such that A(t, p) = (y,, p>. It follows from (4) that
t— 7,is a one-parameter subgroup of G. For fixed p, {y,, p >1 = [ exp(t6)(u(p) ) Ju(p)*.
Thus ¢t —{y,,p> is continuous. Since G is discrete, this means that {y,} is a con-
tinuous one-parameter subgroup. Finally exp(td)u(p) =<7,, p)ulp) = (u(p)).
Since span {u(p):peG} is dense in A, exp(td) = o,,.

The remark remains valid in case the action o has a non-trivial kernel N. This
is because a continuous one-parameter subgroup of G/N always lifts to a conti-
nuous one-parameter subgroup of G. This follows, for instance, from [6, Lemma
3.12].

Theorem 2.1 can be generalized to C* dynamical systems (2, G, ) where G
is compact and U is G-finite; that is P () is finite dimensional for all neG. For
this we need the following lemma, which may be known, since it is a straightforward
generalization of [2, Theorem 6].

Lemma 2.2. Let 6 be a closed * derivation in a C* algebra W. Suppose that ¢ is a
completely positive map of Winto B(H), that the corresponding Stinespring represent-
ation of W is faithful, and that ¢(d(a)) = 0 for all acZ(0).

Assume that either of the following conditions holds:

(1) S has a dense set of analytic elements, or

(2) Range (6 + t1) is dense in U for all te R\{0}.

Then 6 generates a C* dynamics of U.

Proof. Let {n, #"} be the Stinespring representation of 2 corresponding to the
completely positive map ¢ and let V:# — A satisfy VFa(a)V= ¢d(a)(acN).
Define an operator H in#" by 2 (H) = span {n(a) V& :ae 2 (6), (e '}, iHr(a)VE =
(d(a))VE. Using the derivation identity and the relation ¢(5(a))=0 one can
check that H is well-defined and symmetric. Furthermore n(2(6))2(H) < 2(H) and
(@)W = i[H, aly(acZ(3), y e2(H)). One can now conclude that H is essentially
self-adjoint and that ¢ is a generator as in the proof of [2, Theorem 6]. ]

Theorem 2.3. Let (U, G, a) be a C* dynamical system with G compact and W G-
finite, and let 0 be a closed * derivation in W commuting with o. Assume that if ac2(0)
is fixed by o, then d(a) = 0. It follows that 6 generates a C* dynamics of .

Proof. The proof of Theorem 2.1 shows that the G-finite elements of U are a
dense set of analytic elements for 0. If {n,5#} is a faithful representation of P (2I),
then n°P, is a faithful completely positive map of a U satisfying noP ((a)) =0
for all ae2(9). It follows from Lemma 2.2 that § is a generator. |

3. Compact Transformation Groups

Definitions. (1) Let X be alocally compact Hausdorff space and 6 a closed * deriva-
tion in C,(X). A closed subset M < X is called self-determining (or a restriction set)
for ¢ if whenever f€ 2(d) and f |,, = 0, it follows that 5(f)|,, = 0. If M is self-deter-
mining, the formula 6,,(f|,,) = ()|, defines a * derivation in C,(M) with domain
{f 1y f€205)}.

(2) A * derivation § in a C* algebra 2 is said to be well behaved if for every
ae%(d), ,. there is a state ¢ of A such that |P(a)| = | a| and $(S(a)) = 0. For a *

s.a’
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derivation é in an abelian C* algebra C(X), the following is an equivalent condi-
tion [11, Proposition 7]: for all xe X and for all fe2(d),, , if | f| =|f(x)|, then
of)(x) =

Proposition 3.1. Let 6 be a closed * derivation in C(X). Suppose w is a state of
Co(X) with support M = X and w(3(f)) =0 for all feZ(3). Then M is self-deter-
mining and 9, is closable.

Proof. For all f, ge2(9),

w(f(g)) = @(0(f9)) — @(8(f)g) = — @(3(f)g)-

If f|,, =0, then for all ge2(d), w(5(f)g) = — w(f(g))= 0. Since 2(J) is dense in
C,(X), it follows that d(f )|M = 0. Thus M is self-determining.
Now suppose < f, > < 2(),f,|,,— 0 and 6(f,)|,,— h uniformly on M. Then
for all ge2(6), w(6(f,)g) = — o(f,0(g))— 0. On the other hand, w(d(f,)g)— w(hg).
Therefore w(hg) = 0 for all ge%(5), and h = 0. Thus 6,,is closable.

Theorem 3.2. Let X be a locally compact Hausdorff space, G a compact group, and
(Co(X), G, ) a C* dynamical system. Let 6:G x X — X be the corresponding con-
tinuous action of G on X.Suppose d is a closed *-derivation in C (X)) commuting with o.
Assume that if f€2(0)is fixed by a, then feker(9). Then 6 generates a C* dynamics
of Co(X). If Y is the action of R on X corresponding to the C* dynamics exp(td),
then each orbit of Y lies in an orbit of 6.

Proof. Wehave assumed P,(2(8)) < ker(8). Since ¢ is closed, ker(d) is norm-closed,
and it follows that P,(C,(X)) < ker(é).

Let M be an orbit of 6, and let w be the unique G-invariant state of C,(X) with
support M. Thus w(f)= P,(f)(x) for any xe M. Since P,(5(f)) = d(P,(f)) =0
w(9(f))=0 for all feZ(5). Hence by the proposition, each orbit of M is self-
determining and 6,, is closable.

Now 5M is invariant under the action of G on C(M). By Theorem 1, or [4,
Theorem 3.2], §,, generates a C* dynamics of C(M). It follows that J,, is well
behaved, and because this is true of each orbit M, ¢ is well behaved.

Although we do not strictly need this, we wish to observe that each d,, is already
closed. The argument is essentially due to Batty [1, Theorem 6.4]. Let & be the
family of functions fe2(d) such that f|,, =0 and f is fixed by o. By assumption
F < ker (9). If peX\M, there is a geZ(0) such that 0 < g < 1,9(p)= 1, and g|,, = 0,
because Z(0) is a Silov subalgebra of C(X). Let f = P (g). Then fe # and f(p) > 0.
Consequently, M = n{f~*(0);feZ }. Because § is well behaved, it follows from
[1, Corollary 4.5] that J,, is closed.

Next we show that (I £+ 0)(2(d)) is dense in C,(X). It will then follow that 6
is a generator [9, Proposition 4.7]. Let FeC (X) and let K be a saturated (that is,
G-invariant) compact subset of X such that F = 0 outside K. If M is an orbit of
0, then there is an f€%(8) such that (f + (f))|,, = F|,,. because J,, is a generator.
Let ¢ > 0. By a compactness argument, there is a saturated open set U2 M such
that IF xX)—(f+o(f ))(x)l < ¢ for xe U. By compactness of K, there is a covering
{U,,...,U,} of K by saturated open sets and functions f, ..., f,€2(d) such that
|F(x) = (f,+0(f))(x)| <& for xeU,.
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Let {h,,..., h,} be a partition of unity over K subordinate to {U,}, with each
h,eP,(C(X)) < ker(9). Define f =) f.h. Then f€2(5) and 6(f) =Y 6(f )h,. Now
F=YnF and F—(f+0(f))=Yh(F—(f;+(f)). It follows that ||F—
(f +0(f)]l, <eand (I +8)(2(3)) is dense. Similarly (I — 6)(2(5)) is dense, and
0 is a generator.

Since 6,, is a generator for each orbit M, there is a one-parameter group
{¢M :teR} of homeomorphisms of M such that

5(f)(p)=i @ p) (fe2(9), peM). 1)

dti,_,
Define ¢ (p) = ¢,M(p) if peM. For any f€2(é) and p,,p,eX,

|f(p)) = FP) S| (b p) = F )|+ f(0)) —f(p,)]
6N el + 15y = £ @)l

Thus (t, p)—.f(¢(p)) is jointly continuous, and since Z(0) is dense in C,(X),
¢:R x X — X is a jointly continuous action of R on X. Let {f,:teR} be the cor-
responding C* dynamics. It is evident from (1) (and a short compactness argu-
ment) that the generator D of {f,} extends J. Therefore D =6 and exp(td) = f,.
The statement about orbits is then clear. u

Remarks. (1) In modern potential theory there is a large literature on dissipative
(dispersive) operators D commuting with compact group actions. Under general
conditions numerous authors obtain dissipative group invariant extension
operators D 2 D which generate strongly continuous contractive (respectively,
positive) semigroups {exptD},, ,. But in the different settings the dissipative
(respectively, dispersive) condition on the initial operator D is typically not a
consequence of the group invariance, and is placed as a separate assumption. The
relevant dissipativeness assumption for derivations is well-behavedness, and it is
interesting that, in the present setting, this condition does follow from the assumed
group invariance.

(2) We note that ¢ is implemented by a self-adjoint operator in a suitable
representation. Let w be any faithful G-invariant state of C(X). Then w satisfies
w(8(f)) =0 (fe2(5)). Let C,(X) act on L*X, w) by multiplication. Define H in
LY(X, ) by 2(H) = 2(5), iHf = d(f). Then H is essentially self-adjoint, and H
implements ¢ in this representation. That is, 8(f)g = i[ H, f Jg(f€ 2(6), g€ Z(H)).

4. Actions on J/ ()
In this section we prove an analogue of Theorem 3.2 for the compact operators.

Theorem 4.1. Let o be a strongly continuous action of a compact group G on the
algebra A" of compact operators on a separable Hilbert space # . Let § be a closed *
derivation in A" which commutes with o. Assume that if ac 2(9) is fixed by o, then
a) = 0. It follows that 6 generates a C* dynamics.

Proof. Let % denote the unitary operators on #, % the projective unitary group
U)T 1, and 7:% — 2 the natural map. We give % the weak operator topology,
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2 the quotient topology and Aut(¢") the point-norm topology (a, = 1 if || o, (x) —
xH —0 for all xex'). Then there is a topological group isomorphism ¢:Z2 —
Aut () given by ¢(n(u))(x) = uxu™.
According to [10, pp. 103—111], there is an exact sequence of compact groups
1-T->H EN G-1,
and there is a continuous homomorphism ¢:H — % such that the following
diagram commutes:

U —"— 2P

4 ¢ Va

H _j_,G

Thus a°j(h)(x) = a(h)xa(h)*(he H, xe ). Replacing G by H and o by ac°j,
we can assume that o is implemented by a continuous unitary representation
g of G.

A finite rank projection e is fixed by o if and only if es# is reducing for ¢. Since
G is compact, there is an increasing sequence < e, » of such projections with strong-
limit (e,) =1. By assumption P,(4") < ker(d); hence e ,eker(d) and d(eae,)=
e, 0a)e (acZ(0)). Since e, Z(d)e, is dense in e, H'e, and the latter algebra is finite
dimensional, we have e e, = e, %(0)e, = %(0). The restriction of J to e, A'e, is
necessarily a bounded derivation of this algebra. Let ", = Je, #’e,. It follows

that 6|, is well behaved and (I + 8)#", = A’ But since | enZen —al| - 0 for all
ae A ,it follows that ", is a core for 6. Hence 6 is a generator. |

We suspect that there should be a common generalization of Theorem 3.2 and
4.1 to a wider class of C* algebras.

Notes added in proof: (1) After completing this paper we learned that C. Peligrad [13] and A. Ikunishi
[12] have also studied closed * derivations commuting with compact group actions. Our Theorem 2.1
was first proved by Peligrad.

(2) One can give an example showing that the assumption that G is compact is essential
in Theorem 2.1.

(3) Further progress has been made on the problem considered here.

Let (U, G, o) be a C* dynamical system with G compact. Let 6 be a closed * derivation in 2 which
commutes with «. Suppose the fixed point algebra UA* < ker(d).

Theorem [14]. If G is abelian, then J is a generator.
Theorem [15]. If G is separable and 2 is type I separable, then ¢ is a generator.
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