Unbounded Derivations Commuting with Compact Group Actions*

- F. Goodman¹ and P. E. T. Jorgensen²
- 1 Department of Mathematics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- 2 Mathematics Institute, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract. Let δ be a closed * derivation in a C^* algebra $\mathfrak A$ which commutes with an ergodic action of a compact group on $\mathfrak A$. Then δ generates a C^* dynamics of $\mathfrak A$. Similar results are obtained for non-ergodic actions on abelian C^* algebras and on the algebra of compact operators.

1. Introduction

In [9] Sakai showed that a non-zero closed * derivation in $C(\mathbb{T})$ commuting with translations is a constant multiple of the derivative. Following this, it was shown in [4, 7] that if G is a locally compact group and δ is a closed * derivation in $C_0(G)$ commuting with left translations by elements of G, then δ is the generator of a C^* dynamics (i.e., strongly continuous one-parameter group of * automorphisms) of $C_0(G)$. A like result holds for $C_0(G/H)$ (H a closed sub-group of G), provided that G is either separable or the projective limit of Lie groups. In this note, we assume G is compact and we obtain similar results for an ergodic action of G on an arbitrary C^* algebra (Theorem 2.1), and for an arbitrary action of G on an abelian C^* algebra (Theorem 3.2), or on the algebra of compact operators (Theorem 4.1).

We refer to [1, 3, 9] for background on unbounded derivations in C^* algebras.

2. Ergodic and G-Finite Actions

Before stating our first result we recall a few facts about Banach space representations of compact groups. Let V be a Banach space, G a compact group, and α a strongly continuous representation of G on V. For each $\pi \in \widehat{G}$, define $P_{\pi}: V \to V$ by

$$P_{\pi}(x) = \int_{G} \dim(\pi) \operatorname{tr}(\pi(s)) \alpha_{s}(x) ds.$$

^{*} Research supported by N.S.F.

Then P_{π} is a continuous projection on V. The projection

$$P_0: x \to \int_G \alpha_s(x) ds$$
,

corresponding to the trivial one-dimensional representation has as its range the space of fixed points for the action α . A vector $x \in V$ lies in span $\{P_{\pi}(V) : \pi \in \widehat{G}\}$ if and only if span $\{\alpha_s(x) : s \in G\}$ is finite dimensional. Such vectors are called G-finite. The G-finite vectors are norm dense in V.

Theorem 2.1. Let $\mathfrak A$ be a C^* algebra with identity $\mathbb A$, G a compact group, and $\alpha: G \to \operatorname{Aut}(\mathfrak A)$ a strongly continuous ergodic action. Let δ be a closed * derivation in $\mathfrak A$ commuting with the action of α . (i.e., $\alpha_s \delta \alpha_s^{-1} = \delta$ for all $s \in G$.) Then δ generates a C^* dynamics of $\mathfrak A$.

Proof. Let P_{π} , P_0 be as above. Note that $P_0(\mathfrak{A})=\mathbb{C}\mathbb{1}$ since α is ergodic. There is a unique faithful G-invariant state τ on \mathfrak{A} , defined by $\tau(x)\mathbb{1}=P_0(x)$. $\mathscr{D}(\delta)$ is a Banach *-algebra with the graph norm

$$||x||_{\delta} = ||x|| + ||\delta(x)||.$$

Since δ commutes with $\alpha, s \to \alpha_s | \mathcal{D}(\delta)$ is a strongly continuous representation of G on $\mathcal{D}(\delta)$. It follows that for each $x \in \mathcal{D}(\delta)$ and $\pi \in \hat{G}$,

$$P_{\pi}(x) \in \mathcal{D}(\delta), \quad \text{and} \quad \delta(P_{\pi}(x)) = P_{\pi}(\delta(x)).$$
 (1)

Note in particular that for $x \in \mathcal{D}(\delta)$,

$$\tau(\delta(x))\mathbb{1} = P_0(\delta(x)) = \delta(P_0(x))$$

$$= \delta(\tau(x)\mathbb{1}) = \tau(x)\delta(\mathbb{1})$$

$$= 0$$
(2)

Since $\mathcal{D}(\delta)$ is dense in \mathfrak{A} , $P_{\pi}(\mathcal{D}(\delta))$ is dense in $P_{\pi}(\mathfrak{A})$. But Hoegh-Krohn, Landstad and Størmer [5] showed that $P_{\pi}(\mathfrak{A})$ is finite-dimensional. Therefore, $P_{\pi}(\mathfrak{A}) = P_{\pi}(\mathcal{D}(\delta)) \subseteq \mathcal{D}(\delta)$. By (1), $P_{\pi}(\mathfrak{A})$ is invariant under δ and therefore consists of analytic vectors for δ . Thus the G-finite vectors are a dense set of analytic vectors for δ . Since \mathfrak{A} has a faithful state τ satisfying $\tau(\delta(x)) = 0(x \in \mathcal{D}(\delta))$ and δ has a dense set of analytic vectors, it follows that δ generates a C^* dynamics [2, Theorem 6].

Remark. If G, in Theorem 1, is abelian, then there is a continuous one parameter subgroup $\{\gamma_t\}$ of G such that $\exp(t\delta) = \alpha_{\gamma_t}$. To see this, assume first that G acts faithfully on \mathfrak{A} . According to [8], for each $p \in \hat{G}$, the spectral subspace corresponding to p is one dimensional and is spanned by a unitary u(p). The action of G is given by $\alpha_g(u(p)) = \langle g, p \rangle u(p)$. For each $p, q \in \hat{G}$, there is an $m(p, q) \in \mathbb{T}$ such that

$$u(p)u(q) = m(p,q)u(p+q).$$
(3)

Since $\mathbb{C} \cdot u(p)$ is invariant under $\exp(t\delta)$, there is for each $t \in \mathbb{R}$ and $p \in \hat{G}$ a $\lambda(t, p) \in \mathbb{T}$ such that

$$\exp(t\delta)u(p) = \lambda(t, p)u(p). \tag{4}$$

Using this and (3) one checks that $p \to \lambda(t, p)$ is a character of \hat{G} for each $t \in \mathbb{R}$.

Unbounded Derivations 401

Hence there is a unique $\gamma_t \in G$ such that $\lambda(t,p) = \langle \gamma_t,p \rangle$. It follows from (4) that $t \to \gamma_t$ is a one-parameter subgroup of G. For fixed $p, \langle \gamma_t,p \rangle \mathbb{I} = [\exp(t\delta)(u(p))]u(p)^*$. Thus $t \to \langle \gamma_t,p \rangle$ is continuous. Since \hat{G} is discrete, this means that $\{\gamma_t\}$ is a continuous one-parameter subgroup. Finally $\exp(t\delta)u(p) = \langle \gamma_t,p \rangle u(p) = \alpha_{\gamma_t}(u(p))$. Since span $\{u(p):p \in G\}$ is dense in \mathfrak{A} , $\exp(t\delta) = \alpha_{\gamma_t}$.

The remark remains valid in case the action α has a non-trivial kernel N. This is because a continuous one-parameter subgroup of G/N always lifts to a continuous one-parameter subgroup of G. This follows, for instance, from [6, Lemma 3.12].

Theorem 2.1 can be generalized to C^* dynamical systems $(\mathfrak{A}, G, \alpha)$ where G is compact and \mathfrak{A} is G-finite; that is $P_{\pi}(\mathfrak{A})$ is finite dimensional for all $\pi \in \hat{G}$. For this we need the following lemma, which may be known, since it is a straightforward generalization of [2, Theorem 6].

Lemma 2.2. Let δ be a closed * derivation in a C* algebra \mathfrak{A} . Suppose that ϕ is a completely positive map of \mathfrak{A} into $\mathscr{B}(\mathscr{H})$, that the corresponding Stinespring representation of \mathfrak{A} is faithful, and that $\phi(\delta(a)) = 0$ for all $a \in \mathcal{D}(\delta)$.

Assume that either of the following conditions holds:

- (1) δ has a dense set of analytic elements, or
- (2) Range $(\delta + t1)$ is dense in \mathfrak{A} for all $t \in \mathbb{R} \setminus \{0\}$.

Then δ generates a C^* dynamics of \mathfrak{A} .

Proof. Let $\{\pi, \mathcal{K}\}$ be the Stinespring representation of \mathfrak{A} corresponding to the completely positive map ϕ and let $V: \mathcal{H} \to \mathcal{K}$ satisfy $V^*\pi(a)V = \phi(a)(a \in \mathfrak{A})$. Define an operator H in \mathcal{K} by $\mathcal{D}(H) = \operatorname{span}\{\pi(a)V\xi: a \in \mathcal{D}(\delta), \xi \in \mathcal{H}\}$, $iH\pi(a)V\xi = \pi(\delta(a))V\xi$. Using the derivation identity and the relation $\phi(\delta(a)) = 0$ one can check that H is well-defined and symmetric. Furthermore $\pi(\mathcal{D}(\delta))\mathcal{D}(H) \subseteq \mathcal{D}(H)$ and $\pi(\delta(a))\psi = i[H, a]\psi(a \in \mathcal{D}(\delta), \psi \in \mathcal{D}(H))$. One can now conclude that H is essentially self-adjoint and that δ is a generator as in the proof of [2, Theorem 6].

Theorem 2.3. Let $(\mathfrak{A}, G, \alpha)$ be a C^* dynamical system with G compact and \mathfrak{A} G-finite, and let δ be a closed * derivation in \mathfrak{A} commuting with α . Assume that if $a \in \mathcal{D}(\delta)$ is fixed by α , then $\delta(a) = 0$. It follows that δ generates a C^* dynamics of \mathfrak{A} .

Proof. The proof of Theorem 2.1 shows that the *G*-finite elements of $\mathfrak A$ are a dense set of analytic elements for δ . If $\{\pi,\mathscr H\}$ is a faithful representation of $P_0(\mathfrak A)$, then $\pi^{\circ}P_0$ is a faithful completely positive map of a $\mathfrak A$ satisfying $\pi^{\circ}P_0(\delta(a))=0$ for all $a\in\mathscr D(\delta)$. It follows from Lemma 2.2 that δ is a generator.

3. Compact Transformation Groups

Definitions. (1) Let X be a locally compact Hausdorff space and δ a closed * derivation in $C_0(X)$. A closed subset $M \subseteq X$ is called self-determining (or a restriction set) for δ if whenever $f \in \mathcal{D}(\delta)$ and $f \mid_M = 0$, it follows that $\delta(f) \mid_M = 0$. If M is self-determining, the formula $\delta_M(f \mid_M) = \delta(f) \mid_M$ defines a * derivation in $C_0(M)$ with domain $\{f \mid_M : f \in \mathcal{D}(\delta)\}$.

(2) A * derivation δ in a C^* algebra $\mathfrak A$ is said to be well behaved if for every $a \in \mathscr{D}(\delta)_{s,a}$, there is a state ϕ of $\mathfrak A$ such that $|\phi(a)| = ||a||$ and $\phi(\delta(a)) = 0$. For a *

derivation δ in an abelian C^* algebra $C_0(X)$, the following is an equivalent condition [11, Proposition 7]: for all $x \in X$ and for all $f \in \mathcal{D}(\delta)_{s.a.}$, if ||f|| = |f(x)|, then $\delta(f)(x) = 0$.

Proposition 3.1. Let δ be a closed * derivation in $C_0(X)$. Suppose ω is a state of $C_0(X)$ with support $M\subseteq X$ and $\omega(\delta(f))=0$ for all $f\in \mathcal{D}(\delta)$. Then M is self-determining and δ_M is closable.

Proof. For all $f, g \in \mathcal{D}(\delta)$,

$$\omega(f\delta(g)) = \omega(\delta(fg)) - \omega(\delta(f)g) = -\omega(\delta(f)g).$$

If $f|_{M} = 0$, then for all $g \in \mathcal{D}(\delta)$, $\omega(\delta(f)g) = -\omega(f\delta(g)) = 0$. Since $\mathcal{D}(\delta)$ is dense in $C_0(X)$, it follows that $\delta(f)|_{M} = 0$. Thus M is self-determining.

Now suppose $\langle f_n \rangle \subseteq \mathscr{D}(\delta), f_n|_M \to 0$ and $\delta(f_n)|_M \to h$ uniformly on M. Then for all $g \in \mathscr{D}(\delta), \omega(\delta(f_n)g) = -\omega(f_n\delta(g)) \to 0$. On the other hand, $\omega(\delta(f_n)g) \to \omega(hg)$. Therefore $\omega(hg) = 0$ for all $g \in \mathscr{D}(\delta)$, and h = 0. Thus δ_M is closable.

Theorem 3.2. Let X be a locally compact Hausdorff space, G a compact group, and $(C_0(X), G, \alpha)$ a C^* dynamical system. Let $\theta: G \times X \to X$ be the corresponding continuous action of G on X. Suppose δ is a closed *-derivation in $C_0(X)$ commuting with α . Assume that if $f \in \mathcal{D}(\delta)$ is fixed by α , then $f \in \ker(\delta)$. Then δ generates a C^* dynamics of $C_0(X)$. If ψ is the action of $\mathbb R$ on X corresponding to the C^* dynamics $\exp(t\delta)$, then each orbit of ψ lies in an orbit of θ .

Proof. We have assumed $P_0(\mathcal{D}(\delta)) \subseteq \ker(\delta)$. Since δ is closed, $\ker(\delta)$ is norm-closed, and it follows that $P_0(C_0(X)) \subseteq \ker(\delta)$.

Let M be an orbit of θ , and let ω be the unique G-invariant state of $C_0(X)$ with support M. Thus $\omega(f) = P_0(f)(x)$ for any $x \in M$. Since $P_0(\delta(f)) = \delta(P_0(f)) = 0$, $\omega(\delta(f)) = 0$ for all $f \in \mathcal{D}(\delta)$. Hence by the proposition, each orbit of M is self-determining and δ_M is closable.

Now $\bar{\delta}_M$ is invariant under the action of G on C(M). By Theorem 1, or [4, Theorem 3.2], $\bar{\delta}_M$ generates a C^* dynamics of C(M). It follows that δ_M is well behaved, and because this is true of each orbit M, δ is well behaved.

Although we do not strictly need this, we wish to observe that each δ_M is already closed. The argument is essentially due to Batty [1, Theorem 6.4]. Let \mathscr{F} be the family of functions $f\in \mathscr{D}(\delta)$ such that $f|_M=0$ and f is fixed by α . By assumption $\mathscr{F}\subseteq\ker(\delta)$. If $p\in X\backslash M$, there is a $g\in \mathscr{D}(\delta)$ such that $0\le g\le 1$, g(p)=1, and $g|_M=0$, because $\mathscr{D}(\delta)$ is a Šilov subalgebra of $C_0(X)$. Let $f=P_0(g)$. Then $f\in \mathscr{F}$ and f(p)>0. Consequently, $M=\cap\{f^{-1}(0)\,;f\in \mathscr{F}\}$. Because δ is well behaved, it follows from [1, Corollary 4.5] that δ_M is closed.

Next we show that $(I \pm \delta)(\mathcal{D}(\delta))$ is dense in $C_0(X)$. It will then follow that δ is a generator [9, Proposition 4.7]. Let $F \in C_c(X)$ and let K be a saturated (that is, G-invariant) compact subset of X such that F = 0 outside K. If M is an orbit of θ , then there is an $f \in \mathcal{D}(\delta)$ such that $(f + \delta(f))|_M = F|_M$, because δ_M is a generator. Let $\varepsilon > 0$. By a compactness argument, there is a saturated open set $U \supseteq M$ such that $|F(x) - (f + \delta(f))(x)| < \varepsilon$ for $x \in U$. By compactness of K, there is a covering $\{U_1, \ldots, U_n\}$ of K by saturated open sets and functions $f_1, \ldots, f_n \in \mathcal{D}(\delta)$ such that $|F(x) - (f_i + \delta(f_i))(x)| < \varepsilon$ for $x \in U_i$.

Unbounded Derivations 403

Let $\{h_1,\ldots,h_n\}$ be a partition of unity over K subordinate to $\{U_i\}$, with each $h_i{\in}P_0(C(X)){\subseteq}\ker(\delta)$. Define $f=\sum f_ih_i$. Then $f{\in}\mathscr{D}(\delta)$ and $\delta(f)=\sum \delta(f_i)h_i$. Now $F=\sum h_iF$ and $F-(f+\delta(f))=\sum h_i(F-(f_i+\delta(f_i)))$. It follows that $\|F-(f+\delta(f))\|_{\infty}<\varepsilon$ and $(I+\delta)(\mathscr{D}(\delta))$ is dense. Similarly $(I-\delta)(\mathscr{D}(\delta))$ is dense, and δ is a generator.

Since δ_M is a generator for each orbit M, there is a one-parameter group $\{\phi_{\cdot}^M:t\in\mathbb{R}\}$ of homeomorphisms of M such that

$$\delta(f)(p) = \frac{d}{dt}\Big|_{t=0} f(\phi_t^M(p)) \quad (f \in \mathcal{D}(\delta), \ p \in M). \tag{1}$$

Define $\phi_t(p) = \phi_t^M(p)$ if $p \in M$. For any $f \in \mathcal{D}(\delta)$ and $p_1, p_2 \in X$,

$$\begin{aligned} \left| f(\phi_t(p_1)) - f(p_2) \right| & \leq \left| f(\phi_t(p_1)) - f(p_1) \right| + \left| f(p_1) - f(p_2) \right| \\ & \leq \left\| \delta(f) \right\|_{\mathcal{L}} |t| + |f(p_1) - f(p_2)|. \end{aligned}$$

Thus $(t,p) \rightarrow f(\phi_t(p))$ is jointly continuous, and since $\mathcal{D}(\delta)$ is dense in $C_0(X)$, $\phi: \mathbb{R} \times X \rightarrow X$ is a jointly continuous action of \mathbb{R} on X. Let $\{\beta_t: t \in \mathbb{R}\}$ be the corresponding C^* dynamics. It is evident from (1) (and a short compactness argument) that the generator D of $\{\beta_t\}$ extends δ . Therefore $D = \delta$ and $\exp(t\delta) = \beta_t$. The statement about orbits is then clear.

Remarks. (1) In modern potential theory there is a large literature on dissipative (dispersive) operators D commuting with compact group actions. Under general conditions numerous authors obtain dissipative group invariant extension operators $\widetilde{D} \supseteq D$ which generate strongly continuous contractive (respectively, positive) semigroups $\{\exp t\widetilde{D}\}_{t \ge 0}$. But in the different settings the dissipative (respectively, dispersive) condition on the initial operator D is typically not a consequence of the group invariance, and is placed as a separate assumption. The relevant dissipativeness assumption for derivations is well-behavedness, and it is interesting that, in the present setting, this condition does follow from the assumed group invariance.

(2) We note that δ is implemented by a self-adjoint operator in a suitable representation. Let ω be any faithful G-invariant state of $C_0(X)$. Then ω satisfies $\omega(\delta(f)) = 0$ $(f \in \mathcal{D}(\delta))$. Let $C_0(X)$ act on $L^2(X, \omega)$ by multiplication. Define H in $L^2(X, \omega)$ by $\mathcal{D}(H) = \mathcal{D}(\delta)$, $iHf = \delta(f)$. Then H is essentially self-adjoint, and H implements δ in this representation. That is, $\delta(f)g = i \llbracket H, f \rrbracket g (f \in \mathcal{D}(\delta), g \in \mathcal{D}(H))$.

4. Actions on $\mathcal{K}(\mathcal{H})$

In this section we prove an analogue of Theorem 3.2 for the compact operators.

Theorem 4.1. Let α be a strongly continuous action of a compact group G on the algebra \mathcal{K} of compact operators on a separable Hilbert space \mathcal{H} . Let δ be a closed * derivation in \mathcal{K} which commutes with α . Assume that if $a \in \mathcal{D}(\delta)$ is fixed by α , then $\delta(a) = 0$. It follows that δ generates a C^* dynamics.

Proof. Let \mathcal{U} denote the unitary operators on \mathcal{H} , \mathcal{P} the projective unitary group $\mathcal{U}/\mathbb{T}\cdot\mathbb{1}$, and $\pi:\mathcal{U}\to\mathcal{P}$ the natural map. We give \mathcal{U} the weak operator topology,

 \mathscr{P} the quotient topology and $\operatorname{Aut}(\mathscr{K})$ the point-norm topology $(\alpha_n \to 1 \text{ if } \| \alpha_n(x) - x \| \to 0$ for all $x \in \mathscr{K}$). Then there is a topological group isomorphism $\phi : \mathscr{P} \to \operatorname{Aut}(\mathscr{K})$ given by $\phi(\pi(u))(x) = uxu^*$.

According to [10, pp. 103-111], there is an exact sequence of compact groups

$$1 \to \mathbb{T} \to H \stackrel{j}{\to} G \to 1,$$

and there is a continuous homomorphism $\sigma: H \to \mathcal{U}$ such that the following diagram commutes:

Thus $\alpha \circ j(h)(x) = \sigma(h)x\sigma(h)^*(h \in H, x \in \mathcal{K})$. Replacing G by H and α by $\alpha \circ j$, we can assume that α is implemented by a continuous unitary representation σ of G.

A finite rank projection e is fixed by α if and only if $e\mathcal{H}$ is reducing for σ . Since G is compact, there is an increasing sequence $\langle e_n \rangle$ of such projections with strong-limit $(e_n) = \mathbb{I}$. By assumption $P_0(\mathcal{K}) \subseteq \ker(\delta)$; hence $e_n \in \ker(\delta)$ and $\delta(e_n a e_n) = e_n \delta(a) e_n (a \in \mathcal{D}(\delta))$. Since $e_n \mathcal{D}(\delta) e_n$ is dense in $e_n \mathcal{K} e_n$ and the latter algebra is finite dimensional, we have $e_n \mathcal{K} e_n = e_n \mathcal{D}(\delta) e_n \subseteq \mathcal{D}(\delta)$. The restriction of δ to $e_n \mathcal{K} e_n$ is necessarily a bounded derivation of this algebra. Let $\mathcal{K}_0 = \bigcup e_n \mathcal{K} e_n$. It follows

that $\delta | \mathcal{K}_0$ is well behaved and $(I \pm \delta) \mathcal{K}_0 = \mathcal{K}_0$. But since $\|e_n^n a e_n - a\| \to 0$ for all $a \in \mathcal{K}$, it follows that \mathcal{K}_0 is a core for δ . Hence δ is a generator.

We suspect that there should be a common generalization of Theorem 3.2 and 4.1 to a wider class of C^* algebras.

Notes added in proof: (1) After completing this paper we learned that C. Peligrad [13] and A. Ikunishi [12] have also studied closed * derivations commuting with compact group actions. Our Theorem 2.1 was first proved by Peligrad.

- (2) One can give an example showing that the assumption that G is compact is essential in Theorem 2.1.
 - (3) Further progress has been made on the problem considered here.

Let $(\mathfrak{A}, G, \alpha)$ be a C^* dynamical system with G compact. Let δ be a closed * derivation in \mathfrak{A} which commutes with α . Suppose the fixed point algebra $\mathfrak{A}^{\alpha} \subseteq \ker(\delta)$.

Theorem [14]. If G is abelian, then δ is a generator.

Theorem [15]. If G is separable and $\mathfrak A$ is type I separable, then δ is a generator.

References

- 1. Batty, C. J. K.: Proc. Lond. Math. Soc. (3) 42, 299-330 (1981)
- 2. Bratteli, O., Robinson, D.: Commun. Math. Phys. 46, 11-30 (1976)
- 3. Bratteli, O., Robinson, D.: Operator algebras and quantum statistical mechanics, I, In: Texts and Monographs in Physics, New York, Berlin: Springer 1979
- 4. Goodman, F.: Pac. J. Math. (to appear)
- Høegh,-Krohn, R., Landstad, M., Størmer, E.: Compact ergodic groups of automorphisms, Preprint 1980, Oslo University No. 5

Unbounded Derivations 405

- 6. Lashof, R. K.: Pac. J. Math. 7, 1145-1162 (1957)
- 7. Nakazato, H.: Closed* derivations on compact groups, preprint, 1980
- 8. Olesen, D., Pedersen, G. K., Takesaki, M.: J. Oper. Theor. 3, 237-269 (1980)
- 9. Sakai, S.: The theory of unbounded derivations in C* algebras, Lecture Notes, Copenhagen University and The University of Newcastle upon Tyne, 1977
- Varadarajan, V. S.: Geometry of Quantum Theory. Vol. II, New York: Van Nostrand Reinhold Co. 1970
- 11. Batty, C. J. K.: J. London Math. Soc. (2) 18, 527-533 (1978)
- 12. Ikunishi, A.: Derivations in C* algebras commuting with compact actions. Preprint 1981, Tokyo Institute of Technology.
- 13. Peligrad, C.: Derivations of C*-algebras which are invariant under an automorphism group. In: Topics in Modern Operator Theory (5th International Conference on Operator Theory, Timisoava and Herculane (Romania), June 2–12, 1980), C. Apostol et. al. (ed.) Basel: Birkhauser 1981
- 14. Bratteli, O., Jorgensen, P. E. T.: Unbounded derivations tangential to compact groups of automorphisms. Preprint 1981, Aarhus University
- 15. Goodman, F., Wassermann, A. J.: Unbounded Derivations Commuting with Compact Group Actions, II. Preprint 1981, University of Pennsylvania

Communicated by H. Araki

Received May 20, 1981