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Phase Diagrams and Cluster Expansions
for Low Temperature @>{φ)2 Models*

II. The Schwinger Functions

John Z. Imbrie**

Department of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract. We give a cluster expansion for the Schwinger functions of the stable
phases found in Part I. The Wightman axioms, the mass gap, and asympto-
ticity of perturbation theory follow.

In Part I the phase diagram of a generic low temperature &*(φ)2 quantum field
model was mapped out. At each point in the diagram a number of stable phases q0

were found such that

for every q. We now use this information with some other Part I machinery to give
a cluster expansion for the Schwinger functions in the stable phases. We also prove
the convergence estimates needed in Parts I and II. The reader is referred to the list
of references in Part I.

4. An Expansion for the Schwinger Functions

4.1. Constrained Expansions

In this chapter we derive a convergent expansion for the Schwinger functions from
bounds on ratios of partition functions. The presence of clusters containing field
monomials introduces constraints on partition function sums. The constraints
must be handled in such a way that the phase structure of Chap. 3 is not destroyed.

So far we have always multiplied clusters by ratios of interior partition
functions. This procedure must be altered for clusters surrounding squares
containing field monomials. In [20], a priori bounds on ratios of partition
functions in non-simply-connected regions were available. Thus it was possible to
multiply ρ(Ύ) by a ratio of partition functions in (ttntY)\X, where X is a cluster
containing field monomials.
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In order to avoid an uncontrollable accumulation of surface effects on X, we
must alter the procedure of [20] by considering partition function sums with the
constraint that no cluster shall surround X If one fixes all the clusters surrounding
X, then the resummation between the clusters yields partition function sums of this
type. (This procedure was not necessary in [20] because surface effects were always
favorable.)

We bound ratios of constrained partition functions in Sect. 4.2, using some of
the tools of Chap. 3. The ratios transform the expansion into an explicit sum over
clusters surrounding 5Cs and a constrained sum over other clusters. As the
constraints are ultimately connected with the presence of X's, the techniques of
Sect. 3.2 can be applied to factor out the normalization je~Vqdμm2{ψq) exactly. The
result is the expansion for (R.yΛ q.

4.2. More General Ratios of Partition Functions

This section is devoted to obtaining bounds on ratios of constrained partition
functions in regions that are not simply connected. The constraint will be that all
clusters Ύ contributing to the partition function in a region ¥ must have
YuKntY£¥. When ¥ is not simply connected, this is nontrivial constraint.

The phase structure of the theory has already been determined from the
considerations of Chap. 3. Thus, our task will be to show that the constraints
produce at most surface effects, so that convergence factors from boundary
clusters can control the expansion.

We assume a solution to the equation L = Jί{L) and we use the associated
objects FL, s(Fq

L\ and aq(FL). The shorthand notation F, sq, and aq will be used. We
hold to the convention of Chap. 3 that |Y| > 1 for all clusters Y. In this section ¥
will denote a connected, but not necessarily simply connected, region with
boundary condition p(¥). The boundary condition is the same on all boundary
loops of ¥ , including interior boundaries. Define constrained partition functions in
¥ as follows:

flP(V)|l J γ i n t l

Ω«(F,V)= £ Y\F(X)e IV s ' , (4.2.1)
{¥s}: p(Ys) = p(Ύ) s

¥suHnt ¥ s ς V

ΩC(F>V)= Σ Π T O (4.2.2)
{Ys):p(Y,) = p(V) s

VsuflntYsς V

Here p(Ys) denotes the external boundary condition of Ys. The ΎJs are nonover-
lapping. When ¥ is simply connected, this definition agrees with (3.4.7), so that
Ω[a)(F,Ψ) = Ω{a\F,Y).

Proposition 4.2.1. Suppose λ^\4,l. The following expressions for Ω^\F,Ύ) are
valid: Σ ZΣ(V)

ΣnW:dVn{J Rί = @

Ω"C(F, V) = ~ (4.2.3)
I 1 ^zlP(V)

ΣπV.dVn [JRι = &

ΩC(F, W) = ^ - = — . (4.2.4)
1 1 ^ΔPW)
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Here {-R;} are the regions associated with ΣnΨ. In addition, the following bounds
hold:

i = p ( v ) l ' ^ Ωa

c{F, V) S ΩC(F, V K P ( V ) I V I

11 zΔPcv)

= e(aP<W + sPM)\V\eAc(F,V) M 2 5)

\Ac(F,Ψ)\S2λll2\dY\. (4.2.6)

Proof. Recall from (3.4.1) and (3.4.10)-(3.4.12) that

ΓT Γ * V A ' V ;

 e(-aP^ + logZΔPW)-logZAPm)\'

i

where {R^ are the regions associated with Σ^t. Call a Ys outer if it is not
contained in any Int Ys,. With the outer clusters in (4.2.1) fixed, the sums over the

others produce a factor fjΩ(F, W), where Wruns over the components of!ntY s,
w

Ys outer. We obtain

Ωa(F,Ψ)= V Γf | ρ ( Y ) Γ f e{logZAP(Ri)~logZAPm)\RιnYs

{Ύs} outer s [ i

π

The last two factors cancel, and each term in Y\ is equal to
s

pi (Z^v,)"1. (4.2.9)

Moreover, by (3.5.2), Ωa(F, W) = Z(W) / [ ] ZΔP(m so that

I

(f,v)= Σ Π
s} outer Π ^JP(V)

w

Expand Z(W) into spin configurations. In the resulting sum over {YJ and

{Γw}, fix Z = (J ΣΎ u (J Σ w and sum over Ys's compatible with Σ. If Σ is such that
s S W

δ¥n IJjRf+0, then there is no compatible {YJ: If there were, then some Ys would
ϊ

have EntYs$ V, contrary to construction. /Recall that (J j ^ does not contain the

sea of constant phase at the outer boundary of V. If interior boundaries of V are in

other seas, then some clusters would have to effect the transition, resulting in some

Int Ys $ VΛ If Σ is such that δVn {J R( = 0, then the restriction Int Ys Q V is vacuous.
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Σ

•π

Σ δvn (J Ri = 0 {γs} outer
ϊ compatible with Σ

11

(4.2.11)

Equation (3.4.33) can now be applied to yield (4.2.3).
The same set of manipulations can be performed for Ωc(F, Y), except that the

is independent of I n W ,factor e aPm\^Rϊ\ in (4.2.8) is not cancelled. Since \{J R.

the factor agrees with the one in (4.2.4). This completes the proof of (4.2.3) and
(4.2.4).

The first two inequalities in (4.2.5) are immediate consequences of (4.2.3) and
(4.2.4). The last step defines AC(F,Ψ). As in (3.3.7), we have

iogΩc(F,v)=χf Σ . Σ Π Λ(JS?)ΠTO
k &> (Yi, . . . ,Yk) Gc ^eGc s = l

(4.2.12)

We can obtain an expansion for ΔC(F,Y) from this formula and (3.3.8), as in
the derivation of (3.3.9):

(¥i,...,Yk)

Σ Π
Gc &eG

(4.2.13)

Apply Lemma 3.3.1 to every boundary square of V to bound sums over
clusters intersecting both ¥ and -V. With | |F | | ̂ λί/2, we obtain a term A1/2|dV|, as
in (3.3.12). It remains for us to bound the sum over clusters contained in ¥ with
( J l n t Y s $ ¥ . Single out one such cluster:

Σ^ Σ
k YgV Πnt

Σ Π /i(jsn Π ^ W
Gc i feG c s = l

Another lemma is needed to control this sum.

rr Σ
K ' (Yi,..., Yk- 0

(4.2.14)

Lemma 4.2.2. Suppose λ<|1 <| /. // Fq is any q-contour model with \\Fq\\ ^ 1, then for
anyY,

Σ Σ Π
Gc

Π <k\e~τ] (4.2.15)

Σ\Ys\=N,p(Y) = q

Here Gc is a connected graph involving Y and all ΎJs.
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The lemma will be proved in Sect. 4.4. It yields the bound

l 4 ( F , V ) | ^ 1 / 2 | d V | + Σ Σ|FCV) |e- t l I ( k " 1 ) / 4 e | γ | . (4.2.16)

We fix Y, the region in IR2 covered by Y, and sum over ΓnY and Σγ. The first sum
produces a factor 22 '7 ', and the second a factor

2/2|y| /?/2|yi\

(4.2.17)

The number of F s with | Y\ = AT surrounding a given component of ~ V is less than
m. Applying | |F | | ̂ λ1'2, we obtain

Σ (4.2.18)

Proposition 4.2.1 is proven. D

43. Exponential Clustering and Asymptoticity of the Perturbation Series

We are now prepared to give a convergent cluster expansion for the Schwinger
functions, with bounds independent of the interaction volume Λ. We must use
boundary conditions corresponding to a stable phase q, that is, we must have
aq = 0. In Chap. 3 and in Sect. 4.2 we have always taken A to be larger than TL to
define ρ{l) and ρ(Z). We now fix A and return to the original objects ρΛq(Z). We
no longer require [Y|>1, except where specifically indicated. ρΛ q(Έ) is not
invariant under translations of TL. We will eventually find a formula for the infinite
volume Schwinger functions that involves ρ(Z) and ρ(Z), with no subscripts A, q.

A standard argument [6,19] expresses a Schwinger function as its first several
orders of perturbation theory plus a remainder. The remainder is a power of λ
times other (generalized) Schwinger functions. Thus bounds on the generalized
Schwinger functions yield asymptoticity of perturbation theory. Asymptoticity
immediately implies that the phases we construct at the coexistence hypersurfaces
are all distinct.

Normally, the argument shows for example that for all μ and all Λe[0,Λ,0],
\S(λ)- 5(0)| = O(λ). We obtain a slightly weaker result, due to phase transitions
which will occur as λ is varied. We prove that if q is one of the stable phases at λ,
then S(q, λ) differs from the first n orders of perturbation theory about the qth

minimum by O(λn+1). C00 properties will not in general be uniform in parameter
space. If we choose μ near a classical phase transition hypersurface ίi.e. E*(μ, λ = 1)
— infE^(μ,/l=l)<|l for more than one q\ then one must take λ exceptionally

small to get the theory into the λ = 0 phase. Reparametrizing the interaction to
avoid phase transitions as A->0 would not solve the problem because we only
know Lipschitz continuity of the phase transition hypersurfaces. By using the
perturbation expansion for the vacuum energies, we could give a description of the
phase diagram that is much more precise than the one in Theorem 3.7.2. However,
it seems that Lipschitz continuity is an intrinsic limitation of the construction, at
least at the e~O{λ~2) level. Whether this is a real effect or an artifact of the
construction is an interesting open question, even for lattice systems.
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We use the field xpq = φ — ξqto generate the perturbation series. We have

so that all coefficients in the interaction

are O(λ) or smaller. We defined the finite volume measure to be e~Vqdμm2(ψq).

We give an asymptotic expansion for

The BJs we consider have the form

R = $w(x)f\:ψq(xiγ':dx, (4.3.2)
i=ί

where w(xv... ,xn)eLpl Y[ A A is supported in a product of /-lattice squares, and

p > 1 is fixed.
In the integration by parts formula

δR δV

δψq(y) oψq(y)

we have

(4.3.3)

^ Σan^n:Ψq(Xγ->:, (4.3.4)

so that each derivative of V produces factors of λ. We integrate by parts each
δV

factor of w in (4.3.2), and the factors of -^-^ that result. We continue inductively
δΨuntil all terms either have the form j(const)e Vqdμm2(ψq), or else they have an

explicit factor of λn+1. Dividing by \e~Vqdμm2{ψq), we obtain

,q= Σ *jλS + λn+1

J = 0 k

The α '̂s form the usual perturbation series for <JR> through order n. The other
terms are the remainder, and the Rk's have the form (4.3.2).

Theorem 4.3.1. Let p>l be given and suppose aq = 0. For λ<ζl<4l, there exist
positive constants K, τ2 depending on p,η, C such that for R of the form (4.3.2),

^ Z d e 8 Λ ( l + Λ " d e g Λ e " t 2 λ " 2 ) . (4-3.6)
Δ

Here N(A) is the degree of R in l-lattice square A.
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The theorem bounds the remainder in (4.3.5) by O(λn+1). Note that / does not
diverge with λ as in [19]. The factor A~d e g Ee" t 2 λ~2 in (4.3.6) arises from the
possibility of fluctuations into minima other than q. Since \ζqi — ζq2\=zO(λ~1), we
have contributions of size λ~dQgR, but with small probability e~τi .

The theorem yields bounds uniform in A, so that when we take A to infinity we
will obtain asymptoticity of perturbation theory for the infinite volume Schwinger
functions. In particular, we will have

(φ>q = ξq + O(λ), (4.3.7)

where <( }q denotes the infinite volume expectation obtained as a limit of
expectations with boundary condition q. This distinguishes the different states that
we construct on coexistence hypersurfaces.

Proof of Theorem 4.3J. Perform the mean field expansion on $R.ε~Vqdμm%(ψq) = FR

(see Chap. 2). We defer integration against the test function w and for the moment
take R to be a product of factors :^(x ) P i : .

FR= Σ TίQΛ,q(%κ) (4.3.8)
{ZK} nonoverlapping, filling R2 K

agreeing on common boundaries, £zK = qin Z κ \ A

only finitely many ZK have |Zκ| > 1

We make some notational conventions. Clusters that contain field monomials
will be denoted with the letter X and called nonvacuum clusters. Other clusters will
be denoted with the letter Y and called vacuum clusters. There are two types of
Ys: those such that X£EntY for some X, and those such that no X is contained in
EntY. The first type will be denoted Ϋ, the second simply Y. We shall have occasion
to extend sums over Ys to clusters overlapping or surrounding Xs or Ys. When
this happens, ρΛq(Y) will be defined as in the expansion for the partition function
FR = V Thus ρΛ q(Y) is independent of R. In this respect it differs from ρΛ q(JQ, which
does contain monomials from R. We use the letter T to denote either an X or a Ϋ
The letter TL will be used for all types of clusters - X, Ϋ or Y.

In (4.3.8), fix all Xs,Ϋs, and all Ys such t h a t Y p n t Z κ for any K. The external
boundary condition of the Ys is q, because Σ = q in ~ A. Let ¥ α be the components
of the region complementary to all the fixed clusters. At this stage, clusters can
have \Έ\ = 1, so exterior regions are completely filled with fixed clusters.
Resumming the expansion inside each Vα yields a partition function in case Vα is
simply connected, and a constrained partition function if not. If VαCIntY, then Yα

is simply connected. The result of resummation is

ΓR~ L lit
{Xr,¥t,¥s},ys % UntZ r

P(Ys) = 1

u « v c Π ¥

• v Π t¥ ί Σnβy ^ZWyV-^+W'W1 . (4.3.9)
s L i

Note that %QA if VαgintYs. The Y/s cannot surround Xs and Ϋs, and the
outermost Xs and Ϋs have external boundary condition q.
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Divide FR by f ] (ZΔqe
E*12) and denote the result by FR. This cancels all

ΔgA

QΛ gW's with |¥ | = 1 in (4.3.9). [Recall that ρΛ q{Δ) = 1 for A % Λ.~] It also cancels the
factors eE*m\ By (3.5.2) and (4.2.3),

and

Σ z/yα)=o^(F,vj Π
(J

We substitute in FR

= a

where the regions R. are those associated with the spin configuration that agrees
with {^,Ϋί?Ys} and that is constant in each ¥ α . Observe that each e^-E^l2\^^n
factor cancels with

( £ ^ ( ^ > + E^))12(\\CΛΛ\ + |Πnt¥|)

from outermost Ψs in EntmZ or with e

{~E^a) + E^))μ^ from outermost Vα's in
ΠntmZ. The

factors for 2Γs that are not ¥ ' s cancel the e(E* E^ι2\ΈnΛ\ factors, the eE'μ^^ factors,
and the e~E™μ factors from (ZAqe

E™μ)~x, ΔQΎa. All of the energy factors have
disappeared, and (4.3.9) becomes

F = Σ Y\ρ (X.)Γjρ (¥)
{Xr,¥t,Ys} r t

Π [QAJ^S) Π Ωa(F^a)}

ίa)Y\e{logZAP(Ri)~logZΔq)^. (4.3.10)

Define

FΛW = QΛ,qWeLW (4.3.11)

so that by (3.4.10)-(3.4.12) and aq = 0,

Σ Π^W (4.3.12)
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For interior Y*s, F and FΛ are the same. Multiply and divide by Ωc(F,Ύa) for

¥ α g ( J l n t Y s

t 0 obtain

F f i =
{Xr, ¥t}

Λq(γt) π

We have expanded Ώc(i% V£) as in (4.2.2), and put all the sums over Ys's together.
With {Tu} = {Xp,Ϋt}, define

?(TU) Π

If not all external T's have boundary condition q, then Ξq

Λ({Έu}) = 0. (External
means not contained in Int Tu for any u.)

We wish to extend the sum over {YJ to an unrestricted sum over k, ( ¥ 1 ? . . . , Yfc)
as in Sect. 3.3. The extra terms will be eliminated with projections U(ΈVΈ2).
Define

JO if TgintY or if T and ¥ overlap

ll otherwise,
(4.3.15)

[ / ( ¥ , ¥ )={ ° i f ¥ i a n d ¥ 2 overlap
15 2 [l otherwise.

Then

1

k

• Π U(YSί,ΎS2) Π FJYS). (4.3.16)
Si <S2 S= 1

The sum over (Y1? ...,Yfc) is over ordered families of Ys's, including overlapping
clusters and clusters surrounding or overlapping T's.

Expand U = l + A as in Sect. 3.3 to obtain

1 k

p — V V V y ŝ r/TΓ ^ ΓT A( φ\ V\ p (ψ\ M Ί. IΊ\
R— Z-ί Z-J 7 Z_J / u ^ Π l l . , j j I I ri^=>^ ^ I I 1 ^1 11 J . It.J.l /I

G is a graph of unordered pairs (or lines) {TM,¥J or {YSi, YS2}. Let Gc be the part
of G that contains lines connected directly or indirectly to some TM. Let Go = G\GC.
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G is said to be connected with respect to {\} if Go = 0. We sum separately over the
Ys's in Gc and the Ys's in Go, using

y J_ y y = y J_ y yyJ_ y y

Here Y^ is a cluster for Gc, and ¥^' is a cluster for Go.

^R=ί Σ Σ Λ Σ Σ^({TU}) Π A{&) Π FΛTCΛ

•(ΣΛ Σ Σ Π ̂ ) Π F W | (4.3.18)
I /co ̂ 0 (Yf,..., ¥k0) Go SezGo s=ί
\ | ¥ S | > 1 /

The second factor is just what we would have obtained for R = ί. With

<R>Λ.q= Σ Σ ^ Σ Σsϋ({τ.}) Π A(£η fl FΛ(X). (4.3.19)
{Tu} k ^ (Yi,.,,.Yk) Gc SeeGc s= 1

| Y S | > 1

This is the final form of the expansion.
To make the transformations leading to (4.3.19) completely well-defined, we

should have placed Dirichlet boundary conditions on the boundary of a square
much larger than A. All clusters would then be constrained to lie in some large Ψ
with p(Ψ) = q. We show below that the first three sums in (4.3.19) converge
absolutely, so that the right-hand side of (4.3.14) converges as Ψ tends to infinity.
The left-hand side also converges by virtue of the "regularity at infinity" of [17], so
that (4.3.19) is valid in the limit.

and withWe require some exponential decay of Ξ^({TΓU}) with |(J TΓU

I u

From (4.2.5)-(4.2.6) we have
Oa(F Ψ)
^ cyj , yf) (logZzi^-iogZ^Olvl

-Ω C (F,V«)
< ^(fl p ( v ) + s p ( V ) - ss + \ogZΔPm - \o%ZΔ*)\V\JΔc{F, V) - ΔC{F, V«))

^ β 4 λ l / 2 | 5 V | . (4.3.20)

The volume coefficients have canceled exactly, by virtue of aq = 0. In addition,

\ogZAP(Ri) - \ogZΔq ^ s« - sp^ ^ 2λ1/2

so that

2λ1/2 |yiΓ

Thus

^ 2λ/ |y iΓu | (4 3 21

^IMIjy. Π [ ( N ( J ) ! ) 1 / 2 e - t l ' ] e H d e g l l ( H - A - d e g R e - " A " a )
zl:iV(zl)>0

.e-'iy^-^-^N. (4.3.22)
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In the second line we have used (2.5.11) and combined factors associated with R.
The test function w has been reintroduced. The external boundary condition of
each T agrees with the boundary loop of the T immediately surrounding it. Since
external loops all have boundary condition q, any factor of λ~degR% coming from
an X with Σ = mφq is compensated by a factor e~τiλ~2 coming from a phase
boundary in some other T. Hence the factor (l + λ~degRe~τ2λ~2) in (4.3.22).

The sums over fc, (Y1} ...,Yk), and Gc are controlled by a lemma proven in
Sect. 4.4. Define

ΦF(ΈV ...,TL. Y19...,Yfc) = £ Π A(Se) Π F(YS), (4.3.23)
G g' s=l

where each ΊLr is either a T or a Y. Gc is any graph that is connected with respect
to Z l s . . .,Έj, that involves all Ys, and that does not contain lines {Zr, Zr,}, 1 ^ r ,
r 'g j . For fc = 0 we have Gc = 0 and ΦF=\.

Lemma 4.3.2. Suppose λ<ζ 1 <ζI If Fq is any q-contour model with \\Fq\\ ^ 1, then for

( Y i , , ¥ k )
Σ |¥ s |= iV, p(Ύs) = q

Skle-τίl{k+N)/*e^ΈA. (4.3.24)

Together with (4.3.22), the lemma yields the following bound on (4.3.19):

J£ Σ 2||W||LP Π
• {TΓU} Δ:N(Δ)>0

(4.3.25)

Fix {TJ, the regions containing {ΊΓM}. The sum over Γr> (J ΊΓM and over I n IJ TM

u u

are controlled as in (4.2.17), yielding factors of e ' u "'.

The number of connected regions of size m overlapping or surrounding a

square is less than £ 0 ( 1 ) w . If a number of regions with total size N all overlap or

surround a square, then there are 2N ways of distributing the size into connected

regions. Given the distribution N = mί+m2-
Jr ... + mr, there are f ] e 0 ( 1 ) m ί = <

possibilities, or eO{1)N in all. Hence

™\VT>k Π ( Σ ^ ' + Ή ^ Π
{Γw} J:iV(^)>0 \N=O / J:ΛΓ(J)>0

(4.3.26)

The possibility ^ = 0 is included because some T's might contain more than one A.
The theorem now follows from (4.3.25) and (4.3.26). D

We have shown that the first three sums in (4.3.19) converge absolutely, with a
bound uniform in A given by (4.3.6). Each term converges as A-+ oo. In fact, ρΛ q(Z)
= ρ(Z) for ΈQΛ, so that FΛ(Ύ) = F(Ύ) for ΎQA and Ξq

A{{Έu}) = Ξq{{Έu}j for
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(J TΓU£Λ Here Ξq({Έu}) is given by (4.3.14) but with ρ replacing ρΛq. Therefore,
u

Λ q converges as yd—>oo to (Ryq given by

Σ Σ i Σ Σs9({τrM}) Π A(se)ΠF(ΎS) (4.3.27)
K

and satisfying the bound of Theorem 4.3.1. Except for clustering, all of the
Osterwalder-Schrader axioms [22] are immediate consequences.

We now show that truncated expectations

(4.3.28)

display exponential clustering. Let R1 and R2 be of the form f] '.ip^x^:, and let
• ί

w be an LP function of all the variables, supported in a product of /-lattice squares.
Let D be the distance (in ordinary units) between the Rx -squares and the
#2-squares.

Theorem 4.3.3. Let p>l be given and suppose aq = 0. For λ<ξl<ζl there exist positive
constants X , τ l 5 τ 2 depending on p,η,C such that

\jdxwixKR, R2}(x)\ S IIw\\LP Yl{N(Δ)l)1'2eκ'd"RlR*
A

•(l + A - d e g R l R 2 β - τ 2 A " 2 ) β - τ i D / 5 . (4.3.29)

Here <( ) refers either to the finite volume expectation or to the infinite volume one.

Proof. Define

<K>M=ΣΣ Σ Σ^UTj)
{ΎJ k ( Y i , . . . , Y k ) : | Y s | > l Gc

Σ|TΓJ + Σ | Y S | = M

• Π A(J?)YlFiA)(YX (4.3.30)

so that

Σ (4.3.31)
M = l

and
M l Ί

- Σ < ^ I > K < ^ 2 > M - J - (4-3.32)
JM = l

As long as M<D/l, each term in the sums over clusters in (RxR2yM has a
factorization property:

k

Gc SeeGc s = l

Π
Π fu)

s e G 2 c

(4.3.33)
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Here G l c is a graph connected with respect to the first set of TΓs, and G2c is connected
with respect to the second set. Equation (4.3.33) is a consequence of the fact that
l / φ l (^4φO) only when one cluster overlaps or surrounds another. With the
restriction on total size of clusters, a graph connected with respect to all the T's
breaks into independent parts. The splitting of (Y l 5..., Ύk) into (Yse G l c)u(Y se G2c)
is independent of the graph.

Factorization implies that the terms of (4.3.32) with M<D/l cancel, as there is a
one-to-one correspondence between nonvanishing terms of (R1R2)M and of

We estimate <iO M

 a s before. The sum over (Y1? .-.,Yfc) involves only sets of
k

clusters with £ |YJ = M — £ |TΓJ. Lemma 4.3.2 insures that we have a convergent
s = l u

factor e ^ u " ' left after summing over k and (Y 1 ? . . . , Yk). Hence (4.3.25) is

valid for | < i O M | with an extra factor e~τίlMI4 if e~ ~A^l^is replaced by e~ ^l»Tu.
The rest of the estimate is identical. Putting the resulting bound into (4.3.32), we
obtain

|fdx| w(xKR1 R2)(x)\ ^ ||w\\LP

egRίR2e~τ2λ~2) X Me~τm (4.3.34)
M^D/l

and the theorem follows. D

Theorem 4.3.3 establishes the remaining Osterwalder-Schrader axiom and
shows that all the states we have constructed are pure states. Moreover, the
Wightman field theory associated to the Schwinger functions has a positive mass
gap. The mass gap is uniform as λ tends to zero, and it is uniform in the param-
eters {μ*}. When combined with the Chap. 3 results on the existence of phases with
aq = 0, Theorems 4.3.1 and 4.3.3 establish Theorem 1.1.1.

4.4. The Convergence Lemmas

In Sects. 3.3,4.2, and 4.3 we have made use of lemmas which proved convergence of
expansions involving U~ and ^4-operations. We prove the lemmas here. The proof of
the main result, Lemma 4.3.2, is essentially contained in [1]. We include it here for
completeness.

Proof of Lemma 3.3.1, Assuming Lemma 4.3.2. Fix a cluster Y containing A and sum
over the others in (3.3.10) before summing over Y:

Σ Σ Π A{5£) Π
Gc

skΣ Σ \πn Σ

Σ | | F | | β " τ i / | ¥ | ~ τ 2 λ ~ 2 | l ¥ i ^ ~ τ i / ( / c ~ 1 + i V ~" ) / 4 e | ¥ | . (4.4.1)
γ^Δ
|Y|=«
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A connected graph is connected with respect to any one of its clusters, so the
substitution of (4.3.23) into (4.4.1) is valid. In the last step we have applied
Lemma 4.3.2 and used | |F | | ̂  1. The sum over Y is controlled as in (4.2.17). Using
fe^l, n ^ 2 we bound (4.4.1) by

k\ \\F\\ ^ e ~ τ i Z V 0 ( 1 ) V ~ τ i ^ + Λ Γ ) / V l Z " / 4 < f e ! \\F\\e~Til{k+N)/4. (4.4.2)
n

This completes the proof. D
Lemma 4.2.2 is just Lemma 4.3.2 in the case {Έv ...,Έj} = {¥}.

Proof of Lemma 4.3.2. Our first task will be to find a Kirkwood-Salzburg type
equation expressing Φ(2£1?..., ΊL Y 1 ? . . ., Yk) as a sum of terms involving Φ's with
smaller; + fc. For each Gc in (4.3.23) let Ω be the set of all 5 such that {Έί9 Y J e Gc. Ω
may be empty, but only if ; ^ 2 . Let G'c denote the subset of Gc composed of lines
{Zr, YJ and {Ys, Ys,}5 with s.s'eΩ and r> 1. Let G" be composed of all remaining
lines except the lines {Z l5 Ys}. If we fix Ώ, the summation over G'c is unconstrained
but G"c must be a graph connected with respect to {2£2, ...,Έp(Ύs)seΩ}. Since

Σ Π A{&)= Π Π ^ ( ^ ^ s ) Π U(VS19ΎS2)9 (4.4.3)
GO S£eG'c r=2 seΩ si <S2; sι,s2eΩ

Equation (4.3.23) becomes

H Σ
.,k) seΩ

Hence,

TL ' Y

• Π Π u(z,
r = 2 seΩ

•ΠWΣ
seΩ G'i .

• •'γk)=Σ Π^(Zi^

• Π Π u(Έ,
r=2 seΩ

- Π F(ΎS)ΦF(

.YJ Π
si < s 2 ; s i ,s 2 e

Π A(&)U*
geG'ό sφΩ

Ό

*W Π
SI < S 2 5 S l , S 2 S

Z2,...,Έ,(YX

QU(YSi,YS2)

TSQ. (4.4.4)

• CY) ) C4 4 S)
eΩ' l^s/sέβi Γ+ ^ J J

This equation will enable us to prove the lemma by induction on + h. To start
the induction, notice that for k = 0 we have ΦF(ZV ..., TL 0) = 1, by definition. The
lemma holds in this case. We define ΦF(0; Y1 ? ...,Yfc) = 0.

For ; + /c^2, ;^ l , fc^ 1, assume the lemma for smaller + fe. Since Λ(ΈV Ys) = 0
unless Ys overlaps or surrounds Έv and since the L/'s and 1̂'s are either ± 1 or 0,
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(4.4.5) yields

S Σ Σ Π
Ω (Yi,...,Yk) seΩ

Σ |¥s | = N, Ys overlaps or surrounds Zi for seΩ

fc-1 -j N - l | Ω |

i Σ ~n Σ Σ ΠITOI
1**1 ι M=\Ω\ {YI,...,Ϋ\Ω1):Σ\VS\=M s=ί

Ys overlaps or surrounds Zi

Σ \ΦF(Z2,...,ZpY'1,...,Ύ\Ωl;Ύ[,...,Y'^
Ωl)

+ Σ Π
(Yi, . . . ,Yk) s = l

Ysoveilaps or smrounds z t

|Φ f (Z 2 , . . . ,Z J ;Y 1 , . . . ,Y i k ) | . (4.4.6)

( , k )

Σ|YS | =N, Ysoveilaps or smrounds

(Yl,. , ,Yk)
Σ\Ys\=N

We control the sums over ¥ s , se Ω as follows. Given Ys, the region covered by ¥ s ,
the sum over ΣYs and ΓnYs are controlled as usual, using | |F | | g 1. This produces a
factor e°w\γslm There are at most 2M ways of expressing M as mx + m2 + ... + m^,

and there are at most | Z 1 | e O ( 1 ) | m i l connected regions overlapping or sur-
rounding Έv Altogether, there is a factor βO ( 1 ) M |Z 1 | !° l from the sum over
( ¥ 1 ? ...,YjΩ|):ΣΓ$fJ = M. Apply the induction hypothesis to the sums over ¥ s ,

s,
sφΩ:

(Yi, .,,Yk)

Σ\Ys\=N
s

k~1 1 N~xk~1 1 N~x ,

1̂11 M=|Ω|

(4.4.7)

We have used MS:|Ω|, JV^fc in the second step above. This completes the
proof. D
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5. Converge Estimates

5.1. Structure of the Estimates

Chapter 5 is devoted to the proofs of Propositions 2.5.1-2.5.6, which are the
essential input to the analysis of Chaps. 3 and 4. The starting point for all the
estimates is the vacuum energy bound, Proposition 2.5.1. The proof begins with
the Wick ordering lower bound

β + ζ :δφκ(x)2:

(5.1.1)

Here φκ is the momentum cutoff field and δφκ = φκ — φ. This bound assures us that
the O(λ~2) differences in classical energies and the O(λ~2) effect from the term
— \f]{φκ — ζq)

2 can be controlled by the spin localization factor χq and by estimates
on the fluctuation field δφκ. [The term \γ\ :(φκ — ξq)

2: is subtracted from SP in order
to leave a small mass in the Gaussian measure when doing the vacuum energy
bound.]

The proof of (5.1.1) involves showing that — \ogχq(φ) is large unless φ is in the

range li(ξq-ι + QA(ξq + ζq+ιϊi' T n e t e r m &ΦI i s l a r § e unless φκ is close to φ.
Thus φκ is localized near ξφ where we have a quadratic lower bound on gP
[condition (vii), Sect. 2.1].

After proving the Wick bounds, the proof follows [19] with a few modifi-
cations arising from differences in classical masses. In each phase p the vacuum
energy relative to the mass mp ground state is bounded below by Ep

c — O(λ). Phase
boundaries produce strong convergence e~ 3 τ 2 λ~ 2 | Σ | arising from the gradient
term in the Euclidean action. The field changes by O(λ'x) in a distance 0(1), so
that \\\Vφ\2^O{λ~2). The other important ingredient for the vacuum energy
bound is a bound on the fluctuation field

joxpiζ'.δφϊiΔ^ήdμ^^Oil), (5.1.2)

uniform as jy->0.
The lower bound on ZΔP (Sect. 5.4) puts an upper bound E^ + O(λ) on the

vacuum energy (relative to mass m5). The lower bound

ZΣ(Ψ) ^ exp [ ( - £β ( v ) - O(λ~ 2))

is needed in Sect. 5.7 to prove smoothness of ZΣ in μ. Bounds of this type have not
previously been needed in low temperature expansions. It is ordinarily sufficient to
support the measure on uniform spin configurations, leaving phase boundary
terms to be as small as they like. In our case the smoothness in μ is needed for all
configurations if we are to construct hypersurfaces with 2,3, ...,r— 1 coexisting
phases. The proof involves bounding the expectation of : ψj

p{Ψ): in the measure
XΣe~Vp{v)dμm2{ψp) by O(λ~ 2)l2\Ύ\. Cluster expansion techniques cannot be used for
such expectations we must control the error involved in considering :ψj

p(Ψ): as a
bounded variable.

Section 5.5 is concerned with the mass-shift normalization factors arising in the
decoupling expansion. Just as in Sect. 3.3, it is important to obtain the exact
volume dependence of logZωiC02(s) and to bound the remainder as a surface effect.
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We also need smoothness in μ. Armed with these estimates, we bound the terms of
the decoupling expansion in Sect. 5.6 and we obtain their smoothness in μ in
Sect. 5.8.

5.2. Wick Ordering Lower Bounds

In this section we prove lower bounds on the Wick ordered interactions. These
bounds diverge slowly as the momentum cutoff K tends to infinity. They are an
important ingredient in the vacuum energy bounds.

We use the momentum cutoff of [19]. It consists of a smoothing operator
ρκ :f->fκ which preserves localization in unit squares and acts as the identity on
characteristic functions of unit squares. If we define the fluctuation field δφ(x)
= φ(x) - φ(x) = φ(x) - j φ(x)dx9 we have (δφ)κ(x) = φκ(x) - φ{x).

ΔBX

We shall require certain lower bounds on the polynomial ^(ξ). The Wick
bounds then apply to &λ{ξ) = λ~20*1(λξ) for λ^\. If ξί9 ...,ξr are a number of
relative minima of 0>v then ξq(λ) = λ~1 ξq are relative minima of έPλ. With ^(ξ + ξ)

d

= Σ aj qζ
j> P u t ζo= ~ °°> ζr+i = °° a n d take ξq<ξq+v Recall the definition of

j = 0 .
the spin localization functions:

q q

χβ(ί,λ) = π- 1 / 2 J e-«-'>adz, (5.2.1)
(ξq-ί(λ) + ξq(λ))/2

where q=l,...9r. The argument λ in ξq and χq will often be omitted. Let χq

n\ξ)

Proposition 5.2.1. Suppose ζe(0,^], τ?e(0, C/4], and C>2. Lβί ̂  be any polynomial
with d^C even. Suppose \ξq-ξq+1\^C~\ \adj^C"S αnJ l^ J ^ C / o r ; - 1, ...,d.
Suppose further that for q = 1,..., r

/?(£- ξq)
2, ξ e ( | ( ^ _ x + ̂  ),^(ξ + ξ +ι))

4

Then there exist constants b(C\ a(η,C)>0, and K (depending only on their
respective arguments) such that for all K, all xeA, all λe(0,1], and q — 1,... ,r

KW ~ ξ,) 2: - ^ λ ( g - log χβ(ί(J)) + ζ :δφκ(x)2:

. (5.2.3)

Under the same conditions,

' &λ(Φκ(x)): ~ i>7:(0κW ~ ξ β ) 2 : " ^ ( ^ ) ~ log \χ(

q

n(Δ)\φ(Λ))\ + C : δφκ(x)2:

^ α(?y, Cμ ~ 2 - log Kn(zl)! - fe(C)(log κf2 (5.2.4)

for any n(A)^l.
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Proof. We begin with some upper bounds on \og\χq"\φ(Δ))\. Put A=j(ξq + ξq_1),
B = \(ξq + ξq+ι). The following bounds are valid:

ύA or

q

 ) 2 ) , n ^ l . (5.2.5)

The first two bounds are easy consequences of (5.2.1), and the others are proven in
[19]. We can combine the second, third, and fourth bounds to yield

(Δ)-B)2, φ(Δ)^B.

Furthermore, for nΞΐ 1, (5.2.5) implies

UΦ(Δ)~A)2, φ(ΔUξq,

Define X = λ\φκ — ξq\ and break the proof into two cases, depending on whether
\φκ\ is very large or not.

Case 1. Z > 4 C 3 . We use the fact that the leading term ad ^"'^φ-ξ/ of SPλ

dominates everything else, including the Wick counterterms. The Wick constants
are O(logκ), so the following bound holds:

J = l

d [j/2]

- Σ Σ \β(C)\{logκ)k\φκ-ξq\
j-2kλj~2. (5.2.8)

j = 2 fc = 1

The last term contains all the Wick counterterms. The index j runs over the degree
of monomials (φκ — ξq)

j in &>λ. Since \ajq\^C and j^d^C, the coefficients in the
Wick counterterms all satisfy a bound depending only on C. The proposition will
follow in Case 1 if we can show

P ̂  a(η, C)λ"2- b{C)(\og κf2 , (5.2.9)

because logχg(φ(zl))^0, \og\χq

n\φ{Λ))\^Kn\.
We prove (5.2.9) by establishing the following two bounds:

γ d-l

- ^ 3 λ~2Xd^ |]8(C)| sup (logκ:)kX^2 f eA2 f e~2 - fo(C)(logκ:)d/2. (5.2.11)
^ j,k
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Cancel the common factor λ~2 in (5.2.10). Since X > 4 C 3 , we have — X d ^ l

i d - l

^a(η,C). Furthermore, — Z ^ C 2 ^ " 1 ^ £ CX^ + ̂ Z 2 , so (5.2.10) is valid.

For k=j/2 = d/2, (5.2.11) is immediate. Otherwise, note that
Xd-M{\ogκ)kXd-2k is minimized at X^M1/2k(\ogκ)1/2 so that
Xd ^ M(log κ) feXd"2k - Mdl2\\og κ)dl2. Therefore,

2C 3

^ \β(C)\(\ogκ)kXj- 2kλ2k~ 2 - b(C)(\ogκ)dl2, (5.2.12)

using X ^ l , λ^l. This completes the proof of (5.2.11).

Case 2.X^4C3. In this region we have a lower bound — b(C)(logκ)d/2 on the Wick
counterterms, so we can work freely with unordered polynomials. We consider
only φ(Δ)^ξφ as the case φ(Δ)^ξq is essentially the same. Consider three
subcases.

Case 2A. B < oo, and either φ(Δ) >Bor n{Δ) > 0. Let L = logKn{A)! if n(Δ) > 0 or 0 if
n{Δ) = 0. The proposition will follow from

-L, (5.2.13)

by virtue of the lower bound on the Wick counterterms.
Substitute ξq = λξq{λ), ξ = λξf in (5.2.2) and divide both sides by λ2. The left-

hand side becomes λ-20>

1{λξ')-λ-20>1{λξq) = 0>λ{ξ')-0>λ{ξq), and the right-hand
side is invariant, except that ξ is replaced by ξ. Thus (5.2.2) holds for ̂ λ , ξq(λ), and

^A(ΦJ - HΦK -Q2- &x(ξq) ̂ HΦK -ξq)
2-\{Φκ~B)2. (5.2.14)

We have used the fact that (φκ ~ B)2 > (φκ - A)2 if φκ^A. For φκe[A,B'], the last
term could have been omitted.

From (5.2.6) and (5.2.7) we have

^ B)2. (5.2.15)

Thus (5.2.13) reduces to the inequality

HΦ* - Q2 ~\(Φκ- B)2+i(^) ~ B)2 + CW>* - m)2 ^ a{η, c μ - 2 .

(5.2.16)

Using u2 + v2^^(u + v)2 and C^i> we have

ζ-{φκ-B)2^{φ{Δ)-B)2 +^(φκ-φ(Δ))2. (5.2.17)
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Thus the left-hand side of (5.2.16) is bounded below by

ζ

(5.2.18)

HΦK - g 2 + u m - B)2+~(ΦK-

ζ
We have used η < - and

4

q q q % q C-1. (5.2.19)

This completes Case 2A.

Case 2B. φ{Δ)^B and n(Δ) = 0. The proposition will follow from

nΦJ - HΦK - g 2 - »IQ + CδΦl ^ 0. (5.2.20)

As in (5.2.15), (5.2.2) reduces the inequality to proving the positivity of

HΦK - Q2 -\{ΦK-Bf + ζ(φ(Δ) - φκ)
2, φκ>B

HΦκ-ξq)
2-^(Φκ-A)2 + ζ(φ(Δ)-φκf, φκ<A (5.2.21)

\Ά{φκ - ξq)
2 + ξ(φ(Δ) - φ κ ) 2 , φκ e IA, B-].

In the first case, \φ — φκ\ ̂  \φκ — B\ proves positivity. The third case is positive as it
stands. In the second case, use φ(Δ)^ξq to show \φ(Δ) — φκ\^\φκ — Λ\ and prove
positivity. This completes Case 2B.

Case 2C. B= oo and n(A)^l. We have

X -Kn\ +

-^C-2X-2. (5.2.22)

Thus Case 2C follows from (5.2.20). This completes the proof of
Proposition 5.2.1. D

5.3. Vacuum Energy Bound

We begin the proof of Proposition 2.5.1 by stating a number of lemmas bounding
Fv . . . , F 4 and the fluctuation field. The proofs are as in [19], with only slight
modifications arising from masses not equal to unity.

Lemma 5.3.1. For any C>2, ηe(0,1] there exists τ2(η,C)>0 such that

2 ^ . (5.3.1)

The proof uses the fact that the minima are separated by at least C~ 1A~λ to
obtain 0{λ~2) terms from \Vg\2 and (g — h)2.

Let ω(x)e[^/2,m2] for all x and suppose m2 — ω{x) is compactly supported.
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Lemma 5.3.2. For any C>2, ηe(0,1], there exists a λo(η,C)>0 such that for

λ e ( ( U 0 ] and pellO(fh/η)l

Je-™^>)^F l W. (5.3.2)

Lemma 5.3.3. There exists a constant Kt such that for any C>2, ζe(0,π2/27),
ηe(O, C/4] there exists λo(η9 C)>0 such that for Λe(O, λo\ p ^ 1, and any K, S, ω, Yct

with suppt(m2-ω{x))QΛ, YctQΎnΛ,

jexp[ J ζ:δφ2(x):dx-PF4(Y) dμωjxp)
[Yet

<eKi(\Yct\l2 + ζFί{Y))ep
2{l-ηlmli)F2{Y) ^ (5.3.3)

We next prove some estimates on the coefficients occurring in Qωn(Ύ). Let
Δ1 Q YnΛ, h(Ax) = ξm and define

(5.3.4)

1) + E^c-Έ^)+ j \(ωn(x)-η):ψ{x)2:dx. (5.3.5)
A1

See (2.3.8) and (2.4.3). Write

^ Σ m d x . (5.3.6)
j = 0 zl1

Lemma 5.3.4. T/ιe following bounds hold for dist(x,Γ)^L/2:

k2(x) = k1(x) = 0, (5.3.7)

fc0W = £ Γ - ^ = O(λ- 2) 5 h{x) = ξn.

If dist(x,Σ)<L/2, then

| fc/x)|^O(iμ^" 2. (5.3.8)

Proof For dist(x9Σ)*zL/2 we have ψ = ψm = φ-h ϊor some m. By condition (iii),
Sect. 2.1 we have

= Σ α J . m ^ - 2 + i m > 2 + E- (5.3.9)

and the first bound follows. The last two terms in (5.3.4) sum to — \ωn{x) :ψm(x)2:
= ~2mm ψ(x)2'> since ωn{x) = ml{x) whenever dist(x,Γ)^L/2. Thus the j = 2 and

7 = 1 terms vanish. The bound on \E™ — Eq

c\ comes from (v) and the restriction
larger1.

The minima of 0>λ are separated by O(λ x), and hence \g — ξq\ is O(λ x). Thus
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Expanding in terms of ψ, we find that each monomial ψj has a coefficient O(λJ~ 2).
The same is true for the other terms in U. This completes the proof. D

Define for ΔxQYnΛ

Wκ{uΔ') = t J l:^λJφκ{x)):-E^-\η:{φκ{x)-h(x))2^dx

+ \\{l-t){ωn(x)-η):xpκ{xγ:dx, (5.3.10)
A1

and let δWκ(t,Δ1) = W(t,Δ1)-Wκ{t9Δ
1). Then with

kj(x) = kj(x), ; + 2,
(5.3.11)

we have that δWκ is a sum of terms kj(\ψj: — \(ψκ + gκ — g)j:). Expanding these
yields d

δ ( 1 ) Σ ί ( ( Y : - :ψκ(x)j:)dx

d- 1

j = 0 Δ1

+ ί i(l-0(ωπ(x)-«7)(:φ(x)2:- :φκ(x)20dx, (5.3.12)
Δ1

where

<5fen(x>K)=- X fc/^f^ωx)-^)^". (5.3.13)

Lemma 5.3.5. For all p < oo there exists ε(p, C) > 0 swc/z ί/zαί ί/iβ following bounds
hold:

(5.3.14)

Proof. The bounds on fe^ follow from Lemma 5.3.4. Since #(x) = const for dist(x,Σ)
^L/2, ^ K Z J I ^ Z ^ I implies ^κ = ̂  a n ( i δk = O. The last bound follows from

l l f c / 0 κ - 0 y ~ Ί i ^ | f c ^ (5.3.15)

The bound on ||gfκ —gf|| follows from properties of the momentum cutoff,
see [19]. •

Lemma 5.3.6. There exists K2(ω,C) and δ(C)>0 with the following property. Let
{m{Δι) \ΔXQ YnA) be a set of nonnegative integers and let {M/l1): Δ1 Q ΎnA] be a
set of positive numbers with /φdψ g / Γ 2 for d i s t ^ 1 , ! 1 ) ^ ^ . Then

J Π
^ Π [idm(Δ1))\{K2κ{Δ1yδ)m^']. (5.3.16)

Δ^Y
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Proof. We require Cω(s) to have fractional derivatives in some Lq. This follows
from the Neumann series representation for (2.4.1)

CJs) = Cih2(s) Σ ί(m2-ω)CΓn2(s)Ύ (5.3.17)
n = 0

as in [19]. Convergence follows from the fact that 0<cφc):gm 2 and

II Cm2(s) II =-=y This representation also shows that both the kernel and the

operator Cω(s) are positive, increasing in s, and decreasing in ω. The bounds of
Lemma 5.3.5 suffice to complete the proof as in [7]. •

We establish a weaker version of Proposition 2.5.1 and then recover the full
version using a perturbation argument. Let Yd be the union of the unit lattice
squares of YnΛ that satisfy dist(z!1,Σ)^L/2 and n{Δ1) = 0. For each ΔιQYd,
introduce a parameter t(Δ *)e [0,1]. Let Yt be the union of all Ax Q Yd with t(Δ*) φ 0
and let Yc = (YnΛ)\Yd. Define

(5.3.18)
ϋ(t,Y)= Σ tiΔ'MΔ1)-^ Σ U(Δι).

Proposition 5.3.7. Under the hypotheses of Proposition 2.5.1, but with

-U(t,Y)-ΣFι(Y)
βcon,sΨ ^

Proof. We follow [19] closely. Let Yct= YcvYv put t(A)=l for A Q Yc, and define

l- ί {ωn(x)-η):ψ(x)2:dx=ΣW(t,Δ). (5.3.20)
1 Yet Δ

Then with ω = ωn-p{ωn-η)χYct,

~Z^ωnω\b) IIΛ e " LP(dμω>s(ψ))

< 7 (<Λ1/P ~(Fl+F2)\\p~F3\\

We
 W

Here q^l + τ~rzr, qr is even, and qf=q/{q-l)Spq'S0(η/m). The F3 integral is

bounded by Lemma 5.3.2 and ZωnCύ(s) is bounded in Sect 5.5, yielding the estimate

e-(l-λ)Fί~F2eK(η,m)\Yct\]\e-(W(t,Y) + F4-log\χ^\)u /^ 3 22)

The last factor can be bounded using the Wick bounds of Sect. 5.2. For each
zl^Y^we specify a positive integer i(A1). We take κi{Δ) = 2ι{Δ) and sum over all sets
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{i{Δ)} subject to the restriction that κδ

i(Δ)^λ~2 for dist(Δ,Σ)^L/2. For each {i(Λ)}
we find a bound that applies only to the subset of 9" such that for all A g Yct

:δφ2

κ(Δ):-\og\/Xφ(Δ))\)e

(5.3.23)

•1], n{Δ)>0.

When i(Δ) assumes its minimum value, we omit the upper limit.
On this subset, and for i(Δ) not minimal, we have

W(t,A) + ζ: δφ2(A): - log \χ{Ί(φ(A))\

^-b(\ogκiiΔ))
d/2-l + (aλ-2-\ogKn(Δ)\,n(A)>0)

^ Wκ(t, Δ) + ζ: δφ2

κ(Δ): - log \f\φ{Δ))\ -1,

where we have used the Wick bound

(5.3.24)

n{Δ)\, n(Δ)>0). (5.3.25)

For n(zl)>0 we have t(Δ)=l and this is Proposition 5.2.1. For n(Δ) = 0 the
additional terms satisfy

and (5.3.25) follows using b = b(C) + b'.
Equation (5.3.24) implies that

for m any positive even integer. We choose r
Lemma 5.3.6. For i(Δ) minimal, put m{Δ) — {
(5.3.23), we obtain

(5.3.26)

\d/q\ where δ is given by
Applying the lower bounds in

Δ:n(Δ)>0

Σ lί Π ίδWKiJt,Δp
{i(A)}\ AQYct

C ί :δφMx):dx-FA(Y)

Σ Π δWKiJt,ArΛ) Π e^*™*11

igYct Li' A QYct

• Π Σ
ΔQYc [

_|_ e

bι{\ogκι(A))df2 (5.3.27)
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We have applied Lemma 5.3.3 to the F 4 integral and Lemma 5.3.6 to the δWκ

integrals.
The i(Δ) sum converges, and the term i(zl) = imin(z1) is less than βK 5 ( C ) | l o g A | d / 2

for dist(zJ,Σ)^L/2. Thus the product in (5.3.27) is bounded by

V F l . (5.3.28)
A:άist(A,Σ)^L/2

We have used Lemma 5.3.1 to show that

L2K5\logλ\dl2\Σ\^6τ2λ-1\Σ\^λF1.

Combining (5.3.27) and (5.3.22), we obtain

II π -U(t,Y)-ΣFi\\
\\χ{)e < I I L P

The difference \Yct\l2 — \Yt\l2 can be absorbed with a decrease in α' and the loss
of another factor λF\. Take ζ less than π2/2Ίpq and small enough so that 1 — 3/1

— ζKx ^f. Since pq2 < 1 H—, the coefficient of F2 is negative. Since F2 >0, we may

drop the F2 factor. This completes the proof. D

Proof of Proposition 2.5.1. The change from U(ί, Y) to Qωn(Y) produces the factor

exp/Σ/ 2(£«-E^)|y|m\ in (2.5.3), see (5.3.18). To obtain a "factor λ in front of the
\m )

volume, apply the identity

e~PU(A) = j _ pfi(Δ) J e-pt(A)ύ(A)dt (5329)

for each zl £ Yd, as in [19]. In each term of the resulting sum, separate the pU(Δ)
factors from the exponential with Holder's inequality. Lemma 5.3.4 bounds the
coefficients in ϋ (ΛQYd) by 0(λ), so the [/-integral is bounded by 0(A) | 2 | 7 t |. The

npreceding proposition bounds the other integral. Thus for pe 1,1
_ > ,

^ ' ^ - " ' " " » e - 3 « 2 A - 2 ( | 2 | + | r | ) ] - j n ( J 1 ) ! j-j ( 1 + 0(A)), (5.3.30)
/I1 AxQYd

and the proof is complete. •

5.4. Lower Bounds for ZΔm and ZΣ

In this section we prove Proposition 2.5.2 and a lower bound on ZΣ(Ψ) which will
be important in the proof of Proposition 2.5.6, Sect. 5.7.

Proof of Proposition 2.5.2. By (2.4.16) we need to show that for an /-lattice square
ΔQΛ

~ " ~ ~ ~ " ' M ~ " " " ^ea(n,Qλi\ ( 5 A 1 )
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Write the integral as

m, ,,eΔ(ψJ. (5.4.2)

As in (5.3.29)-(5.3.30), the second term is bounded by

(5.4.3)

Write the third term as — ^ j x ^ μ ^ 5zl(τpm) and observe that for nφm

ζ :δφ2(x): — \ogχn(φ(A))J\-^(m2

n — η) :ψm(x)2 :

^ — b\ogκ + O{λ~2). (5.4.4)

Thus (5.3.25) holds for t{Δ) = 0, χ£ replaced by χn, and with a term aλ'2. With
Yt = Λ, Ft = 0, the remainder of the proof of Proposition 5.3.7 can be applied to
yield

ί & ^ i a j ( v ϋ ^ Π e-°{λ~2). (5.4.5)

Thus

Σ ίXi^Mm2 dd<Ψm) = (\ +e'O(λ2))12 — 1 r^e~O{λ~2). (5.4.6)
Σφm

This completes the proof. D

Proposition 5.4.1. Under the conditions of Proposition 2.5.1,

Here a is independent of Σ for Σ compatible with V.

Proof. This lower bound is very weak because of possible phase boundaries.
Nevertheless it is essential in the proof of Proposition 2.5.6.

Write pCV) = p, dμm2 δ^(ψp) = dψp. By (2.4.16), we need a lower bound on
faie~Vp(y)dy)p. Recall that

χσ(ξ + ξp) = π~1/2 σ 7 V<«-*>2dz. (5.4.8)
(ξσ-l+ξσ)/2-ξp

Choose an interval [zo,zo + l ] , z0 = O(λ~1) in the range of z-integration. Since
e-(ξ-z)2-^e-2ξ2

e-o(λ 2) for z j n ^ m ^ e r v a j ? w e have a lower bound on χσ\

^ (5.4.9)

Thus

J Π e~ 2 ^ ' ) 2 e- F " w ί /φ p . (5.4.10)
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By Jensen's inequality, the integral on the right is bounded below by

- ί ( Σ 2ψ(A1)2 + Vp(Ψ)\dψp\^e~°^ι2^K (5.4.11)

completing the proof. D

5.5. Estimates on Mass Shift Normalization Factors

We need estimates on the factors Zωk(ύk + ί(s) arising in the expansion of Sect. 2.4. It
is important to get the correct volume dependence and to estimate the deviation as
a surface effect.

Recall that

Zω i ω 2(s) = ί e J ( ω i ( x ) " ω 2 ( x ) ) : v ( x ) 2 : d x i μ α ) l f S ( φ ) , (5.5.1)

where the Wick order is with respect to the free covariance with mass m^= |/co0.
In this section only, we shall use ordinary units (not /- or /2-units) to measure
lengths and areas.

Proposition 5.5.1. Let ωx(x), co2(x) be constant on unit lattice squares and lie in the
range \y\j% m2] for all x. Let D be a finite union of unit lattice squares, and suppose
ω1(x) = ω2(x\ xφD and ωi(x) = ώi, xeD. Let s = {sb} be an arbitrary set of
decoupling parameters for the bonds of the l-lattίce, subject to the requirement that
sb = l for b intersecting the interior of D. Finally, suppose |ω 2 — ω 1 | ^ ώ 1 — η/4,
where ώ1 = inf ωx(x). Then

SO(ί)\dD\, (5.5.2)

where 0(1) depends only on η and m. Here \D\ is the volume of D and \dD\ is the length
of the boundary of D.

Proof. We have the formula

) = -£trlog(l - K -ω 2)Cω ι{s))-itrK -ω 2)Cm

= Σ Ux((mi-w2)Cai(s)r + itr(mi-m2)(CWi(s)-CJ, (5.5.3)

where Cωo is the free covariance. Convergence follows from our assumed bound on
\ωί—ω2\ and Cω i(s)^( — A +ώ1)~1. We begin by comparing each term of this sum
with the corresponding term after replacing Cωι(s) with the free covariance Cώι.
Using Cωi(s)^Cώί, CBίSCώι, we have

^tr[(ω1-ω2)Cωi(s)]"-^tr[(ω1-ω2)Q i

7 = 0

(5.5.4)
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Here Cωi(0) has Dirichlet boundary conditions on 3D, Cωι is the free covariance,
and χD is the operator of multiplication by the characteristic function of D.

Standard estimates on the Wiener integral representation for
(Cώι(0)-Cώi)(x,y) [17,27] yield a decay exp(-c( |x-j/ | + dist(y,δD))) for some
c>0. Thus

l l L ( d ; c )

d i s t ^ ^ . (5.5.5)

The covariances Cώi map L2 to L^nL2, so

l ^ ^ ^ ^ ^ e - ^ ^ ^ (5.5.6)

and hence

(5.5.7)
n = 2

The second term in (5.5.4) is handled by putting ω ί = ί ω 1 + ( l — t)ώ and
observing that

|Cω i(s)-CO l(s)| = -C ω t (s)( ω i -o h )CJs)dt ύK$Cωt{s)χ»DCωt{s)dt.

(5.5.8)

Since

the second term is also bounded by K\dD\.
In a similar fashion we can prove

tt{mi-m2)\Cai(s)-Cai\^K\dD\. (5.5.10)

We have expressed logZω i ω 2(s) as

Σ ^ ^ t r ^ C ^ + ̂ -ωJtΓ^C^-CJ (5.5.11)

up to an error X|δD|. We next control the substitution (χDCώι)
n 1-^Cn

ώί

 ι. Since
Cωi-χDCβι=χ^DCώl, we obtain a sum of terms

{ ω ~ ^ T

 ώyχ^ΌC^\ j = l , . . . , n - l (5.5.12)

as in (5.5.4). By (5.5.9), the sum of these terms is bounded by K\dD\.
With just one χD in each trace, we can use translation invariance to divide by

|D| simply:
1 GO / - - \n

^(io g z( s )+o( |δD|))= Σ i 2 c"(oo)
2n cSi(o,o)

+i(ω 1 -ώ 2 χC ω i -C ω o X0,0). (5.5.13)i(ω
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We calculate the right-hand side in momentum space:

In J(2π)2(p2 + ώ 1 ) " + 2 l ω i ^ (2π)2

ωt $ K - ω 2 ) " ω f ^ ω0
+ 1

8π n = 2 n{n — l)ω\ 8π

Since

for | χ | < l , (5.5.15)
n = 2n(n-l) v

this is equal to

8π ω 0 8π ω 0 8π

which completes the proof. Π

Corollary 5.5.2. The bound (5.5.2) of Proposition 5.5.Ϊ holds without the restriction
on |ώ 2 —ώ 1 | .

Proof. The elementary identity

Zω (s) = Zωiω2(s)Zω2ω3(s) (5.5.17)

allows us to write ZωiC02(s) as a product of Z's for which Proposition 5.5.1 is
applicable. The terms

ω ω ω

8π ω 0 8π

cancel for the intermediate ω's. •
This trick also proves the bound

Zωnω(s)^eκiη^Yct] (5.5.18)

used in Eqs. (5.3.21)-(5.3.22).

Proposition 5.5.3. Under the conditions of Proposition 5.5 J, let ωx{x\ co2(x\ and ω0

depend on a parameter μ in such a way that sup ̂ — ω^x) ^ C. Then

d

Jμ
1 ry , ,l o g Z ω i ω 2 ( 5 ) -

ω2 ωί ω1 ω 2 - ω
^ ^ l ^ *

8π ω 0 8π ω 0 8π
(5.5.19)

Proof. Expand the above difference as in the proof of Proposition 5.5.1, and
differentiate each term. Derivatives oΐ(ώ1 — ώ2) factors do not affect the estimates.
For derivatives of covariances, we apply

~ C ω ( s ) = - C ω ( S ) ^ C ω ( s ) . (5.5.20)

(This formula depends on the fact that m is independent of μ.) When Cω(s) is an
isolated covariance (one that has not been finite-differenced) we still have a
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bounded operator from L1 to L2CΛU° and the surface estimate works as before.
(There are n — 1 terms, but since the sum on n converges geometrically this causes
no problem.)

It remains for us to consider the terms involving

or _

The first term is equal to

In each term the factor \Cώι(s) — Cώί\S\Cώι(0) — Cώι\ provides the necessary
localization at the boundary. The second case above may be written as

- χD(cωι(s) - c&i(s)) ^ 7 cωi{s)χD - χDcώι(s) d{ωi

d~
 ω i )

The first and third terms are localized at the boundary as in (5.5.8)—(5.5.9). Since
δ

—-(ωi — ω1)^Kχ^D, the second term can be handled similarly. The third case

above is equal to —χ^DCώl(dώί/dμ)Cώί, which forces the preceding covariance to
stretch between D and ~D as in (5.5.12). This completes the proof. •

Corollary 5.5.4. Proposition 5.5.3 holds without the restriction on \ώ2 — ώ1\.

Proof. This follows from (5.5.17) as in the previous corollary. Π

5.6. Decoupling Expansion Estimates

This section is devoted to proving Propositions 2.5.3 and 2.5.4. We require the
bound

sr Σ ί Π [ ^ ( Z ) " δ " ' - ' ( Z ) Π ί^sCωj(sΓ)-Δψ-]
πe0>(Γ) j= 1

β m . (5.6.1)

Here Z = ZK, Γ = ΓnZ, Σ = ΣnZ, and Z = {Z,Σ,Γ) is a cluster. The factor {λ1/2) is
conditional it is present only if deg# = 0. Likewise (λ~degR) is present only if Σ φm
(R is a monomial in ψm). We assume | Z | > 1 if deg.R = 0. The U norm is with
respect to the variables in R, and p e [ l , oo). See Sects. 2.4 and 2.5.
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We expand da

sC into its /-lattice localizations and apply the derivatives Δψ.
Using Holder's inequality, split the integral into a Gaussian part times an
interaction part. Apply Proposition 2.5.1 to the interaction integral. This produces
factors

The first factor accounts for some of the energy factors in (5.6.1); what remains to
be accounted for is

exp {Y {E™ -El- Ep

c

iZ) + EpJZ))l2\Έint\m\. (5.6.2)

(Recall that Έni extends into IntZ.) We use

^ ^ i m~ml (5 6 3)
8π

and Corollary 5.5.2 to obtain this factor from the Zωk(Oκ+ί(sΓk) factors. The mass
prevailing over a particular square in Έmt is in general shifted many times.
However, the energy factors associated with intermediate values of the mass

cancel, by (5.5.2). Thus up to an error exp/]Γ0(l)|δj3kf\, we obtain a factor
\ )\k

exp( ί ^log^-^log^-^^^), (5.6-4)

where we have put ωn(x) = m^ for xeϊnt m Z. Recall that ωn(x) differed from m i x )

only when dist(x,I)^L/2. Thus (5.6.4) agrees with (5.6.2) up to an error e

0{1)L2^.

Since Σ |δD f t | ^ | i ; | , both errors can be absorbed into e~****•-2\*\m

k

We next estimate the Gaussian integrals that were split off with Holder's
inequality above. We use the estimate

H^ril <pKip-cid«juj2),u)p-ci\*\ y p-ci\o\ r S f S S Ί

oeL(α)

proven at the end of this section. Here q<co,

d{(jl9j2\ °0 = sup (dist(zl j i9 b) + dist(zl 2, b))/l,

and o is a linear ordering of the bonds in α. We define \o\ as follows. If
o = (b l 5 ...,&„), let I = (iv...,ik) be any subset of {1,...,«} with i α < i α + 1 . Then

k

\o\ = sup Σ dist(b/α_ l5 bia)/l. This is not quite the same definition as in [17]. There
/ α=2

is an analogous bound on the single-variable kernel d*C(x, x).
Assuming (5.6.5), the remainder of the proof of (5.6.1) is fairly standard

[27,29]. We indicate only the main points. The e~cl^ factors control the sum over
partitions of π, up to an effect e0(1)lzl. The e~

cldiUuJ2)'a) factor controls localization
sums. Derivatives in d"Cωk{(χ) Δψ can contract to βω k ( α ) There must be a bond in α
contained in ^ f e ( α )(Σ), and ωfe(α) is the correct mass-squared within L/2 of such
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bonds. Furthermore there are no phase boundaries within L of such bonds. Thus
the coefficients in βω k ( α ) are O(λ) within L/2 of the bond, and if the contraction is to
A with dist(b, Δ)^L/% then a factor 0(λ) is brought down. Otherwise factors
O ^ " 1 ) can be introduced, but this is compensated by e~c'LI2^λ2 arising from
d{(jl9j2),0L)>L/2L

Derivatives of χΣ can be pinned to the factor e~X2λ 2 arising from \Σ'\ and hence
they also yield 0{λ) factors. If deg# = 0, | Z | > 1 , there must be at least one
derivative or phase boundary, hence the factor {λ1/2) in (5.6.1).

Translation from ψm to ψ in R will produce factors 0{λ~degR) if Σ φm. This has
been taken into account in (5.6.1). Some derivatives may act on R\ the associated
eκι goes into the eκldegR factor in (5.6.1).

At least a certain fraction of the derivatives not contracted to R will contract to
Q or to χΣ and yield factors 0{λ). Altogether we have at least a factor e~cl for every
derivative bond and e~κι for every vertex. Since derivative bonds are "dense" in
regions away from phase boundaries, we obtain the overall volume convergence

Finally there are factorials to control. With d = deg^, N{Δ) = degRΛ, M(Δ)

contractions in A, and n(Aι) contractions to χ^Δ1), we have factors

Y\(N(A) + dM(A))\112 from the Gaussian integration, fj/^zl1)! from the vacuum
A Δx

energy bound, and γ\(e

0{1)mΔ) + mΛ))M{A)M{Δ)) from summing over different ways
A

of applying the derivatives. After extracting eO(1}N(A\N(A)\)1/2 for (5.6.1), we must

bound

(O(l)M(A))MiΛ) Π e-
cdist{A>y)

y contracted to A

by 0(1) to get a controllable volume effect. This is accomplished as in [17] by
taking account of the rate α is forced away from A as M(Δ) becomes large. This
completes the proof of Propositions 2.5.3 and 2.5.4.

We now prove (5.6.5). Using the Neumann series (5.3.17) for Cω(s) we have

n=l

Σ Σ ^'C s 2 (s)Π[(m 2 -ωK'Q 2 ( S )]. (5.6.6)
n = 1 ( α i , . . . , α n ) i = 2

The α/s are disjoint, and possibly empty. When αt = 0 or i^n—1, we use a
standard type of estimate [17,27] :

cl«i| + l V e-cl\o\e-cδ(A1,aί)e~cδ(x,aι)e-cdist(x,A1) ^ (5.6.7)

oeL(αt)
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Here δ(zl1

5ocί)= sup distal1,??), <5(x,α;) = supdist(x, b), and <?e[l, oo). If αf is

empty, these distances are defined to be zero. Summing over unit squares zl1 glR2,
we obtain

ecδ(x, aτ)ecδ{y, a.t) ̂ c\x - y\^

<ci«ii + i y
oeL(αχ)

When αf = 0 we may use

ipx

We have from (5.6.7) that if n^2,

(5.6.8)

(5.6.9)

n - i | + |α n | -cί|o|

oeL(an-ί)

V -c/|o'|

o'eL(a.n)

for each x and z. Equations (5.6.8) and (5.6.9) bound the norms of the integral
operators da

s

ιCm2(s) after extracting some decay factors. Putting these estimates
together yields

n=2

• SUP Π f Σ
(xi,... , x n - i ) i= l[oιeL(aι)

- d l 0 ^ - c 5 ( X ι - 1 ' α ι ) β ~ c ^ ' α ι ) β - φ ι - 1 ~ X ί l ] . (5.6.10)

J
We have used ω(x)^2^. Put (m2 - 2^)/(m2 - η/2) = 1 - 2ε. With a factor

(1—ε) "ε |αzl we can choose \aί|, . . . , | α π | , because f ]
ί = l N =

= ( l - e ) " " . Having

made this choice, a set of α/s with their linear orderings uniquely determines a
linear ordering o of α. Furthermore,

Mύ Σ N+ Σ ( ^
ί = 1 i= 1

and if XQGZI^, xneAJ2, then

ld((jl9j2U)S Σ (^-^α^
i = l

Altogether we have bounded the right-hand side of (5.6.10) by

(5.6.11)

(5.6.12)

. | + i

n=2

Ί - 2 ε "
1-ε oeL(α)
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Thus

= ^ c L e e 9 (5.6.13)
oeL(a)

and since

l^cM + le-cl\o\/2^le-c'l\a\ 9 (5.6.14)

we obtain (5.6.5) for the difference da

sCω(s) - d«Cm2(s). The bound (5.6.5) is well
known for da

sCm2(s\ so this completes the proof for d*Cω{s). Equation (5.6.13) holds
for the single-variable kernels as well if we replace Lq(Ajί x Aj2) with Lq(AjJ. Again,
comparison with d\C^2 proves the bound analogous to (5.6.5) for single-variable
kernels.

5.7. The Bounded Spin Approximation

In this section we prove the bound

2/2|V| (5.7.1)

of Proposition 2.5.6. This derivative will turn out to be a sum of expectations of

quantities like : ψρ(V)' = j" ψp{x)j'- dx. If ψp were a bounded variable, such
v

expectations would be automatically bounded. (Having bounded spins simplified
the Pirogov-Sinai work at this point [24].) Since ψp is in fact unbounded, we must
show that the error incurred in treating it as bounded is small enough to dominate
the vacuum energy volume divergences.

Write p for p(Y), dψp for dμm2fdv(ψp{v)), μ for μ\ and C for the covariance oϊdψp.

Using (2.4.16) we compute

= f( Σ

From the formula (5.4.8) for χσ(φ(Δ)) = χσ{ψp(A) + ξp), we have

_ - - l / 2 ,-(φp(/l)-B) 2 -1/2

dμ6 8μ

where

Note that dA/dμ and dB/dμ are 0{λ~ι).
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We use the asymptotic expansion

to bound
dμ]

339

(5.7.3)

by O(λ ^(ψ (Δ) + ί) for ψ (Δ)^B. There is an analogous

bound for ψp{Δ)^A, and for ψp(Δ)e\_A,B~\ we have χσ

 1^0(ί). Thus

d_

Yμ
and the first term in (5.7.2) is bounded by

(5.7.4)

The second term in (5.7.2) is a sum of terms

UCgc^ . \J. I .J)

This includes terms arising from differentiating the mass in the Wick ordering.
(The free covariance is always used in the Wick ordering.)

Using integration by parts, we have

UK^ c U u'nr> / υ

-^'Δw = J i — y - τ C(x,y)-^~C{y,z)-—-—dxdydz
dμ ψp δxpp(x) dμ δψp(z)

(5.7.6)

The difference :ψ2

p(Ύ): - :ψ2

p{V) :c is a constant 0(/2|V|), so the third term in (5.7.2)
is also of the form (5.7.5).

Altogether we have

\Ψp(A)\\
/Σ j=0

(5.7.7)
where

Lemma 5.7.1. There exists a constant K0(C)>0 such that for all K^K0 the
following is true. With j ^ d e g ^ let χ+(χ_) be the characteristic function of

respectively. Then

Proof. Let V=Vp(V)-λj-2 :ψρ{V):/2C. Then

(5.7.ί

(5.7.9)
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because χΣ^l, and because Xe~λJ~2χl2C attains its maximum at the minimum
value ofX = λ~jKl2\Ψ\, for K large enough. In fact,

for K large enough. Notice that V is bounded below even iΐj = d = deg0> because
the coefficient of ψd

p in Vq is at least C~ιλd~2. Furthermore, V is of the form
λ~2V1(λψp), so the lower bound is O(λ~2).

Standard linear lower bound estimates [15] will yield

$e-γdψpSeO{λ~2)l2W. (5.7.10)

This can be absorbed into g-λ-2κι2|v|/i2c for κ i a r g e enough.

The proof for χ_ is similar, using V= Vp(Ύ) + λj~2 :ψj

p(Ψ) :/2C. D

Lemma 5.7.2. Let χ+ be the characteristic function of £ iψpiΔ^λ'1^2^ and

suppose K is sufficiently large. Then

ί*+ Σ \

Proof We modify the proof of Lemma 5.7.1. Write the integral as a sum of 2*2|v|

terms according to whether ψp(A)<0 or ψp(A)^0 for each A1 ΩΨ. (That is, insert
the corresponding partition of unity into the measure.) Each term can be bounded
as before if we take

V=Vp(Y)-λ-1/2C Σ ε(Λ)ψp(Λ).
ΔQV

Here ε(Δ) = ί for the ψp(Δ)^0 term, ε(Δ)=-ί for the ψp(A)<0 term. The
combinatoric factor 2μ^ is controlled by e-^2^2m/i2c D

Proof of Proposition 2.5.6. Withχ + ,χ_ as in Lemma 5.7.1 andχo = l — χ+ — χ_, we
have

+ Γdt p

The first term is an expectation of a variable bounded by λ~jKl2\Ψ\ and so it is also
bounded by λ~jKl2\Ψ\. By Lemma 5.7.1 we have

p (5.7.13)

since tχ+ ^χ+ :ψj

p(Ψ):, tχ_ S~X- :ψj

p(V):. Thus by Proposition 5.4.1,

Wp^e-^2'2^-2e"i"-2l2^c

(5.7.14)



Phase Diagrams. II 341

Thus the second term is bounded by 2exp[(-K/4C + 2α)/l"2/2 |¥|] g 1 for K large
enough. The third term is bounded by

l . (5.7.15)

The: ψJ

p(V): integral has been split with Holder's inequality and bounded as usual
using Proposition 2.5.1. Putting these bounds together, we obtain

^ /2|V|. (5.7.16)

The bound Γ 1 / ^ |φ (Λ)|\ ^2Kλ~2l2\V\ can be proven in the same way. By
\jςψ /Σ

(5.7.7), this completes the proof. D

5.8. Smoothness in μ

In this section we prove the bound

P^))l2\Y\rn Σi-EF + EW + EPW-EPJ^lψntrr

of Proposition 2.5.5. An expression for QΛtq(V) may be found in (5.6.1). We take
R = 1,W ^ 1, p = p(Y). Almost everything in (5.6.1) depends on μ = μι we will show
that after deriving each element of (5.6.1) the structure of the estimates in Sect. 5.6
need be modified only slightly. Without the derivative with respect to μ, (5.8.1)
would reduce to Proposition 2.5.3 the energy factors have merely been moved to
the other side of the inequality.

Consider first the dependence of Zωk(ύκ + i(sΓk) on μ. Divide some of the energy
factors amongst the Z's in accordance with Proposition 5.5.3. By Corollary 5.5.4,
differentiating

•exp

t z oπ mt »π mj oπ

brings down a factor O(l)\dDk+ί\. Thus differentiating all the Zexp(...) factors
introduces a factor no worse than O(l)|£|, which can be absorbed into e~ 2τ2λ~2\Σ\ i n

(5.6.1). A factor λ can also be extracted, since |Σ| ̂  1 whenever there are Z-factors
to differentiate.

In differentiating the remaining energy factors, consider two cases. If | Σ | ^ 1 ,
the differentiation introduces a factor O(λ~2)l2\Ύ\. When multiplied by

e-δτ2λ-2\Σ\e-δτ1ι\γ\^ taken out of (5.6.1), we are left with 0(λ). This is sufficient to
stand as a contribution to the bound in (5.8.1). If | £ | = 0 , then there are no
Z-factors and the energy factors degenerate to e(~Eϊ + E&ι2Mt We combine this with
Q before differentiating. The product over j in (5.6.1) degenerates to one term, with
all functional derivatives acting on χΣe~Qrn2p(Z\ The coefficients in Qm2(Z)
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— (Eq

c — Eξ)l2\¥\ are 0(λ), so that differentiation with respect to μ will bring down
terms 0(λ) :ιpj

p(Y):. Such terms are bounded by Proposition 2.5.4 they correspond
to a sum of |Y|/2 terms with R= '.ψj

p{Λ)\. The factor |Y|/2 is absorbed into e~ 3 τ i / | ¥ | ,
leaving an overall O(λ)eκlj^λ3/4 which is small enough for (5.8.1).

Returning to the case \Σ\ ^ 1, we consider the effect of differentiating β ω i (Z) or
the mass-shifts Qω.(Z) — Qω.+ i(Z). Coefficients of :ψj

p: will be 0{λj~2\ but since
|ZΊ^1 we must include a factor λ~j from translation, as in Proposition 2.5.4.
Having some .R-factors precede some of the functional derivatives does not affect
the estimates in Sect. 5.6. Thus we have terms

which is small enough.
We next consider μ-derivatives of χΣ. As in (5.7.2), we have

dμ

where A = (ξσ_1 + ξσ)/2-g(Δ\ B = (ξσ + ξσ+ J/2-g(A). We see that dχjdμ satisfies
the same bound in (5.2.5) as for dχσ/dφ(Δ), except for a factor \dA/dμ\ + \dB/dμ\

= 0(λ~1). It is easy to see that derivatives p~^σ a * s o s a ti sfy (5.2.5), up to a

factor O ^ " 1 ) . Thus the vacuum energy bound will hold with | Γ ' | ^ 1 whenever
some χσ is differentiated with respect to μ. This introduces a factor
0{λ~1)e~δτiλ~2^λ, which survives the decoupling expansion estimates. There are
also |Y|/2χσ's to differentiate, but this is controlled by e~

δτil{Ύl.
The masses in the covariance C = Cωn(sΓ) depend on μ, so we must differentiate

the measure dμωnSr(\p). As in (5.7.6), this corresponds to inserting a factor

j—-^—:xp(x)2 :c before everything else in the functional integral in (5.6.1). Since

dωn(x)/dμ is 0(1), this produces a factor 0(A~2)/2|Y| if \Σ\ ^ 1 or O(1)I2|Y| if \Σ\ =0.
These factors are dominated by e-^2λ^\Σ\e-δτiι\γ\ a s b e f o r e < A s i o n g a s | γ | ^ 2 , the
overall factor λ112 can still be obtained as in (5.6.1) because at least one functional
derivative must be applied to χΣe~Q if | Σ | = 0 . When |Y| = 1, we use the fact that
:ψ(x)2:c has no self-lines when integrated in dμc. Integrating one power of ψ by
parts then gives us the missing derivative on χΣe~Q. This yields a factor 0{λ)
^e~κιe~aλι2λ3l4e'iτi\ supplying the missing factors in (5.8.1).

The last type of term to consider involves differentiation of da

sCω.(sΓ). We
require the estimate

dμ
<eκιe-cid{(juj2),*)e-ci\aι\ y e-ci\o\ (5 8 3)

oeL(α)

and the analogous one for the single-variable kernel. This is the same as the
estimate we used for d*C, Eq. (5.6.5). Since there are no more than | π | ^ | Γ | ^
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covariances to differentiate, (5.8.3) will suffice to control all terms involving a

jr-d"C. [The factor λ1/2 is already present in (5.6.1) because |Y|^2.]

We compute

f ?,C(x,y)= Σ -id>C(x,z)^d>C(z,y)dz.

Summing over ^-localizations Δj3, we can apply (5.6.5) to obtain

" d

3μ
<o(i) y y e

2ki

e-cid(uι,te),β)
LQ β v γ = oc AJ3QY \oβeL(β)

Σ e~cl{Oy]\.
pγeL(y)

. e-cid((j3,j2),y)e-ci(\β\-\

If o is the linear ordering of α defined by (oβ, oy), then

|ό| ^ \op\ + d«jl9j3), β) + d((j3j2), y) + \oy\ + 2,

d«jl9j2), α) ̂  d({jl9j3)9 β) + d((j3j2)9 y),

(5.8.4)

(5.8.5)

(5.8.6)

Note that there are |α| — 1 pairs (θβ, oγ) that could correspond to any όeL(oc). Hence

with a factor |α| we can replace Σ Σ Σ w ^ n Σ Altogether we
βuγ = cc 0βeL(β) oγeL(γ) όeL(a)

obtain

eKΊe-cld(UιJ2),a)l3e-cl\*\\0L\e-cl\ό\l3^ (5.8.7)
L« όeL(α)

Estimate (5.8.3) now follows with a change in c. This completes the proof of
Proposition 2.5.5.

References

See Part I, this volume p. 261-304






